
In defence of metric learning for speaker recognition

Joon Son Chung, Jaesung Huh, Seongkyu Mun, Minjae Lee, Hee Soo Heo,
Soyeon Choe, Chiheon Ham, Sunghwan Jung, Bong-Jin Lee, Icksang Han

Naver Corporation, South Korea
joonson.chung@navercorp.com

Abstract
The objective of this paper is ‘open-set’ speaker recognition of
unseen speakers, where ideal embeddings should be able to con-
dense information into a compact utterance-level representation
that has small intra-speaker and large inter-speaker distance.

A popular belief in speaker recognition is that networks
trained with classification objectives outperform metric learn-
ing methods. In this paper, we present an extensive evaluation
of most popular loss functions for speaker recognition on the
VoxCeleb dataset. We demonstrate that the vanilla triplet loss
shows competitive performance compared to classification-
based losses, and those trained with our proposed metric
learning objective outperform state-of-the-art methods.

Index Terms: speaker recognition, speaker verification, metric
learning.

1. Introduction
Research on speaker recognition has a long history and has

received an increasing amount of attention in recent years.
Large-scale datasets for speaker recognition such as the Vox-
Celeb [1, 2] and Speakers in the Wild [3] have become freely
available, facilitating fast progress in the field.

Speaker recognition can be categorised into closed-set or
open-set settings. For closed-set setting, all testing identities
are predefined in training set, therefore can be addressed as a
classification problem. For open-set setting, the testing identi-
ties are not seen during training, which is close to practice. This
is a metric learning problem in which voices must be mapped to
a discriminative embedding space. The focus of this research,
and most others, are on the latter problem.

Pioneering work on speaker recognition using deep neural
networks have learnt speaker embeddings via the classification
loss [1, 4, 5]. Since then, the prevailing method has been to
use softmax classifiers to train the embeddings [6, 7, 8]. While
the softmax loss can learn separable embeddings, they are not
discriminative enough since it is not explicitly designed to opti-
mise embedding similarity. Therefore, softmax-trained models
have often been combined with PLDA [9] back-ends to generate
scoring functions [5, 10].

This weakness has been addressed by [11] who have pro-
posed angular softmax (A-Softmax) where cosine similarity
is used as logit input to the softmax layer, and a number of
works have demonstrated its superiority over vanilla softmax
in speaker recognition [6, 7, 8, 12, 13]. Additive margin vari-
ants, AM-Softmax [14, 15] and AAM-Softmax [16], have been
proposed to increase inter-class variance by introducing a co-
sine margin penalty to the target logit, and these have been very

The code for this paper can be found at:
https://github.com/clovaai/voxceleb_trainer

popular due to their ease of implementation and good perfor-
mance [17, 18, 19, 20, 21, 22, 23, 24]. However, training with
AM-Softmax and AAM-Softmax has proven to be challenging
since they are sensitive to the value of scale and margin in the
loss function.

Metric learning objectives present strong alternatives to
the prevailing classification-based methods, by learning em-
beddings directly. Since open-set speaker recognition is essen-
tially a metric learning problem, the key is to learn features that
have small intra-class and large inter-class distance. Contrastive
loss [25] and triplet loss [26] have been demonstrated promis-
ing performance on speaker recognition [27, 28] by optimising
the distance metrics directly, but these methods require careful
pair or triplet selection which can be time consuming and per-
formance sensitive.

Of closest relevance to our work is prototypical net-
works [29] that learn a metric space in which open-set clas-
sification can be performed by computing distances to proto-
type representations of each class, with a training procedure
that mimics the test scenario. The use of multiple negatives
helps to stabilise learning since loss functions can enforce that
an embedding is far from all negatives in a batch, rather than
one particular negative in the case of triplet loss. [30, 31]
have adopted the prototypical framework for speaker recogni-
tion. Generalised end-to-end loss [32], originally proposed for
speaker recognition, is also closely related to this setup.

