
Adversarial Domain Adaptation for Speaker Verification using Partially
Shared Network

Zhengyang Chen, Shuai Wang, Yanmin Qian†

MoE Key Lab of Artificial Intelligence
SpeechLab, Department of Computer Science and Engineering

AI Institute, Shanghai Jiao Tong University, Shanghai
{zhengyang.chen, feixiang121976, yanminqian}@sjtu.edu.cn

Abstract
Speaker verification systems usually suffer from large perfor-
mance degradation when applied to a new dataset from a differ-
ent domain. In this work, we will study the domain adaption
strategy between datasets with different languages using do-
main adversarial training. We introduce a partially shared net-
work based domain adversarial training architecture to learn an
asymmetric mapping for source and target domain embedding
extractor. This architecture can help the embedding extractor
learn domain invariant feature without sacrificing the ability on
speaker discrimination. When doing the evaluation on cross-
lingual domain adaption, the source domain data is in English
from NIST SRE04-10 and Switchboard, and the target domain
data is in Cantonese and Tagalog from NIST SRE16. Our re-
sults show that the usual adversarial training mode will indeed
harm the speaker discrimination when the source and target do-
main embedding extractors are fully shared, and in contrast the
newly proposed architecture solves this problem and achieves
∼25.0% relative average Equal Error Rate (EER) improvement
on SRE16 Cantonese and Tagalog evaluation.

Index Terms: Adversarial Training, Domain Adaption, Par-
tially Shared Weights, Speaker Verification

1. Introduction
The speaker verification task, which aims to verify a user’s
claimed identity given his or her speech segment, has gained
significant improvement since the deep neural network (DNN)
based speaker embedding was proposed. Researchers have in-
vestigated different DNN architectures [1, 2, 3, 4] and different
loss functions [5, 6, 7, 8, 9, 10, 11] to enhance the discrimina-
tion of DNN based speaker embeddings.

Despite the success of DNN embeddings for speaker veri-
fication, DNN training usually requires a huge amount of well-
annotated data with speaker labels. On the other hand, we
know that the performance of a model trained from one domain
will degrade dramatically when applied to a different domain
where the data distribution is not the same. Training domain-
specific models for each application scenario is a naive solu-
tion, however, collecting and labeling data for each domain is
time-consuming and very expensive. So it is necessary to find
an effective method to fast adapt an existing model trained on
a well-labeled source domain dataset to a new target domain in
which only the weakly-labeled or even unlabeled data is avail-
able.

Different approaches have been proposed to tackle the do-
main adaption problem for speaker verification, where the most
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commonly used one is utilizing the adversarial learning to
make the representation domain-invariant and reduce the mis-
match between the source and target domain data. The mis-
match may be from different channels, noise types, and lan-
guages, etc. For instance, [12, 13, 14, 15] proposed to use
channel adversarial training to make the speaker embeddings
more channel-invariant. Similar ideas could also be found in
[16, 17, 18]. However, in most of the current work, the data
from the source and target domain share the same feature ex-
tractor, which might be sub-optimal. For example, in [12], it is
non-trivial to make the adversarial trained network consistently
outperform the baseline. More recently, some researchers from
the computer vision community tried to use different feature
extractors for the source and target data, while sharing parts of
the parameters [19], and obtained consistent improvements on
some image-related tasks. Accordingly, we are inspired to ap-
ply a similar idea to enhance speaker embedding with adversar-
ial learning, which can be very useful for speaker verification.

In this paper, we show that the fully shared network indeed
hurts the discrimination of the learned speaker embeddings, and
a partially shared neural network architecture is designed and
introduced to address this problem. The impact of different
weight sharing strategies is thoroughly explored on NIST SRE
16 dataset. Domain mismatch problem is one main focus of re-
cent NIST evaluations (NIST SRE16 and SRE18), and SRE16
[20] mainly focuses on the mismatch between different lan-
guages. In this setup, the source domain data is in English from
NIST SRE04-10 and Switchboard, while the target domain data
is Tagalog and Cantonese from NIST SRE16. Thus, in this pa-
per, our proposed methods are evaluated on this cross-lingual
speaker verification task, while they can also be easily extended
to other domain mismatch scenarios. The main contributions of
this paper are described as follows:

• Wasserstein GAN (WGAN) loss is used for adversarial
training, aiming to learn domain invariant embeddings.

