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Abstract

Speech is a complex signal conveying numerous informa-
tion about the message but also various characteristics of the
speaker: its sex, age, accent, language. Understanding the use
of these features by machine learning (ML) systems has two
main advantages. First, it could help prevent bias and discrim-
ination in ML speech applications. Second, joint modeling of
this information using multitasking learning approaches (MTL)
has great potential for improvement. We explore in this paper
the use of MTL in non-linguistic tasks. We compare single-
and multi-task models applied to three tasks: (spanish) native-
ness, speaker and sex. The effect of training data set size in the
performance of both single- and multi-task models is investi-
gated as well as the specific contribution of nativeness and sex
information to speaker recognition. Experimental results show
that multi-task (MTL) models outperform single task models.
We have also found that MTL is beneficial for small training
data sets and for low-level acoustic features rather than for pre-
trained features such as bottleneck ones. Our results indicate
also that more attention should be addressed to the information
used by ML approaches in order to prevent biases or discrimi-
nation.

Index Terms: Multi-task learning, Convolutional neural net-
works, Close-set Speaker recognition.

1. Introduction

Speech is a complex signal conveying numerous information
about the message but also various characteristics of the speaker
like its sex, age, accent or language. The wide deployment of
speech technologies in all faces of social life, including bank-
ing, health, dating, employment or forensics creates a grow-
ing expectation for explainability and transparency. The gen-
eral public as well as legal systems, see European General Data
Protection Regulation for example, are increasingly attentive to
potential discrimination or breaches of privacy in Al applica-
tions [1, 2]. In the fight against discrimination as well as for the
differential or partial preservation of privacy [3, 4, 5], to assess
the extent to which a speech-based system captures or exploits
information related for instance to sex, age, social level, or ac-
cent becomes more and more important.

Following the previous paragraph, a question that arises in
modern machine learning systems is what specific information
present in the data, during the training and operational phases,
leads to a given decision. This question takes on its full value
when current supervised artificial intelligence algorithms are al-
most always able to achieve their objective when applied to data
close to training conditions, even if nobody knows what type
of information they use for this. Thus, the misuse of a cate-
gory of information in the incoming data could lead to a spe-
cific decision, opening the door to discrimination or loss of per-
formance. Discrimination because the decision could be based
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on unwanted information, such as the linguistic content of the
message in a text-independent speaker verification task. A loss
of performance because the learning capacity of the machine
could wrongly focus on the information sub-part which allows
the best accuracy, even if this information is only a side ef-
fect, ignoring more useful data. A good example of this, still
in speaker recognition, is to focus training on session-related
information (the phone used for example).

In order to better understand this question, we propose in
this paper to explore the latent relationship between different
voice-related tasks: native-language (for Spanish), speaker sex
and speaker recognition. We wish to assess to what extent
knowledge of the speaker’s sex or whether or not he/she is a
native Spanish speaker helps or leads to determining the iden-
tity of the speaker and vice versa.

We propose to use Multi-task learning (MTL) [7] versus
classical mono-task training in order to evaluate these latent re-
lations between our three tasks.

The basic idea of MTL is to learn related problems simul-
taneously, using a shared representation. When tasks have a
common point and in particular when training data resources
are limited, MTL can lead to better performance than a model
formed on a single task, allowing the learner to capitalize on
the common points between tasks. MTL has been originally
proposed as a method that improves the generalization of a clas-
sifier by forcing it to learn more than one related task at a time.
This has been previously demonstrated in several learning sce-
narios and areas of machine learning [8, 9, 10]. In this paper,
to use MTL in order to improve the performance for our three
tasks is only a secondary goal. Here, we use mainly MTL to
measure the influence of information related to one of our tasks
on the others: a gain in accuracy thanks to multi-task training
will make it possible to highlight the links between the two or
three categories of information, a loss will tend to show the op-
posite. In order to implement our machine learning models and
our training strategies, we will use a classical convolutional neu-
ral networks (CNNs) based approach. The main advantage of
CNNs comes from the use of weight sharing, local filters, and
pooling since they help to discover robust and invariant repre-
sentations.