Comparing different loss functions from prior works can
be challenging and unreliable, since speaker recognition sys-
tems can vary widely in their design. Popular trunk architec-
tures include TDNN-based systems such as x-vector [5] and its
deeper counterparts [8], as well as network architectures from
the computer vision community such as the ResNet [33]. A
range of encoders have been proposed to aggregate frame-level
informations into utterance-level embeddings, from simple av-
eraging [1] to statistical pooling [4, 7] and dictionary-based en-
codings [17, 34]. [5] has proven that data augmentation can sig-
nificantly boost speaker recognition performance, but the aug-
mentation methods can range from adding noise [35] to room
impulse response (RIR) simulation [36].

Therefore, in order to directly compare a range of loss func-
tions, we conduct over 20,000 GPU-hours of careful experi-
ments while keeping other training details constant. Against
popular belief, we demonstrate that the networks trained with
vanilla triplet loss show competitive performance compared to
most AM-Softmax and AAM-Softmax trained networks, and
those trained with our proposed angular objective outperform
all comparable methods.

2. Training functions
This section describes the loss functions used in our experi-
ments, including a new angular variant of the prototypical loss.

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-10642977



2.1. Classification objectives

The VoxCeleb2 development set contains C = 5, 994 speakers
or classes. During training, each mini-batch contains N utter-
ances each from different speakers, whose embeddings are xi
and the corresponding speaker labels are yi where 1 ≤ i ≤ N
and 1 ≤ y ≤ C .

Softmax. The softmax loss consists of a softmax function fol-
lowed by a multi-class cross-entropy loss. It is formulated as:

LS = − 1
N

N
∑

i=1
log eW

T
yi
xi+byi

∑C
j=1 e

WT
j xi+bj

(1)

where W and b are the weights and bias of the last layer of
the trunk architecture, respectively. This loss function only pe-
nalises classification error, and does not explicitly enforce intra-
class compactness and inter-class separation.

AM-Softmax (CosFace). By normalising the weights and the
input vectors, softmax loss can be reformulated such that the
posterior probability only relies on cosine of angle between the
weights and the input vectors. This loss function, termed by the
authors as Normalised Softmax Loss (NSL), is formulated as:

LN = − 1
N

N
∑

i=1
log ecos(�yi ,i)

∑

j e
cos(�j,i)

(2)

where cos (�j,i) is the dot product of normalised vector Wj and
xi.

However, embeddings learned by the NSL are not suffi-
ciently discriminative because the NSL only penalises classi-
fication error. In order to mitigate this problem, cosine margin
m is incorporated into the equation:

LC = − 1
N

N
∑

i=1
log es(cos(�yi ,i)−m)

es(cos(�yi ,i)−m) +
∑

j≠yi e
s(cos(�j,i))

(3)

where s is a fixed scale factor to prevent gradient from getting
too small in training phase.

AAM-Softmax (ArcFace). This is equivalent to CosFace ex-
cept that there is additive angular margin penalty m between
xi and Wyi . The additive angular margin penalty is equal to
the geodesic distance margin penalty in the normalised hyper-
sphere.

LA = − 1
N

N
∑

i=1
log es(cos(�yi ,i+m))

es(cos(�yi ,i+m)) +
∑

j≠yi e
s(cos(�j,i))

(4)

2.2. Metric learning objectives

For metric learning objectives, each mini-batch contains M ut-
terances from each of N different speakers, whose embeddings
are xj,i where 1 ≤ j ≤ N and 1 ≤ i ≤M .

Triplet. Triplet loss minimises the L2 distance between an an-
chor and a positive (same identity), and maximises the distance
between an anchor and a negative (different identity).

LT = 1
N

N
∑

j=1
max(0,kxj,0 − xj,1k2

2 − kxj,0 − xk≠j,1k2
2 + m) (5)

For our implementation, the negative utterances are sam-
pled from different speakers within the mini-batch and the sam-
ple xk is selected by the hard negative mining function. This
requires M = 2 utterances from each speaker.

