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Abstract
Speaker labeled background data is an essential requirement for
most state-of-the-art approaches in speaker recognition, e.g., x-
vectors and i-vector/PLDA. However, in reality it is difficult
to access large amount of labeled data. In this work, we pro-
pose siamese networks for speaker verification without using
speaker labels. We propose two different siamese networks hav-
ing two and three branches, respectively, where each branch is
a CNN encoder. Since the goal is to avoid speaker labels, we
propose to generate the training pairs in an unsupervised man-
ner. The client samples are selected within one database accord-
ing to highest cosine scores with the anchor in i-vector space.
The impostor samples are selected in the same way but from
another database. Our double-branch siamese performs binary
classification using cross entropy loss during training. In test-
ing phase, we obtain speaker verification scores directly from
its output layer. Whereas, our triple-branch siamese is trained
to learn speaker embeddings using triplet loss. During testing,
we extract speaker embeddings from its output layer, which are
scored in the experiments using cosine scoring. The evaluation
is performed on VoxCeleb-1 database, which show that using
the proposed unsupervised systems, solely or in fusion, the re-
sults get closer to supervised baseline.
Index Terms: i-vector, impostor selection, CNN, triplet loss

1. Introduction
Deep learning approaches have shown their success in im-
age and speech technologies which has inspired the commu-
nity to apply these approaches in speaker recognition as well
[1, 2, 3]. At the frontend of speaker recognition, deep learn-
ing approaches are capable of learning deep features [4, 5] and,
the so-called bottle neck features (BNF) [6, 7]. These features
are further used within a conventional GMM-UBM framework
or in i-vector [8] extraction process. At the backend, it has
been successfully applied in combination with i-vectors such
as in [9, 10, 11, 12]. Deep learning approaches are also appli-
cable to learn a vector based representation of speech, which
is commonly referred to as speaker embeddings, such as in
[13, 14, 15, 16, 17, 18]. Speaker embeddings are typically ex-
tracted from an intermediate layer of a Deep Neural Network
(DNN) which is trained as a classifier. The inputs to the net-
work are feature vectors, like the Mel-Frequency Cepstral Co-
efficients (MFCC) or in some cases spectrograms. Whereas the
output of the network is fed with the class (speaker) labels for
the background data. Therefore, these deep learning approaches
are typically constrained to labeled background data.

Probabilistic Linear Discriminant Analysis (PLDA) [19] is
the most efficient backend for i-vectors [8]. PLDA leads to a su-
perior performance as compared to cosine scoring but at the cost
of labeled background data. However, in practice, it is difficult
to access large amount of labeled data. In i-vector based speaker

recognition, the lack of labeled background data results in a
significant performance gap between cosine and PLDA scor-
ing techniques [12]. Although, in [20, 21], automatic labeling
techniques were proposed but they could not appropriately esti-
mate the true labels. These approaches perform reasonably well
but the results are still far from that of PLDA with actual labels
[22]. On the other hand, in [23, 24] autoencoder based unsuper-
vised post-processing of i-vectors was proposed, by the authors,
which has improved the performance. These approaches were
aimed to increase the discriminative power of i-vectors. Hence,
they are applicable as a backend in the i-vector space only.

In this work, we put an effort to reduce the demand of la-
beled background data for speaker verification. The goal is:
(1) to obtain end-to-end speaker verification scores, and (2) to
extract speaker embeddings, from spectrograms without using
speaker labels. We propose two different siamese networks
[25], i.e., double-branch and triple-branch, which consist of two
and three branches, respectively. Each branch is composed of a
Convolutional Neural Network (CNN) encoder, inspired by the
VGG architecture [26], which was recently adapted for speaker
verification task in [27, 28, 29]. Typically, siamese networks
are trained by feeding the training samples in pairs, e.g., [an-
chor, client] and [anchor, impostor]. Since the goal is to avoid
speaker labels, we propose to generate the pairs of training sam-
ples in an unsupervised manner. The client samples are selected
within one database according to the highest cosine scores with
the anchor sample, in the i-vector space. The impostor samples
are selected in the same way but from another database, pro-
vided that the two databases does not contain utterances from
same speakers.

We propose the use of double-branch siamese network as a
binary classifier by minimizing binary cross entropy loss. The
selected client and impostor samples, paired one by one with the
anchor samples, are fed into the network, and their respective
binary labels of 1/0 are provided at the output in order to com-
pute the loss. After training, we obtain decision scores for the
speaker verification trials from the output of the network. Thus,
our double-branch siamese deploys an end-to-end speaker ver-
ification system. On the other hand, the proposed triple-branch
network is trained by minimizing triplet loss [30, 31]. The se-
lected client and impostor samples, paired both at the same time
with the anchor samples, are fed into the network in pairs of
three. Each branch encodes the input sample into a vector based
representation which is used to compute the triplet loss. In the
testing phase, we extract speaker embeddings for the test data
using a branch of the network. These embeddings are scored
for the experimental trials using cosine scoring. The evaluation
was performed on VoxCeleb-1 database [27]. The results show
that using our proposed systems, despite of being unsupervised,
the result get closer to a similar but fully supervised baseline.
Moreover, fusion of the two proposed systems can further im-
prove the performance.
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Figure 1: Block diagram of our double-branch siamese network.
In testing phase decision scores for speaker verification are ob-
tained from the last FC layer.