The paper is organized in 6 sections: Section 2 describes the
background and related work in MTL for speech-related tasks.
Details of the dataset, features, and models used are presented
in section 3. Our experiments are detailed in section 4. We an-
alyzed the results and their implications in section 5. Section 6
concludes the work and explains possible future research direc-
tions.

I'Throughout this paper, the term sex refers to the biological differ-
ences between female and male [6]
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2. MTL related work

MTL has been widely used in the speech field.[11] proposed a
deep learning approach using multimodal features in order to
simultaneously recognize speakers and emotions. The design
of a secondary task for speaker recognition is presented in [12].
The task is called pseudo task as its target labels are obtained
from an unsupervised Gaussian Mixture Model algorithm.

The use of adversarial MTL for learning invariant features
is studied in recent papers. [13] explored the potential of ad-
versarial MTL for learning invariant features. It proposes a
noise-robust speaker embedding. In [14], the aim is to learn
speaker-invariant multilingual bottleneck features for language
recognition purposes.

Some papers show how language and sex are speaker re-
lated tasks that can be employed as auxiliary tasks [15, 16].
However, besides language and sex, some more complicated
speech content features have been employed. A multi-task re-
current neural network model is presented in [17], for joint
learning of automatic speech and speaker recognition. It
showed improved performance on both automatic speech and
speaker recognition tasks regarding single-task systems.

In [18], phoneme recognition is used as a secondary task to
improve the performance of speaker recognition, using CNN as
shared layers. The main advantage of CNNs comes from the
use of local filters, weight sharing and max pooling. Thanks
to these characteristics, CNNs provide some degree of invari-
ance to small shifts of speech features along the frequency axis.
Each one of these properties has the potential to improve speech
recognition performance, and have proven to be important to
deal with speaker and environment variations. [19] investigated
a CNNs end-to-end trained for speaker verification purposes. It
employs them as feature extractors to distinguish between the
speaker and non-speaker information. In [20], bottleneck fea-
tures from a CNN are used to build an ivector system for lan-
guage identification. The CNN bottleneck features report com-
plementary information to the conventional acoustic features.

CNNs have been widely applied to acoustic modeling for
speech recognition, notably by [21], in which convolution was
applied to learn more stable acoustic features for classes such as
phone, speaker, and gender. [22] described how to apply CNNs
to speech recognition, such that the CNNs structure directly ac-
commodates some types of speech variability.

3. Methods

Our framework is based on two models: a multi-task (MTL) and
a single-task model (STL). Both of them are based on 2D-CNN.
The MTL model has three branches: native-non native Span-
ish speaker classification task (N_NN task), close-set speaker
recognition task (S task), and sex classification task (G task),
like illustrated in Figure 1. The MTL model is designed to
learn jointly to classify the before mentioned related tasks. On
the contrary, the STL model is a single-task CNN which should
learn independently to classify each task. In order to help the
comparisons between the two models, they share the same ar-
chitecture. For the STL model, we just consider one given task
while ignoring the others. All the models are built using Keras
[23].

3.1. Corpora

In this work, we are using West Point Heroico Spanish Speech
database [24]. It is composed of digital recordings of spoken
Spanish. The corpus consists of two subcorpora, one collected
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at the Mexican Military Academy in Mexico City, and the other
at the United States Military Academy (USMA). We select the
USMA subcorpus as it includes data from non-native speakers.
The USMA subcorpus includes 1% hours of speech from non-
native speakers and 1 hour of speech from native speakers. All
the speech in the USMA corpus was read speech, around 205 ut-
terances per speaker, totaling 3675 utterances. It contains voice
recordings from 18 speakers, 8 native Spanish speakers, and 10
non-native Spanish speakers, also labeled by sex divided among
6 female speakers and 12 male speakers.

3.2. Basic layout features

To feed the neural network model we considered two features:
Mel-filterbank acoustic features and multilingual bottleneck
features. To compute the Mel-filterbank features (M-fbank) the
signal goes through a bandpass filter, it then gets sliced into non-
overlapping frames and a Hamming window function is applied
to each frame. Afterward, a short-time Fourier transformation
on each frame is computed to obtain the power spectrum or pe-
riodogram, subsequently, the Mel filter banks are applied. In
the end we get a 40-dimensional frame representation.