Prototypical. Each mini-batch contains a support set S and
a query set Q. For simplicity, we will assume that the query
is M-th utterance from every speaker. Then the prototype (or
centroid) is:

cj =
1

M − 1

M−1
∑

m=1
xj,m (6)

Squared Euclidean distance is used as the distance metric as
proposed by the original paper:

Sj,k = kxj,M − ckk2
2 (7)

During training, each query example is classified against N
speakers based on a softmax over distances to each speaker pro-
totype:

LP = − 1
N

N
∑

j=1
log eSj,j

∑N
k=1 e

Sj,k
(8)

Here, Sj,j is the squared Euclidean distance between the query
and the prototype of the same speaker from the support set. The
softmax function effectively serves the purpose of hard negative
mining, since the hardest negative would most affect the gradi-
ents. The value of M is typically chosen to match the expected
situation at test-time, e.g. M = 5 + 1 for 5-shot learning, so
that the prototype is composed of five different utterances. In
this way, the task in training exactly matches the task in test
scenario.

Generalised end-to-end (GE2E). In GE2E training, every ut-
terance in the batch except the query itself is used to form cen-
troids. As a result, the centroid that is of the same class as the
query is computed from one fewer utterance than centroids of
other classes. They are defined as:

cj = 1
M

M
∑

m=1
xj,m (9)

c(−i)j = 1
M − 1

M
∑

m=1
m≠i

xj,m (10)

The similarity matrix is defined as scaled cosine similarity be-
tween the embeddings and all centroids:

Sj,i,k =
{

w ⋅ cos(xj,i, c
(−i)
j ) + b if k = j

w ⋅ cos(xj,i, ck) + b otherwise.
(11)

wherew > 0 and b are learnable scale and bias. The final GE2E
loss is defined as:

LG = − 1
N

∑

j,i
log eSj,i,j

∑N
k=1 e

Sj,i,k
(12)

Angular Prototypical. The angular prototypical loss uses the
same batch formation as the original prototypical loss, reserving
one utterance from every class as the query. This has advantages
over GE2E-like formation since every centroid is made from
the same number of utterances in the support set, therefore it is
possible to exactly mimic the test scenario during training.

We use a cosine-based similarity metric with learnable scale
and bias, as in the GE2E loss.

Sj,k = w ⋅ cos(xj,M , ck) + b (13)

Using the angular loss function introduces scale invariance, im-
proving the robustness of objective against feature variance and
demonstrating more stable convergence [37].

The resultant objective is the same as the original prototyp-
ical loss, Equation 8.

2978



3. Experiments
In this section we describe the experimental setup, which is
identical across all objectives described in Section 2.

3.1. Input representations

During training, we use a fixed length 2-second temporal seg-
ment, extracted randomly from each utterance. Spectrograms
are extracted with a hamming window of width 25ms and step
10ms. For the Thin ResNet model, the 257-dimensional raw
spectrograms are used as the input to the network. For the VGG-
M-40 and the Fast ResNet, 40-dimensional Mel filterbanks are
used as the input. Mean and variance normalisation (MVN) is
performed by applying instance normalisation [38] to the net-
work input. Since the VoxCeleb dataset consists mostly of con-
tinuous speech, voice activity detection (VAD) is not used in
training and testing.

3.2. Trunk architecture

Experiments are performed on the trunk architectures described
below. The first two are identical to the models used and de-
scribed in [39], while the last is a variation of the ResNet model
to reduce computation requirement. The architectures are com-
pared in Table 1.

VGG-M-40. The VGG-M model has been proposed for image
classification [40] and adapted for speaker recognition by [1].
The network is known for high efficiency and good classifica-
tion performance. VGG-M-40 is a modification of the network
proposed by [1] to take 40-dimensional filterbanks as inputs in-
stead of the 513-dimensional spectrogram. The temporal aver-
age pooling (TAP) layer takes the mean of the features along the
time domain in order to produce utterance-level representation.