• Different from the fully shared feature extractor for both
source and target domain, a partially shared network
based domain adversarial training is designed and intro-
duced to generate better representations for speaker ver-
ification task.

• The impact of different weight sharing strategies is
fully explored for speaker verification, and it shows that
sharing either lower of higher layers is better than the
other positions. The best strategy gives a large relative
∼25.0% EER reduction on standard NIST SRE16 eval-
uation.
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Figure 1: Left: Fully Shared Network (FSN) with adversarial training criterion, and data from the source and target domains share
the same embedding extractor; Right: Partially Shared Network (PSN) with adversarial training criterion. Two parallel embedding
extractors are designed for data from the source and target domain, while the weight of the corresponding layers can be shared or
constrained with a weight regularization loss.

.

2. Partially Shared Network for
Adversarial Learning

2.1. Fully Shared Network

For a typical domain adversarial architecture, a common fea-
ture extractor is used to learn domain-invariant features with the
supervision of the adversarial training loss. Such a strategy is
investigated for speaker embedding learning in [12]. As shown
in Figure. 1 (left), we used fe, fc, fw to denote embedding
extractor, speaker discriminator and domain critic [21], which
are parameterized by θe, θc and θw respectively. We assume a
labeled source dataset Xs = {(xs

i , y
s
i )}ns

i=1, and an unlabeled

target domain dataset Xt =
{(

xt
i

)}nt

i=1
, where x denotes utter-

ances and y denotes speaker labels. And the total loss of Fully
Shared Network (FSN) is defined below:

LFSN = Lc + λwLw (1)

where Lc is the normal cross entropy loss defined as Lc =
CE(fc(fe(xi)), yi), and Lw is WGAN loss [22] defined as:

Lw = Lwd + γLgrad (2)

where Lwd is Wasserstein distance defined as:

Lwd = fw(fe(xs))− fw(fe(xt)) (3)

Lgrad represents the 1-Lipschitz constraint on the gradient
of domain critic’s parameters, which makes Lwd as an approx-
imation of the Wasserstein distance,

Lgrad(ĥ) =
(∥∥∥∇ĥfw(ĥ)

∥∥∥
2
− 1

)2

(4)

where ĥ is the linear combination of a paired hs (hs = fe(xs))
and ht (ht = fe(xt)) [22].

2.2. Partially Shared Network

2.2.1. Model Architecture

Instead of fully sharing the embedding extractor, in this paper,
we propose the partially shared network. As shown in Figure.

1 (right), two parallel embedding extractors are adopted for the
data from the source domain and target domain, respectively.
The parameters at the same layer position from two branches
are either shared or not. Source and target domain data are fed
to the two streams separately to generate the embeddings.

2.2.2. Loss Function

In the partially shared network (PSN), the common embedding
extractor fe defined in FSN will be split to parallel extractors
fs and f t, which are parameterized by θs and θt respectively.
We use θsj and θtj to denote the parameters of the jth layer (not
including the statistic pooling layer). BesidesLwd andLgrad in
the loss of FSN, another weight regularization loss is integrated
to constrain the weight distribution of θs and θt. The total loss
of PSN is defined in equation 5.

LPSN = Lc + λwLw + λrLr (5)

where Lr is defined as

Lr =
∑
j∈Ω

[
exp

(∥∥θsj − θtj
∥∥2

)
− 1

]
(6)

The Lr loss constrains the θt to be similar to θs, which is
used to avoid target extractor overfitting on domain-invariant
features learning task and losing speaker-discriminative abil-
ity. The definition of Lr is modified from the exponential form
weight regularization loss in [19], in which the exponential cal-
culation can punish harder on the difference between θsj and θtj ,
and we removed the linear transformation in the original defini-
tion because it makes the training unstable in our experiments.
Ω is the set of layers and defined as Ω = {1 · · · 6} in the x-
vector based architecture.

2.2.3. Training Algorithm

The whole training procedure is shown in Algorithm 1, which
can be divided into two iterative steps. In the first step, the
WGAN domain critic is trained for multiple iterations so that
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the domain critic network can discriminate the embedding from
different domains. Then the speaker classification loss and the
well-trained domain critic network will guide the embedding
extractor to learn speaker-discriminative and domain-invariant
embeddings.