On the other hand, multilingual bottleneck features are
obtained using the BUT/Phonexia bottleneck feature extractor
[25]. The neural network used by the bottleneck extractor pack-
age was BabelMulti, trained on 17 languages from the IARPA
Babel program. This network has four hidden layers, the third
one is the bottleneck layer, its outputs are the 80-dimensional
bottleneck (BN) features we will be using.

Each utterance is processed frame by frame to obtain the
samples to feed the network. Each frame of speech is appended
temporally with a context of 10 frames (£5 frames of left and
right context), conforming an input matrix of 11 x 40 for the
M-fbank and 11 x 80 for BN features. From the USMA set
we finally got 666760 samples and its corresponding triplet of
labels. The set of utterances is divided initially in 80% to train
and 20% for testing, ensuring that no frame of a train utterance
will be seen in the test set. During training, the samples from the
train set were split into 2 internal subsets: one used for actual
training and the other for validation after each epoch.

3.3. Single-task model

STL is designed to ignore the connection within tasks. We
built individuals 2D-CNN models for each single recognition
task and each model is trained separately. In the experimental
phase of single-task estimation, the input is a matrix formed by
a frame vector and its adjacent frames (£5). The output layer is
the classification label corresponding to the specific task.

In this paper, we study three single-task recognition mod-
els, namely the speaker’s Spanish nativeness, speaker identity,
and sex, respectively. N_NN task and G task, are both binary
classification tasks and their single-task CNN architecture will
be the same. For the close set speaker classification task, after
some experiments we decided to add a convolutional layer and
a pair of fully connected layers in its particular branch, since it
is a more complex classification task.

3.4. Multi-task model

MTL improves the generalization ability of the system by using
a shared representation in the parallel processing of multiple re-
lated tasks. When these tasks are relevant, joint task learning
should work better than learning each task individually, espe-
cially when the number of training examples for each task is
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Figure 1: Schematic diagram of MTL model.

relatively low.
In MTL, each task contributes to the cost function. The loss
value to minimize is the weighted sum of all individual losses:

()]

N
EMTL = E An * €tasky, -

n=1

Where ¢, is the cost function to be minimized, A, is a non-
negative weight and N the total number of tasks. An \,, closer
to 1 means that all the N tasks have the same impact, while a n
near to O for a given task means that this task has no influence
on the model training.

4. Experimental settings

To compare the performance of the single-task model and mul-
titask model, we perform experiments on USMA corpora. This
section provides the experimental settings we used.

4.1. Network setups

As explained in subsection 3.2, each frame of speech is ap-
pended temporally with a context of 5 frames. In the shared
section, the model uses 2 fully connected layers followed by 2
convolutional layers with 256 kernels and 3 X 3 filters. The
outputs of the filters are summed and processed with the max-
pooling operation, which downsamples the 2D representation
along the spectral dimension. The output of the max-pooling
is processed with a ReLu activation function and dropout as a
standard CNN pipeline. A similar process happens in the sec-
ond and third convolutional layers.

Next, fully-connected layers and softmax are employed for
each of the classification tasks. We use 4 hidden layers with
2048 units in the S branch and two hidden layers for the N_.NN
and G task, before the final output layer.

The networks are trained with the cross-entropy criterion,
using the Adam optimizer. The minibatch size is fixed to 32.
The learning rate starts from 1 x 10~ and exponential decay is
used to decrease it. The number of training epochs is 50.
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4.2. Single and multi-task learning

The first experiment is devoted to verifying the effectiveness of
MTL vs STL. Table 1 presents the classification accuracy of
both models fed with multilingual BN features.

In this experiment, all the tasks are impacting the same in
the learning process, according to equation 1: A\, = 1 forn =
1,2,3.

Table 1: Single-task vs Multi-task training with BN features

Model Accuracy per task

N_NN S G
Single-task  0.8745  0.6576  0.8231
Multi-task ~ 0.9128 0.7823  0.8549

As shown in tables 1 and 2, with MTL, one task helps the
other tasks, for both feature sets. However, the befit seems to be
dependent on the feature set used, BN or M-fbank.

The experiments with M-fbank features (table 2) show that
these low-level acoustic features are more informative than
“high level” BN features.