Thin ResNet-34. Residual networks [33] are widely used in
image recognition and have recently been applied to speaker
recognition [2, 34, 17, 39]. Thin ResNet-34 is the same as the
original ResNet with 34 layers, except using only one-quarter of
the channels in each residual block in order to reduce compu-
tational cost. The model only has 1.4 million parameters com-
pared to 22 million of the standard ResNet-34. Self-attentive
pooling (SAP) [34] is used to aggregate frame-level features
into utterance-level representation while paying attention to the
frames that are more informative for utterance-level speaker
recognition. Thin ResNets of [34] and [39] differ slightly in
their implementation details, but in our experiments we use that
of [39].

Fast ResNet-34. The number and size of filters are identical
to the Thin ResNets of [34, 39], but the input dimensions are
smaller than [39] and the strides are earlier than [34] in order to
reduce computational requirements. Due to space constraints,
the exact specification can be found in the accompanying code.
The performance is on par with both Thin ResNet models, while
the computation cost is less than half of those models.

Network Params MACs
VGG-M-40 [39] 4.0M 0.53G
Thin ResNet-34 [39] 1.4M 0.99G
Thin ResNet-34 [34] 1.4M 0.93G
Fast ResNet-34 1.4M 0.45G

Table 1: Network statistics. Multiply–accumulate operations
(MACs) are measured for a 2-second input.

3.3. Implementation details

Datasets. The network is trained on the development set of
VoxCeleb2 [2] and evaluated on test set of VoxCeleb1 [1]. Note
that the development set of VoxCeleb2 is completely disjoint
from the VoxCeleb1 dataset (i.e. no speakers in common).

Training. Our implementation is based on the PyTorch frame-
work [41] and trained on the NAVER Smart Machine Learning
(NSML) platform [42]. The models are trained using a NVIDIA
V100 GPU with 32GB memory for 500 epochs. For each epoch,
we randomly sample a maximum of 100 utterances from each
of the 5,994 identities to reduce class imbalance. We use the
Adam optimizer with an initial learning rate of 0.001 decreas-
ing by 5% every 10 epochs. For metric learning objectives, we
use the largest batch size that fits on a GPU. For classification
objectives, we use a fixed batch size of 200. The training takes
approximately one day for the VGG-M-40 model, two days for
the Fast ResNet model and five days for the Thin ResNet model.

All experiments were repeated independently three times
in order to minimise the effect of random initialisation, and we
report mean and standard deviation of the experiments.

Data augmentation. No data augmentation is performed dur-
ing training, apart from the random sampling.

Curriculum learning. The AAM-Softmax loss function
demonstrates unstable convergence from random initialisation
with larger values of m such as 0.3. Therefore, we start training
the model with m = 0.1 and increase it to m = 0.3 after 100
epochs. This strategy is labelled Curriculum in Table 2.

Similarly, the triplet loss can cause models to diverge if the
triplets are too difficult early in the training. We only enable
hard negative mining after 100 epochs, at which point the net-
work only sees the most difficult 1% of the negatives.

3.4. Evaluation

Evaluation protocol. The trained networks are evaluated on
the VoxCeleb1 test set. We sample ten 4-second temporal crops
at regular intervals from each test segment, and compute the
similarities between all possible combinations (10 × 10 = 100)
from every pair of segments. The mean of the 100 similarities
is used as the score. This protocol is in line with that used by [2,
39].

Results. The results are given in Table 2. It can be seen that the
performance of networks trained with AM-Softmax and AAM-
Softmax loss functions can be very sensitive to the value of mar-
gin and scale set during training. We iterate over many combi-
nations of m and s to find the optimal value. The model trained
with the most common setting (AM-Softmax with m = 0.3 and
s = 30) is outperformed by the vanilla triplet loss.

Generalised end-to-end and prototypical losses show im-
provements over the triplet loss by using multiple negatives
in training. The prototypical networks perform best when the
value of M matches the test scenario, removing the necessity
for hyperparameter optimisation. The performance of the model
trained with the proposed angular objective exceeds that of all
classification-based and metric learning methods.