The rest of the paper is organized as follows. Section 2 ex-
plains the proposed method for training the siamese networks
and the selection process of clients and impostor samples. Sec-
tion 3 describes the experimental setup and the database. The
results obtained are discussed in Section 4. Finally in section 5,
some conclusions are drawn as the findings of this paper.

2. Proposed method
Training a Deep Neural Network (DNN), either in end-to-
end fashion or to extract speaker embeddings, usually requires
speaker labels for the background data, which is difficult to ac-
cess in reality. In order to do so, when no labels are available
for the background data, we propose the use of two siamese
networks which are fully unsupervised unlike the conventional
DNN classifiers. Typically, a siamese network is trained us-
ing pairwise training samples, i.e., anchor, client and impostor.
Since we do not use speaker labels, we propose to generate the
training pairs in an unsupervised manner. These training pairs
are fed at the input of the network. We propose two different
networks, i.e., a double-branch siamese network using binary
cross-entropy loss, and a triple-branch siamese network using
triplet loss.

After training, we obtain decision scores for the experimen-
tal trials at the output of the double-branch network. Whereas
the triple-branch network is used to extract speaker embeddings
for the test data. These speaker embeddings are scored using
cosine scoring in order to perform the experimental trials.

2.1. Double-branch siamese network

Figure 1 shows the block diagram of our proposed double-
branch siamese network. There are two identical branches, i.e.,
the CNN encoder. Mel-spectrogrm features of a training pair of
an anchor along with a client or an impostor sample is fed as
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Figure 2: Block diagram of our triple-branch siamese network.
Speaker embeddings are extracted from the last FC layer of any
CNN encoder branch.

input to the network. The two branches share weights and bi-
ases with each other. After the CNN encoder, the outputs of the
two branches are concatenated which is followed by five Fully
Connected (FC) layers. The last layer is connected to the binary
class labels, i.e., 1/0, indicating if the anchor sample is paired by
a client/impostor sample, respectively. During training, binary
cross-entropy loss is minimized to update the network weights.
Once the network is trained with the selected client and impos-
tor samples in unsupervised manner, we perform the evaluation
in an end-to-end fashion. A pair of reference and test utterances,
which is involved in an experimental trial, is fed into the net-
work. The decision scores are obtained directly from the output
of the last fully connected layer of the network. In this way, our
double-branch siamese network deploys an unsupervised end-
to-end speaker verification system which does not require any
scoring backend.

2.2. Triple-branch siamese network

A block diagram of our proposed triple-branch siamese net-
work is shown in Figure 2. As indicated by the name, there
are three branches, each of which is the CNN encoder fol-
lowed by l2-normalization layer. Each branch is fed by the
Mel-spectrogrm features of a training pair of an anchor along
with a client and an impostor sample. The CNN encoder en-
codes the Mel-spectrogram inputs into a vector based repre-
sentation i.e., speaker embeddings. After the l2-normalization
layer, triplet loss [30] is computed between the embeddings of
anchor, client and impostor samples. It is worth noting that all
the three branches share weights with each other, like in the
double-branch network. The triplet loss is computed as follows:

Ltriplet = max(d(a, c)− d(a, i) +m, 0) (1)

where d(.) is the distance between two samples, and a, c and i
denote the anchor, client and impostor samples, respectively. m
is the margin value which defines how far away the dissimilari-
ties should be. Once the network is trained, we extract speaker
embeddings using any CNN encoder branch of the network.
These speaker embeddings are scored using cosine scoring tech-
nique for the experimental trials.
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Algorithm 1: Proposed algorithm for selection of
clients and impostor i-vectors

Input : Training i-vectors ai ∈ A & bi ∈ B,
1 ≤ i ≤ n

Output: Client and impostor i-vectors Cij and Iij ,
1 ≤ i ≤ n & 1 ≤ j ≤ k

1 for each training i-vector ai do
2 for each training i-vector at, 1 ≤ t ≤ n do
3 Compute ClientScoresi,t = cosine(ai, at)
4 end
5 From ClientScoresi,t, select k highest ones.
6 if ClientScoresi,t ≥ threshold then
7 Ci,j = at
8 end
9 for each training i-vector bt, 1 ≤ t ≤ n do