Algorithm 1: Partially Shared Network for Adversar-
ial Training

1 Initialize source and target domain embedding
extractors, speaker discriminator and domain critics
parameterized by θs, θt, θc and θw.

2 repeat
3 Sample minibatch {(xs

i , y
s
i )}, (xt

i)}
4 Step 1
5 for k = 1, ..., n do
6 hs ← fs (xs) , ht ← f t

(
xt
)

7 Sample ĥ as the random points between hs and

ht pairs.

8 ĥ = ηhs + (1− η)ht, η ∈ (0, 1)
9 θw ←

θw + α∇θw

[
Lwd

(
xs, xt

)− γLgrad(ĥ)
]

10 Step 2
11 θc ← θc − α∇θcLc (x

s, ys)

12 θs ← θs − α∇θs
[Lc (x

s, ys) + λrLr(θ
s, θt)

]
13 θt ← θt − α∇θt

[
λrLr(θ

s, θt) + λwLwd(x
t)
]

14 until Reaching max iteration;

3. Experimental Setup
3.1. Dataset

Audios from previous NIST-SRE evaluations (2004-2010) and
Switchboard Cellular are used to train the baseline system. The
same data augmentation strategy following [3] is applied. We
randomly select 128, 000 augmented data and add them to the
clean speech. After that, the silent parts are removed using an
energy-based voice activity detector. Besides, we remove the
utterances less than 0.5s and speakers with fewer than eight ut-
terances. Finally, there are 4805 speakers consisting of 193551
utterances left.

For doing adversarial training, we also augment the SRE16
major data following the strategy in [3]. We combine all the
augmented copies with the clean speech, ending up with 11360
recordings. These recordings will be considered as the target
domain data when doing adversarial training and the data illus-
trated in the above paragraph will be considered as the source
domain data.

3.2. System Configuration

23-dimensional MFCC features extracted using Kaldi [23] are
used for the neural network training. The training utterances are
cut into 2s-4s chunks, whereas the whole utterance will be used
to extract embedding during the evaluation period. Our baseline
system is a standard x-vector using the same configuration as
in [3], and the whole training pipeline follows Kaldi SRE16
recipe.

The same x-vector architecture used in the baseline is
adopted for the embedding extractor in both FSN and the two
parallel extractors in the proposed PSN, containing five TDNN
layers and a dense layer. The embedding extractors for both

FSN and the proposed PSN are initialized with the well-trained
baseline x-vector system. The domain critic network is a sim-
ple feed-forward network with the dimension 512 x 512 x 512
x 1, while ReLU [24] is used as the non-linearity function. The
domain critic network is initialized randomly. We set the pa-
rameters of the adversarial training in Algorithm 1 to γ = 10.0,
α = 0.0001, λw = 0.1, λr = 0.001 and n = 5.

150-dimensional LDA is first used to reduce the embed-
ding dimension, after which PLDA is used for scoring. Both
the LDA and PLDA are trained on the NIST SRE04-10 dataset.
Besides, the evaluations data is centered using the mean of the
NISE SRE16 unlabeled development set.

4. Results and discussion
In our proposed partially shared network, the corresponding
layers of the two parallel extractors could be either shared or
not shared but constrained by a regularization loss. In the train-
ing phase, two modes are performed and compared: 1) jointly
train both the source and target extractors; 2) fix the source ex-
tractor and only update the target extractor.

4.1. Mode#1: Jointly train the source and target extractors

With both extractors trainable, the results of different weight
sharing strategies could be found in Figure 2.

Figure 2: The results of different weight sharing strategies with
jointly training the source and target extractors, and EER (%)
denotes the pooled results on SRE16. On the x−axis, 1 or 0 de-
notes whether or not to share the weights of the corresponding
layer (from the lowest to the highest layer, low means close to
the input layer), e.g. 100000 means only the parameters of the
lowest layer is shared.

The x-vector baseline only trained on the source domain
data achieves 11.81% EER, when the parameters of the source
and target extractors are fully shared, the domain adversarial
trained network (correspond to configuration 111111 in Figure
2) obtains even worse EER at 12.21%. Similar performance
degradation is also observed in [12] with the usual fully shared
structure. Moreover, the speaker classification accuracy during
training of this configuration is the lowest, too, which means
imposing domain invariance may hurt speaker discrimination
via simply shared the whole embedding extractor for different
domain data.