There are a substantial number of recent works on the Vox-
Celeb2 dataset, but we do not compare to these in the table,
since the goal of this work is to compare the performance of
different loss functions under identical conditions. However,

2979



Objective Hyperparameters VGG-M-40 Thin ResNet-34 Fast ResNet-34
Softmax - 10.14 ± 0.20 5.82 ± 0.47 6.46 ± 0.06

AM-Softmax [14]

m = 0.1, s = 15 4.86 ± 0.14 2.81 ± 0.08 2.77 ± 0.03
m = 0.2, s = 15 5.14 ± 0.13 2.85 ± 0.07 3.05 ± 0.03
m = 0.3, s = 15 5.24 ± 0.08 3.08 ± 0.05 3.08 ± 0.08
m = 0.4, s = 15 5.22 ± 0.15 3.09 ± 0.06 3.25 ± 0.09
m = 0.1, s = 30 4.76 ± 0.10 2.59 ± 0.09 2.41 ± 0.01
m = 0.2, s = 30 4.88 ± 0.03 2.40 ± 0.07 2.43 ± 0.05
m = 0.3, s = 30 5.19 ± 0.08 2.71 ± 0.10 2.52 ± 0.04
m = 0.4, s = 30 5.35 ± 0.06 2.81 ± 0.10 2.67 ± 0.05
m = 0.1, s = 50 5.45 ± 0.06 2.99 ± 0.04 2.73 ± 0.07
m = 0.2, s = 50 5.28 ± 0.07 2.60 ± 0.10 2.51 ± 0.01
m = 0.3, s = 50 5.62 ± 0.09 2.80 ± 0.09 2.53 ± 0.06
m = 0.4, s = 50 5.91 ± 0.12 2.96 ± 0.08 2.69 ± 0.07

AAM-Softmax [16]

m = 0.1, s = 15 4.81 ± 0.03 2.78 ± 0.04 2.80 ± 0.11
m = 0.2, s = 15 4.88 ± 0.08 2.88 ± 0.09 2.98 ± 0.05
m = 0.3, s = 15 14.90 ± 0.16 3.16 ± 0.05 14.98 ± 0.20

→ Curriculum 5.00 ± 0.05 2.91 ± 0.08 3.04 ± 0.06
m = 0.1, s = 30 4.67 ± 0.06 2.60 ± 0.07 2.48 ± 0.02
m = 0.2, s = 30 4.64 ± 0.04 2.36 ± 0.04 2.38 ± 0.01
m = 0.3, s = 30 13.25 ± 0.07 10.55 ± 0.33 11.35 ± 0.18

→ Curriculum 4.69 ± 0.02 2.39 ± 0.05 2.37 ± 0.02
m = 0.1, s = 50 5.27 ± 0.03 2.88 ± 0.05 2.71 ± 0.07
m = 0.2, s = 50 4.96 ± 0.03 2.50 ± 0.05 2.49 ± 0.04
m = 0.3, s = 50 10.42 ± 0.12 8.79 ± 0.21 9.49 ± 0.25

→ Curriculum 4.86 ± 0.11 2.41 ± 0.08 2.42 ± 0.06

Triplet [26]

m = 0.1, CHNM 4.86 ± 0.15 2.53 ± 0.10 2.73 ± 0.03
m = 0.2, CHNM 4.67 ± 0.06 2.60 ± 0.02 2.71 ± 0.06
m = 0.3, CHNM 4.84 ± 0.13 2.66 ± 0.03 2.85 ± 0.04
m = 0.4, CHNM 4.84 ± 0.08 2.76 ± 0.10 2.96 ± 0.07

GE2E [32]

M = 2 4.60 ± 0.04 2.56 ± 0.08 2.51 ± 0.07
M = 3 4.40 ± 0.08 2.52 ± 0.07 2.37 ± 0.10
M = 4 4.49 ± 0.05 2.59 ± 0.12 2.59 ± 0.08
M = 5 4.69 ± 0.09 2.78 ± 0.09 2.66 ± 0.02
M = 10 5.53 ± 0.04 3.68 ± 0.08 3.55 ± 0.05

Prototypical [29]

M = 2 4.59 ± 0.02 2.34 ± 0.08 2.32 ± 0.02
M = 3 4.73 ± 0.11 2.54 ± 0.07 2.39 ± 0.05
M = 4 4.99 ± 0.19 2.83 ± 0.04 2.89 ± 0.04
M = 5 5.34 ± 0.03 3.33 ± 0.11 3.21 ± 0.01

