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Abstract

Deep embedding learning based speaker verification methods
have attracted significant recent research interest due to their
superior performance. Existing methods mainly focus on de-
signing frame-level feature extraction structures, utterance-level
aggregation methods and loss functions to learn discrimina-
tive speaker embeddings. The scores of verification trials are
then computed using cosine distance or Probabilistic Linear
Discriminative Analysis (PLDA) classifiers. This paper pro-
poses an effective speaker recognition method which is based
on joint identification and verification supervisions, inspired by
multi-task learning frameworks. Specifically, a deep architec-
ture with convolutional feature extractor, attentive pooling and
two classifier branches is presented. The first, an identifica-
tion branch, is trained with additive margin softmax loss (AM-
Softmax) to classify the speaker identities. The second, a veri-
fication branch, trains a discriminator with binary cross entropy
loss (BCE) to optimize a new triplet-based mutual information.
To balance the two losses during different training stages, a
ramp-up/ramp-down weighting scheme is employed. Further-
more, an attentive bilinear pooling method is proposed to im-
prove the effectiveness of embeddings. Extensive experiments
have been conducted on VoxCelebl to evaluate the proposed
method, demonstrating results that relatively reduce the equal
error rate (EER) by 22% compared to the baseline system using
identification supervision only.

Index Terms: speaker verification, mutual information learn-
ing, attentive bilinear pooling, multi-task framework

1. Introduction

Speaker recognition (SR) is the task of automatically determin-
ing whether a given utterance belongs to a certain speaker iden-
tity. According to different recognition settings, SR can be cate-
gorized into either speaker identification (SID) which classifies
a given utterance as being from a specific speaker, or speaker
verification (SV), which is a binary classification problem that
determines whether two given speech utterances belong to same
speaker or not. Compared to SID, SV is an open-set recogni-
tion task with no overlap between training and test set, which is
closely related to representation learning.

Over the past few decades, the most popular SV methods
have been based on i-vector followed by Probabilistic Linear
Discriminative Analysis (PLDA) [1, 2], in which the i-vector
representation is generally learned in an unsupervised manner.
Recently, deep embedding learning based SV methods have at-
tracted significant interest due to their superior performance.
Compared to traditional i-vector systems, deep learning based
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SV methods may benefit from the discriminative characteristics
and large receptive-field of deep neural networks (DNNG).

Existing deep embedding learning architectures include
time-delay DNN (TDNN) [3], convolutional neural network
(CNN) [4, 5, 6], and Long Short-Term Memory (LSTM) net-
works [7]. Generally, these architectures consist of a frame-
level feature extractor, an utterance-level aggregator and a clas-
sifier, which can be optimized in an end-to-end way.

Many recent works have focused on utterance-level ag-
gregation methods, e.g., statistical pooling [3], attentive pool-
ing [8, 9], bilinear pooling [4], and dictionary based pool-
ing methods [10, 11]. Meanwhile, other works have pro-
posed different loss functions, including triplet loss [12, 13],
center loss [10], triplet-center loss [14], angular softmax loss
(A-Softmax) [10] and additive margin softmax loss (AM-
Softmax) [15, 16]. However, in most deep embedding learn-
ing methods, the network architectures are trained under iden-
tification supervision, optimized for the SID task. Meanwhile,
for SV tasks, the verification score between utterance pairs is
computed via cosine distance or through an additional trainable
backend. It is still difficult to directly incorporate an effective
backend into a deep embedding learning architecture [4].

In this paper, an effective speaker recognition method is
proposed based on joint identification and verification supervi-
sions. This is inspired by the multi-task learning framework,
as shown in Fig. 1 and detailed in Section 3. Specifically,
this includes a deep architecture with frame level feature ex-
tractor, attentive pooling and two branches of classifiers. The
first branch is similar to deep embedding learning, in which a
speaker classifier is optimized via AM-Softmax loss to discrim-
inate the learned speaker embeddings. The second branch opti-
mizes a new triplet-based mutual information (T-MI) between
positive and negative samples extracted from the embedding
space, inspired by triplet loss [12, 13] and mutual information
based representation learning [17]. As with generative adversar-
ial networks (GANs), we train a discriminator to separate them,
using binary cross entropy loss (BCE). To prevent the issue of
an imbalance between AM-softmax and BCE loss at different
training stages, we introduce a ramp-up/ramp-down weighting
scheme. In addition, a new attentive bilinear pooling method
(ABP) is proposed, aiming to improve performance by aggre-
gating features along the temporal axis.

To evaluate the effectiveness of the proposed method, ex-
tensive experiments have been conducted on the Voxcelebl
benchmark [18]. By jointly optimizing the identification and
verification, our method can relatively reduce the equal error
rate (EER) by 22% compared to the baseline system using iden-
tification supervision only.
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Figure 1: Framework of the proposed SV method based on joint identification and verification supervisions.