10 Compute
ImpostorScoresi,t = cosine(ai, bt)

11 end
12 From ImpostorScoresi,t, select k highest ones.
13 if ImpostorScoresi,t ≥ threshold then
14 Ii,j = bt
15 end
16 end

2.3. Selection of clients and impostor samples

The selection process of client and impostor samples is car-
ried out in the i-vector space using two databases, i.e., A and
B. Suppose SpkA and SpkB denote the speakers appearing in
database A and B, respectively. We assume that the speakers in
database A do not appear in database B, i.e., SpkA∩SpkB = φ.
Algorithm 1 summarizes how the selection of the clients and
impostor i-vectors is carried out in an unsupervised manner.
First of all we extract i-vectors for all the utterances in both
the databases A and B. Then, all the i-vectors in A are scored
among each other using cosine scoring technique. For every i-
vector in A we select a fix k number of similar i-vectors as po-
tential client i-vectors. After this we apply a threshold to the
cosine scores of these k selected potential clients. The potential
clients with scores higher than the threshold are selected as the
final client i-vectors.

In order to select the impostor i-vectors, we score all the
i-vectors in A with those in B, using cosine scoring. For every
i-vectors in A, we select k number of i-vectors from B that are
closest according to the cosine scores. Since, the speakers in A
does not appear in B, these k selected i-vectors are the poten-
tial impostors. After this, we apply a threshold to their corre-
sponding cosine scores in order to select the hardest impostors
among them. In this way, every i-vector in A has been assigned
k client and k impostor i-vectors. Suppose we have n number
of i-vectors in each of the databases A and B. Then, we have a
total of (2n× k) samples for training our networks. The value
of k is determined experimentally and will be discussed in sec-
tion 4. For the double-branch siamese network we make train-
ing pairs of two, i.e., [anchor, client] and [anchor, impostor],
for which the binary labels are 1 and 0 respectively. Whereas
for the triple-branch siamese network we make pairs of three
samples, i.e., [anchor, client, impostor], in order to compute the
triplet loss according to Equation 1. It is worth noting the client
and impostor selection is carried out in i-vector space while the
actual inputs to the networks are Mel-spectrogram features of
the utterances.

Table 1: Architecture of the VGG based CNN Encoder. In and
Out Dim. refers to the input and output feature maps of the
layer. Feat Size is the dimension of every output feature map.

Layer Size In dim Out dim Stride Feat size
conv1-1 3x3 1 128 1x1 80xN
conv1-2 3x3 128 128 1x1 80xN
mpool-1 2x2 - - 2x2 40xN/2
conv2-1 3x3 128 256 1x1 40xN/2
conv2-2 3x3 256 256 1x1 40xN/2
mpool-2 2x2 - - 2x2 20xN/4
conv3-1 3x3 256 512 1x1 20xN/4
conv3-2 3x3 512 512 1x1 20xN/4
mpool-3 2x2 - - 2x2 10xN/8

SAP - N/8 1 - 512x10
fc-1 - 1 1 - 1024
fc-2 - 1 1 - 400

2.4. CNN encoder

The CNN encoder block is inspired by the VGG architecture
[26], which was recently adapted for speaker verification task
in [27, 28, 29]. It consists of three main blocks, where each
block contains two convolutional and one maxpooling layer.
The three blocks are followed by a self attention pooling (SAP)
layer [32], and two FC layers of 1024 and 400 neurons, respec-
tively. The CNN encoder encodes the input Mel-spectrograms
of shape (80 × N ) into 400 dimensional vectors, i.e., speaker
embeddings, where N is the number of frames. More details of
the CNN encoder architecture are given in Table 1.

3. Experimental setup and database
The training was performed on the development partition of
VoxCeleb-2 database [28] which contains 5994 speakers having
1,092,009 utterances in total. The evaluation was performed on
the test partition of VoxCeleb-1 [27], which contains 40 speak-
ers having 4,874 utterances in total. The development parti-
tion of VoxCeleb-2 was used to train the two siamese networks.
For the i-vector extraction process, the same partition was used
to train the Universal Background Model (UBM) and the To-
tal Variability (TV) matrix. MFCC features of 20 dimensions,
appended by delta coefficients, were extracted for all the ut-
terances, and a 1024 component UBM was trained to extract
i-vectors of length 400. From the test partition of VoxCeleb-1,
37,720 speaker verification trials were scored. Half of them are
client trials while the other half are impostor trials. The perfor-
mance was evaluated using the Equal Error Rate (EER).