Angular Prototypical

M = 2 4.29 ± 0.07 2.21 ± 0.03 2.22 ± 0.05
M = 3 4.30 ± 0.05 2.45 ± 0.07 2.40 ± 0.04
M = 4 4.53 ± 0.03 2.75 ± 0.06 2.60 ± 0.02
M = 5 4.73 ± 0.01 3.00 ± 0.11 2.90 ± 0.11

Table 2: Equal Error Rates (EER, %) on the VoxCeleb1 test set. We report the mean and standard deviation of the repeated experiments.
CHNM: Curriculum Hard Negative Mining.

Objective Hyperparameters 200 400 600 800
AM-Softmax m = 0.2, s = 30 2.40 ± 0.07 2.53 ± 0.08 2.49 ± 0.11 2.57 ± 0.07
Prototypical M = 2 2.42 ± 0.04 2.40 ± 0.07 2.34 ± 0.05 2.34 ± 0.08
Angular Prototypical M = 2 2.37 ± 0.07 2.31 ± 0.05 2.32 ± 0.09 2.21 ± 0.03

Table 3: Effect of training batch size on test performance. Equal Error Rates (EER, %) using the Thin ResNet-34 architecture on the
VoxCeleb1 test set. We report the mean and standard deviation of the repeated experiments.

we are unaware of any work that outperforms our method with
a similar number of network parameters.

Batch size. The effect of batch size on various loss functions
is shown in Table 3. We observe that a bigger batch size has
a positive effect on performance for metric learning methods,
which can be explained by the ability to sample harder negatives
within the batch. We make no such observation for the network
trained with classification loss.

4. Conclusions
In this paper, we have presented a case for metric learning
in speaker recognition. Our extensive experiments indicate
that the GE2E and prototypical networks show superior per-
formance to the popular classification-based methods. We also
propose an angular variant of the prototypical networks that out-
performs all existing training functions. Finally, we release a
flexible PyTorch trainer for large-scale speaker recognition that
can be used to facilitate further research in the field.

2980



5. References
[1] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: a large-

scale speaker identification dataset,” in INTERSPEECH, 2017.

[2] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
speaker recognition,” in INTERSPEECH, 2018.

[3] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The speak-
ers in the wild (SITW) speaker recognition database,” in INTER-
SPEECH, 2016.

[4] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification.” in Interspeech, 2017, pp. 999–1003.

[5] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in Proc. ICASSP. IEEE, 2018, pp. 5329–5333.

[6] M. Ravanelli and Y. Bengio, “Speaker recognition from raw wave-
form with sincnet,” in IEEE Spoken Language Technology Work-
shop. IEEE, 2018, pp. 1021–1028.

[7] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics
pooling for deep speaker embedding,” in INTERSPEECH, 2018.

[8] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and
S. Khudanpur, “Speaker recognition for multi-speaker conversa-
tions using x-vectors,” in Proc. ICASSP. IEEE, 2019, pp. 5796–
5800.

[9] S. Ioffe, “Probabilistic linear discriminant analysis,” in Proc.
ECCV. Springer, 2006, pp. 531–542.

[10] S. Ramoji, V. Krishnan, P. Singh, S. Ganapathy et al., “Pairwise
discriminative neural plda for speaker verification,” arXiv preprint
arXiv:2001.07034, 2020.

[11] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” in Proc.
CVPR, 2017, pp. 212–220.

[12] J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. Mc-
Cree, G. Sell, J. Borgstrom, F. Richardson, S. Shon, F. Grondin
et al., “State-of-the-art speaker recognition for telephone and
video speech: the jhu-mit submission for nist sre18,” Interspeech,
pp. 1488–1492, 2019.

[13] D. Snyder, J. Villalba, N. Chen, D. Povey, G. Sell, N. Dehak, and
S. Khudanpur, “The jhu speaker recognition system for the voices
2019 challenge,” in Interspeech, 2019, pp. 2468–2472.