2. Overview of the proposed multi-task
learning framework

The proposed multi-task learning based speaker recognition
framework is shown in Fig. 1. It consists of frame-level fea-
ture extractor, utterance-level aggregator, and two branches of
classifiers.

The frame-level feature extractor is adapted from the ex-
isting ResNet-18 architecture [19], which comprises an input
convolutional layer and 4 residual stages. The main difference
lies in that we keep the temporal and frequency dimensions of
feature maps in each residual stage unchanged, and insert a tran-
sition layer to reduce the frequency dimension.

The aggregator is then followed to map the extracted frame-
level features into utterance-level representations. In this paper,
a novel attentive bilinear pooling (ABP) method is introduced
to improve the effectiveness of embeddings, detailed in Sec-
tion 3.3. Then an embedding layer, implemented by a fully con-
nected (FC) layer, is added to make a nonlinear transformation
and dimension reduction to obtain speaker embeddings.

The speaker embeddings are firstly length normalized and
then fed into two branches of classifiers for multi-task learning.
The first, an identification branch, is implemented by a FC layer
and trained with AM-Softmax loss for SID task. The second, a
verification branch, accomplishes the SV task by first construct-
ing the positive and negative pairs from the selected triplet, and
then training a binary classifier with BCE loss. Finally, a ramp-
up/ramp-down weighting scheme is employed to balance the
AM-softmax and BCE loss for multi-task learning.

During testing, we can either extract speaker embeddings
from the embedding layer for the enrolment and test set, and
then use a traditional PLDA backend to calculate verification
scores, or directly use the output of the verification branch, giv-
ing scores in an end-to-end fashion.

3. Methods
3.1. Triplet-based mutual information (T-MI) learning

Mutual Information (MI) of statistical dependence is a promis-
ing tool for learning representations in an unsupervised
way [17]. Given two random variables x and y, MI can be de-
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where Dy is the Kullback-Leibler (KL) divergence be-
tween the joint distribution p(z,y) and product of marginals
p(z)p(y). The MI is minimized when the random variable x
and y are statistically independent, and is maximized when they
contain identical information. For SV task, inspired by triplet
loss [13], we can construct triplet (x4, Zp, Tr ), Where z, and
x)p are utterances from the same speaker, =, and x,, are from the
different speakers. And then discriminative speaker representa-
tions can be effectively learned by maximizing MI between z,,
and x, and minimizing it between x, and x,. This is logical,
however, MI is hard to measure directly.

Fortunately, previous research [20] has found it possible
to optimize the MI within an encoder-discriminator frame-
work. Motivated by [17], a verification branch is designed
as the discriminator using T-MI learning. Specifically, the
front-end extraction network, including a frame-level feature
extractor and an utterance-level aggregator, is used as the en-
coder, denoted by fo(-). Embeddings of the triplet can be ob-
tained by feeding it through the network. Then positive em-
bedding pair (fo(za), fo(zp)) and negative embedding pair
(fo(xa), fo(xn)) are formed and passed through the verifi-
cation branch, implemented by a binary classifier denoted by
gs(+), for discriminating verification. The positive pair and the
negative pair are labeled ‘1’ and ‘0’ respectively, and the stan-
dard binary cross entropy loss (BCE) is used as the objective
function to train the classifier:

Uw:ﬁg oefauhee )}
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where @ denotes the concatenation operator. The BCE loss in
Eq. (2) actually estimates the Jansen-Shannon divergence be-
tween positive and negative distributions, which is similar to
the KL-based definition of MI [17].

The main difference to [17] is that we construct triplet with
respect to label information in a mini-batch, which in fact in-
troduces the verification supervision. Therefore, the output sig-
moid probability of the verification branch can be used as a sim-
ilarity measure of two embeddings, which conveniently allows
the system to be trained end-to-end without PLDA backend or
cosine distance calculation. Given input pair (z1, z2), the veri-
fication score can be obtained as:

score(x1,z2) = gg(fo(w1) ® fo(z2)) 3)



3.2. Joint optimization of identification and verification

As discussed above, the multi-task system is optimized jointly
with identification and verification supervisions. For SID task,
AM-Softmax loss is used as the objective function:

es~(cos9yi —m)
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where s is the scale parameter and m is the margin. In our
experiments, we set s = 18 and m = 0.1.
The total loss for joint optimization is the weighted sum of
the identification loss and verification loss:

L&
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where the A and p are weight parameters. To balance these two
loss components at different training stages, a ramp-up/ramp-
down weighting scheme is introduced. The weight y starts from
zero and ramps up along the curve pu(t) = /10675{17”T1}2,
and similarly, A ramps down according to the curve A(t) =
Aoe_5{(t_T2)/(T3_T2>}2, where ¢ is training epoch, po is the
final value of p, Ao is the initial value of A, [0, 1] and [15, T3]
are the durations of ramp-up and ramp-down periods respec-
tively. In our experiments, po and Ao are set to 1.