The speaker accuracy represents the speaker discrimination
ability and the Wasserstein distance denotes the mismatch ex-
tent of data from the source and target domain. As expected,
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the system performance in terms of EER is clearly positively
correlated to the speaker accuracy and negatively correlated to
the Wasserstein distance.

It’s interesting to see that only sharing the lowest layers
(100000 or 110000) or the highest layers (000001 or 000011)
can significantly boost the system performance and more de-
tailed results are shown in Table 1.

Table 1: Results with different partially shared configurations.

System Config
EER(%)

Pooled Cantonese Tagalog

baseline - 11.81 8.36 15.38

FSN 111111 12.21 7.30 17.20

PSN

100000 9.45 5.73 13.25
110000 9.32 5.55 13.16
000001 9.00 5.43 12.67
000011 9.14 5.38 12.98

These results are not very consistent with the findings in
[19], in which the best configuration occurs in the condition that
when the first or last few layers are unshared. And the possible
explanation is that these good configurations in Figure. 2 all
achieve great speaker accuracy improvement, which may play
an important part in final EER promotion in target domain. And
another experiment avoiding the influence of speaker classifica-
tion accuracy change is analysed in the next section.

4.2. Mode#2: Fix the source extractor

Since the main task of this paper is to compensate the domain
mismatch, we decide to keep the speaker discriminative ability
of the source extractor by freezing its parameters and focusing
on optimizing the Wasserstein distance. The results are illus-
trated in Figure. 3.

Figure 3: The results comparison of different model configura-
tions. In this experimental setup, the parameters of the source
domain embedding extractor are fixed.

Results show that the less layers are shared, the more sim-
ilar distribution (smaller Wasserstein distance) can be achieved
between source and target domain speaker embeddings. This
observation means the carefully selected parameters for the
source domain data is not suitable for the target domain data,
demanding a different set of parameters to learn the difference.
Better results are obtained when the top layers of the embedding
extractor are not shared. Besides, the results in Figure. 2 and

Figure. 3 both show that only untying the embedding extractor
weights at the higher layers, i.e. the last layer or the last two
layers can obtain good performance. A possible explanation the
high-level information such as language is mainly abstracted in
the higher layers, so it’s helpful to keep different parameters at
high layers for the two extractors.

The best system with partially shared network based adver-
sarial training proposed in this paper and normally fully shared
model are compared in Table 2. The best configuration of par-
tially shared weights architecture outperforms the baseline by a
large margin,∼25.0% relative improvement on the pooled EER
compared to the baseline system.

Table 2: Results comparison using different weight sharing
strategies.

System
EER(%)

Pooled Cantonese Tagalog

baseline 11.81 8.36 15.38

FSN 12.21 7.30 17.20

PSN 8.98 5.18 12.90

4.3. The impact of the regularization loss

Finally, we explore the effectiveness of the weight regulariza-
tion loss. The results are shown in Table 3. We can find that
when λw is small, e.g. λw = 0.1, the weight regularization loss
contributes very little to the final improvement. But when λw is
larger, e.g. λw = 1.0, the model almost loses the discriminative
ability on the speaker embedding without the weight regulariza-
tion. So, the weight regularization loss makes the model more
robust to the other hyper-parameters and plays an important role
when keeping the speaker discrimination of the target domain
embeddings.

Table 3: Results with or without weight regularization. The
model configuration corresponds to 111000 in Figure. 3.

λw λr
EER(%)

Pooled Cantonese Tagalog

1.0
0.0 26.72 26.60 26.84
0.01 9.35 5.42 13.36

0.1
0.0 9.08 5.29 13.03
0.01 8.98 5.18 12.90

5. Conclusion
This paper introduces the partially shared network based adver-
sarial training architecture to do cross-lingual domain adapta-
tion. Compared to the fully shared network, except for learning
domain invariant embeddings, the partially shared network can
learn more speaker-discriminative embeddings. And the pro-
posed method outperforms the x-vector baseline with a large
gain of ∼25.0% relative improvement on EER.
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