[14] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[15] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recog-
nition,” in Proc. CVPR, 2018, pp. 5265–5274.

[16] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in Proc. CVPR,
2019, pp. 4690–4699.

[17] W. Xie, A. Nagrani, J. S. Chung, and A. Zisserman, “Utterance-
level aggregation for speaker recognition in the wild,” in Proc.
ICASSP, 2019.

[18] M. Hajibabaei and D. Dai, “Unified hypersphere embedding for
speaker recognition,” arXiv preprint arXiv:1807.08312, 2018.

[19] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker
verification,” in INTERSPEECH, 2019.

[20] D. Garcia-Romero, D. Snyder, G. Sell, A. McCree, D. Povey, and
S. Khudanpur, “X-vector dnn refinement with full-length record-
ings for speaker recognition,” in Interspeech, 2019, pp. 1493–
1496.

[21] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot, “BUT
system description to VoxCeleb Speaker Recognition Challenge
2019,” arXiv preprint arXiv:1910.12592, 2019.

[22] C. Luu, P. Bell, and S. Renals, “Channel adversarial training for
speaker verification and diarization,” in Proc. ICASSP, 2019.

[23] ——, “Dropclass and dropadapt: Dropping classes for
deep speaker representation learning,” arXiv preprint
arXiv:2002.00453, 2020.

[24] X. Xiang, S. Wang, H. Huang, Y. Qian, and K. Yu, “Margin mat-
ters: Towards more discriminative deep neural network embed-
dings for speaker recognition,” in Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference,
2019.

[25] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity met-
ric discriminatively, with application to face verification,” in Proc.
CVPR, vol. 1. IEEE, 2005, pp. 539–546.

[26] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proc. CVPR,
2015.

[27] C. Zhang, K. Koishida, and J. H. Hansen, “Text-independent
speaker verification based on triplet convolutional neural network
embeddings,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 26, no. 9, pp. 1633–1644, 2018.

[28] F. R. rahman Chowdhury, Q. Wang, I. L. Moreno, and L. Wan,
“Attention-based models for text-dependent speaker verification,”
in Proc. ICASSP. IEEE, 2018, pp. 5359–5363.

[29] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” in NIPS, 2017, pp. 4077–4087.

[30] J. Wang, K.-C. Wang, M. T. Law, F. Rudzicz, and M. Brudno,
“Centroid-based deep metric learning for speaker recognition,” in
Proc. ICASSP. IEEE, 2019, pp. 3652–3656.

[31] P. Anand, A. K. Singh, S. Srivastava, and B. Lall, “Few shot
speaker recognition using deep neural networks,” arXiv preprint
arXiv:1904.08775, 2019.

[32] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-
to-end loss for speaker verification,” in Proc. ICASSP. IEEE,
2018, pp. 4879–4883.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. CVPR, 2016.

[34] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system,”
in Speaker Odyssey, 2018.

[35] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[36] J. B. Allen and D. A. Berkley, “Image method for efficiently sim-
ulating small-room acoustics,” The Journal of the Acoustical So-
ciety of America, vol. 65, no. 4, pp. 943–950, 1979.

[37] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learn-
ing with angular loss,” in Proc. ICCV, 2017, pp. 2593–2601.

[38] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normaliza-
tion: The missing ingredient for fast stylization,” arXiv preprint
arXiv:1607.08022, 2016.

[39] J. S. Chung, J. Huh, and S. Mun, “Delving into VoxCeleb: en-
vironment invariant speaker recognition,” in Speaker Odyssey,
2020.

[40] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Re-
turn of the devil in the details: Delving deep into convolutional
nets,” in Proc. BMVC., 2014.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
NIPS, 2019, pp. 8024–8035.

[42] N. Sung, M. Kim, H. Jo, Y. Yang, J. Kim, L. Lausen, Y. Kim,
G. Lee, D. Kwak, J.-W. Ha et al., “Nsml: A machine learning
platform that enables you to focus on your models,” arXiv preprint
arXiv:1712.05902, 2017.

2981