3.3. Attentive bilinear pooling (ABP)

Inspired by [4, 8], an attentive bilinear pooling (ABP) method
is further utilized to force the model to pay more attention
to useful information for aggregation. It calibrates the output
frame-level features with learnable convolutional layer to pro-
vide frame-wise attention mechanism.

Specifically, let H € R**P be the frame-level feature
map captured by the hidden layer below the self-attention layer,
where L and D are the number of frames and feature dimen-
sion respectively. Then the attention map A € RL*¥ can be
obtained by feeding H into a 1 X 1 convolutional layer followed
by softmax non-linear activation, where K is the number of at-
tention heads. The 1°t-order and 2"%-order attentive statistics
of H, denoted by p and o2, can be computed similar as cross-
layer bilinear pooling [4], which is

p=Ta(Ti(HA))

6

o® = T2(Ti(HOH)"A) — (Ti(H"A)) © Ty (H"A)) ©

where 7T1(z) is the operation of reshaping x into a vec-

tor, and 72(z) includes a signed square-root step and a L2-

normalization step. © represents the Hadamard product. The
output of ABP is the concatenation of g and o2.

It is worth noting that the proposed ABP method derives
the attention map using the softmax along temporal axis to ob-
tain the attention for each frame. And the attentive 2"%-order
statistics information is further exploited for aggregation, sim-
ilar as statistics pooling in [21]. This is different from the ex-
isting pooling methods, such as NetVLAD [11] and learnable
dictionary encoding (LDE) [10], which mainly focus on deriv-
ing Baum-Welch statistics over the channel dimension.

Compared to attentive statistic pooling [8], ABP with mul-
tiple attention heads can better capture the speaker information
in a input utterance. Furthermore, ABP normalizes the length
of statistics before concatenation, which is able to extract more
robust embeddings.
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Table 1: Detailed configuration of the front-end extraction net-
work.

Layer | Structure | Stride |  Output size
Convl 7Tx7,16 1x1 L x35x 16
3x3,16
Resl 3% 3. 16 X 2 1x1 L x35x 16
Trans| - 3x3,32 1x2 L x 17 x 32
3 x3, 32
Res2 3% 3. 32 X 2 1x1 L x 17 x 32
Trans2 ~ 3 x3,64 1x2 L x 8 x 64
3 x 3, 64
Res3 3% 3. 64 X 2 1x1 L x 8 x 64
Trans3 ~ 3x3, 128 1x2 L x3x128
3 x 3,128
Res4 3><3:128 X 2 1x1 L x3x128
Trans4 3 x 3,128 1x2 L x1x128
ABP - - 1 x (128 x 2K)
FC (128 x 2K) x 128 - 1 x 128
L2norm - - 1 x 128

4. Experimental setup and results
4.1. Dataset and input features

To investigate performance of the proposed system, we con-
ducted extensive experiments using VoxCelebl benchmark [18]
which contains over 140,000 utterances from 1251 speakers.
The training set is the development portion without data aug-
mentation, containing 1,211 speakers and the evaluation set
consists of 37,720 trial pairs from 40 speakers.

The feature extraction process uses Kaldi [22]. In our im-
plementation, 41-dimensional filter bank outputs (FBank) are
used as acoustic features, obtained from 25ms windows with
10ms shift between frames. We apply mean-normalization over
a sliding window of 3s, and use voice activity detection (VAD)
to remove silent segments. The features from the training
dataset are randomly truncated into short slices ranging from
2 to 4s. For evaluation, utterances are divided equally into 10
slices with 4s duration.

4.2. Model configuration

The detailed configuration of the front-end extraction network
is summarized in Table 1, where L denotes variable-length data
frames. The input layer consists of a single convolutional layer
with kernel size of 7x7, stride of 1x1 and channel dimension of
16. Four residual stages include [2,2,2,2] basic blocks with 16,
32, 64, 128 channels respectively, and each basic block having
2 convolutional layers with filter sizes of 3x3 and a stride of
1x1. The transition layer comprises a convolutional layer with
kernel size of 1x1 and stride of 1x2. After the four stages, the
frequency dimension of the feature map is reduced to 1. For
ABP, the output dimension 128 x 2K is varied with different
attention heads K.

The identification branch is implemented by a FC layer with
units equal to the number of speaker categories. We should note
that when computing the AM-Softmax loss, the weight of this
layer need to be normalized. The verification branch comprises
two FC layers followed by sigmoid activation.