4.3. Impact of weighting auxiliary tasks loss function

Assuming S task as the main one, and N_NN and G as auxil-
iary tasks, we intend to show the interdependence between these
three tasks in an MTL framework. By varying the weight of the
auxiliary tasks ( A\,,) in the cost function to be minimized during
the learning process, we can evaluate the individual contribution
of each auxiliary task to the main one.

Table 3 shows that considering together the three tasks dur-
ing the training phase increases the performance for the main
task (S task), even if the gain remains quite small. It is not clear
which auxiliary task brings more than the other, but the S task
obtains profit using both: when one of the auxiliary task is dis-
missed, a decrease in the main task’s accuracy is observed.

4.4. Dataset size

We done several experiments while reducing the size of the
training dataset. Figure 2 reports the corresponding results. We
observe that as the size of the training set decreases, the per-
formance of the multitasking model increases compared to the
single task models: using 50 and 25% of the training data results
in an average drop of approximately 3.8 and 7.2% respectively
for the single-task model for only about 2.8 and 4.1% for the

multi-task model.
Train set 1/2 Train set 1/4 Train set

Figure 2: Models performance as train set size decreases.
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Table 2: Single-task vs Multi-task training with M-fbank fea-
tures

Accuracy per task

Model N.NN S G
Single-task  0.9600 0.9147 0.9771
Multi-task ~ 0.9656 0.9401 0.9806

Table 3: Impact of the auxiliary tasks in the main task, using the
multi-task model with M-fbank features

Loss weight per task Accuracy per task
NNN S G N_NN S G
0 1 1 0.5221 09203 0.9787
0.2 1 0.7 0.9424 0.9351 0.9707
0.5 1 0.5 09619 09378 0.9740
0.7 1 0.2 0.9636 0.9391 0.9784
1 1 0 0.9638 0.9212 0.2911

5. Results and discussion

Models lower performance of BN features compared with M-
fbank features are partially explained because the BN features
are optimized for automatic speech recognition senone classi-
fication, so they lack from linguistically-irrelevant information,
e.g., speaker change. MTL approach seems to undermine useful
information on lower level traits better (table 1 and 2).

An average improvement on MTL’s performance in com-
parison with STL is observed for most task. Although this is
not surprising, there was not reported researches about using
speaker nativeness as an auxiliary task for speaker recognition,
and that is a remarkable contribution of this paper.

The best MTL performance is obtained with an equally
weighted loss function per task A, = 1 (table 2). Assuming
different weights for the auxiliary tasks (table 3) it is shown that
considering both auxiliary tasks is beneficial for the main task,
even when we are not able to say that one task is contributing
more or less than the other.

As we can see in figure 2 it is corroborated that, in general,
the performance of the models is affected by the reduction of
the train data. However, it is for smaller sets that the impact of
MTL becomes more remarkable compared with STL.

6. Conclusions

In this paper we investigated the links between different par-
alinguistic information in the view of three voice-related de-
tection tasks, speaker nativeness, sex and identity. We used
MTL as a measure system by comparing independent or joint
modelling of the three tasks. We observed that the multi-task
models produced clearly better results for one the task, speaker
recognition, and slightly better performance for the two others,
when applied on low-level features like M-fbank. On higher
level features, like BN features coming from a discriminatively
trained neural network, the three tasks took clearly advantage of
the shared representation proposed by MTL. This finding could
help explain why state-of-the-art speaker recognition systems
often combine BN and low-level characteristics: BN character-
istics offer several advantages, such as better modeling in long
acoustic units (senone), but are too task-oriented and lose other
source information still present at a lower level. We have also
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found that MTL becomes more beneficial when the training set
is smaller.

In addition, the selection of the secondary task appears
to be crucial and affects the performance of the main task.
Through our different configurations, it appears that nativeness
and speaker-sex detection are auxiliary tasks which benefit the
task of recognition of the speaker. This is a promising result
which strongly encourages us to go further with MTL.

Although preliminary, the results presented in this docu-
ment also showed that more attention should be paid to the in-
formation used by ML approaches to prevent bias or discrim-
ination. This is particularly important regarding the sensitive
nature of paralinguistic information regarding privacy issues.
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