For the clients and impostor selection we split the develop-
ment partition of VoxCeleb-2 into two equal parts, in order to
generate databases A and B as discussed in Section 2.3. Mel-
spectrograms of 80 dimensions were computed, of which a ran-
domly selected window of length N was input to the networks.
The CNN encoder, depicted in Table 1, was identical for both
the networks. The value ofN , in Table 1, was set to 350 frames.
The margin value m while computing the triplet loss defined in
Equation 1 was set to 0.8. The value of threshold in the se-
lection of client and impostor samples was set to 0.2 and 0.0
(inspired from our work in [23, 33]), respectively. All the CNN
and fully connected layers were activated using ReLU function,
whereas the last layer of the double-branch network used sig-
moid activation. The training was carried out using Adam opti-
mizer with the initial learning rate and batch size of 0.0001 and
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Table 2: EER in % for the proposed double- and triple-branch
siamese networks, compared with the supervised baselines.

Approach k EER(%)
(1) iv-PLDA [23, 33] - 9.54

(2) Baseline (Softmax) - 6.81
(3) Baseline (AMSoftmax) - 5.71

(4) Double-branch 2 7.81
(5) Double-branch 5 7.73
(6) Double-branch 10 6.90

(7) Triple-branch 10 6.95

Fusion of (6) & (7) 10 6.07

35, respectively. The training continued for a maximum of 500
epochs using early stopping criteria with patience equal to five.

The baseline system was trained using the whole develop-
ment partition of VoxCeleb-2. The architecture of the baseline
is composed of a CNN encoder followed by a classification
layer at the end. In order to have a fair comparison, we used
exactly the same architecture for the CNN encoder as that of
the siamese networks shown in Table 1. The only difference
is the last layer which has 5994 neurons (number of speakers)
activated by softmax and AMsoftmax [34] functions. We mini-
mized the categorical cross-entropy loss using Adam optimizer
with the same parameters as of the siamese networks. In the
testing phase, we extract speaker embeddings from the CNN
encoder of this network.

4. Results
We have compared our proposed unsupervised systems with the
supervised baseline in terms of Equal Error Rate (EER). Table
2 shows the EER in % for different values of k. The fist three
rows of Table 2 depict results for the selection of the value of
k using our double-branch siamese network. For all the experi-
mental trials we obtain speaker verification scores directly from
the output of the double-branch network. From the Table we can
see that as we increase the value of k, the performance of the
system improves. The best EER of 6.90% was achieved using
k equal to 10. We have tried further higher values of k but no
substantial improvement was seen, despite increasing the com-
putational cost.

Setting the value of k equal to 10, we have trained our
triple-branch siamese network using triplet loss, as discussed
in Section 2.2. Using this network, first we extract speaker em-
beddings for all the test data which requires a scoring backend.
Then, we score the obtained speaker embeddings using cosine
scoring technique. From the Table we can see that the triple-
branch siamese network has achieved an EER of 6.95% which
is almost similar to that of the double-branch network. The EER
of 6.90% and 6.95%, obtained by the two systems respectively,
are very close to that of the supervised Softmax baseline.

Moreover, if we perform a score level fusion of our two
proposed systems, i.e, double- and triple-branch networks, we
obtain an EER of 6.07%. This has outperformed the softmax
baseline by a relative improvement of 10.86%. However, the
fusion strategy could not overcome the second baseline with
AMSoftmax activation.
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Figure 3: DET curves for the proposed double- and triple-
branch siamese network, compared with the supervised base-
lines. Different plots are shown for different values of k.

Figure 3 shows a comparison of the Detection Error Trade-
off (DET) curves for the supervised baselines and our proposed
systems. Different plots are shown for scores obtained with dif-
ferent values of the k using the double-branch siamese network.
As discussed earlier, we observed that k equal to 10 is the best
choice for our experiments. After this we plotted the DET curve
for triple-branch for k equal to 10 only. It can be observed that
both the proposed systems show comparable performance with
the softmax baseline in the EER region. Furthermore, in the
low FRR regions the DET plot of the proposed systems be-
come closer to the AMSoftmax baseline. However, this rela-
tion seems to be reversed in the low FAR regions. Similarly, the
DET curve for the fusion of the two proposed systems is even
closer to the AMSoftmax baseline in low FRR regions.

5. Conclusions
In this work, we proposed two different siamese networks for
speaker verification without using speaker labels. The first net-
work has two branches and was trained as a binary classifier,
whereas the second network has three branches and was trained
to learn speaker embeddings, where each branch was a CNN
encoder. Since the goal was to avoid speaker labels, the pairs
of training samples were generated in an unsupervised manner.
The client samples were selected within one database accord-
ing to the highest cosine scores with the anchor, in i-vector
space. Whereas, the impostor samples were selected in the
same way but from another database. After training, we ob-
tain decision scores using the double-branch network, whereas
from the triple-branch network we extract speaker embeddings
for the test data. The evaluation was performed on VoxCeleb-1
database. The experiments have shown that using our proposed
systems, despite of being unsupervised, the result was closer to
the fully supervised baselines.
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