The mini-batch size for training is set to 128, containing 64
speakers with 2 utterances from each. All neural networks are
implemented using the PyTorch framework [25]. The network
is optimized using stochastic gradient descent (SGD) [26] with



Table 3: Results for verification on VoxCelebl dataset. (AP refers to average pooling and SP refers to statistics pooling)

System \ Aggregation \ Loss \ Training set \ Similarity \ EER, %

i-vector+PLDA [18] - - Voxcelebl PLDA 8.80
x-vector [23] SP Softmax Voxcelebl cosine 1.3
PLDA 7.1

ResNet-34 [5] SP Softmax Voxcelebl cosine >01

PLDA 4.74

ResNet-34 [10] LDE A-Softmax Voxcelebl cosine 4.56

ResNet-20 [15] AP AM-Softmax Voxcelebl cosine 4.30

ResNet-50 [24] AP Softmax+Contrastive Voxceleb2 cosine 4.19

Thin ResNet-34 [11] NetVLAD AM-Softmax Voxceleb2 cosine 3.32

AP 4.58

ResNet-18 (Ours) SP Softmax Voxcelebl cosine 4.19

ABP 3.76

ResNet-18 (Ours) ABP AM-Softmax Voxcelebl cosine 3.51

Multi-task ResNet-18 (Ours) ABP - Voxcelebl verification output 2.94

momentum of 0.95 and weight decay of 5e-4. Each network is
trained for 60 epochs with initial learning rate of 0.1, gradually
decreasing to 0.0001. The durations of ramp-up and ramp-down
periods are set to [0, 25] and [25, 40] epochs respectively. The
performance is evaluated in terms of equal error rate (EER).

4.3. Results
4.3.1. Evaluation on different number of attention heads K

In Table 2, we study the effect of different number of atten-
tion heads K in proposed ABP method. Same as most existing
deep embedding learning based SV methods, these results are
obtained by using the modified ResNet-18 with Softmax loss to
learn speaker embeddings first, and evaluating the verification
scores with cosine distance measure. From Table 2, we can see
that the EER reduces from 4.07% to 3.76% when K increases
from 2 to 16. This indicates that increasing the number of atten-
tion heads can improve the effectiveness of the proposed ABP
method. However, large value of K may lead to large model
size and high computational complexity. In the following ex-
periments, we only report the results with K = 16, considering
the trade-off between effectiveness and efficiency.

4.3.2. Main results

The main results are reported in Table 3. We compared the per-
formance of three systems including: 1) ResNet-18 with Soft-
max loss, 2) ResNet-18 with AM-Softmax loss, and 3) Multi-
task ResNet-18. The first two systems are implemented fol-
lowing the existing deep embedding learning based methods,
which compute the verification scores via cosine distance mea-
sure. The multi-task ResNet-18 is implemented using the pro-
posed speaker recognition method based on joint identification
and verification supervisions, and the performance is evaluated
according to the output of the verification branch directly.
From Table 3, we see that the proposed system outperforms

Table 2: Results on different numbers of attention heads K.

K
EER, %

16
3.76

| 2
| 4.07

4 8
391 3.82
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all other SV methods by a large margin. The performance of
the proposed ABP method is evaluated first. We can see that
our ResNet-18 with ABP achieves an EER of 3.76%, which is
better than 4.58% when using average pooling and 4.19% when
using statistic pooling. This indicates the superiority of the ABP
method. This result is also better than the systems in [5, 10, 15,
23], demonstrating the effectiveness for embedding learning of
our modified ResNet-18 architecture and pooling method.

Thanks to the role of the margin parameter, ResNet-18 with
AM-Softmax loss achieves an EER of 3.51%, which is a slight
improvement compared with the Softmax model. The EER is
further reduced to 2.94% with Multi-task ResNet-18, outper-
forming almost all other deep embedding learning based SV
systems in the same situation.

5. Conclusion

In this paper, inspired by a multi-task framework, an effective
speaker recognition method based on joint identification and
verification supervision is proposed. Specifically, a deep archi-
tecture with convolutional feature extractor, attentive pooling
and two branches of classifiers is presented. The first, an iden-
tification branch, is trained with AM-Softmax loss for speaker
identity classification. The second, a verification branch, trains
a discriminator with BCE loss to optimize the MI between pos-
itive and negative samples extracted from the embedding space.
To balance these two losses at different training stages, a novel
ramp-up/ramp-down weighting scheme is employed and, fur-
thermore, a novel attentive bilinear pooling method is proposed.
This further improves the effectiveness of embeddings. Exper-
iments conducted on the Voxcelebl benchmark yield excep-
tional results, demonstrating the effectiveness of the proposed
model for the SV task.
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