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Abstract
We present a system for low-resource multi-speaker cross-
lingual text-to-speech synthesis. In particular, we train with
monolingual English and Mandarin speakers and synthesize ev-
ery speaker in both languages. The Mandarin training data is
limited to 15 minutes of speech by a female Mandarin speaker.
We identify accent carry-over and mispronunciation in low-
resource language as two major challenges in this scenario, and
address these issues by tone preservation mechanisms and data
augmentation, respectively. We apply these techniques to a re-
cent strong multi-lingual baseline and achieve higher ratings
in intelligibility and target accent, but slightly lower ratings in
cross-lingual speaker similarity.
Index Terms: low resource, multilingual, speech synthesis,
tone learning, tone preservation

1. Introduction
Multilingual text-to-speech (ML-TTS) aims to generate natural,
intelligible speech in different languages while maintaining per-
ceived speaker identity. It finds applications in all multilingual
voice interfaces such as chatbot, satnav and speech-to-speech
translation. ML-TTS is typically discussed under various data
constraints to rule out trivial reduction to multiple independent
monolingual synthesizers. For example, we will not have large
data of a bilingual speaker in both languages.

We consider a bilingual scenario where only monolingual
speakers are available and one language is low-resource. In par-
ticular, we select English and Mandarin Chinese, from different
language families. English is treated as high-resource with 3
female and 3 male speakers and ∼12k utterances available for
training. Mandarin is treated as low-resource with 333 utter-
ances (15min) by one female speaker. Our goal is to synthesize
all speakers in both languages, with particular interest in cross-
lingual synthesis, i.e. Mandarin by native English speakers and
English by native Mandarin speakers. We do not discuss code-
mixed synthesis.

In this paper we address two challenges posed by our sce-
nario: accent carry-over and mispronunciation in low-resource
language. Accent carry-over refers to utterances synthesized in
one language carrying the accent of another, typically that of the
target speaker’s native language (which we call the “source lan-
guage” in this paper). This is often seen in human 2nd-language
learners and is closely related to the reproduction of one’s native
prosodic patterns in 2nd language. Mispronunciation refers to
the synthesizer being unable to produce the correct phonetic se-
quence. This is particularly relevant to low-resource synthesis,
where the synthesizer does not see enough examples to learn
proper phonetization. Our preliminary studies observe both ac-
cent carry-over and mispronunciation worsen at low resource
availability. We address accent carry-over by two tone preser-
vation mechanisms that help retaining source tone information
in the dataflow: one using an auxiliary tone predicting regular-

izer, the other directly injecting tone representations half way.
We address mispronunciation by data augmentation, using noise
and speed perturbation to provide more, if not independent, data
for learning the low-resource language. We apply these tech-
niques to a strong end-to-end baseline and achieve consistent
improvements in accent and intelligibility evaluations, at the
cost of slight loss of cross-lingual speaker similarity.

Section 2 briefly summarizes recent related work in multi-
lingual TTS. Section 3 presents our methods in detail. Section
4 describes our evaluation setup and reports results.

2. Related Work
2.1. Multilingual speakers

A straightforward way to do ML-TTS is using multilingual
speech from a multilingual speaker. [1] presented a Mandarin-
English TTS system that shared hidden Markov model (HMM)
states between languages, using recordings from a bilingual
speaker. [2] proposed a speaker-language factorization method
in deep neural network (DNN) based TTS using three bilingual
speakers. [3] learned to transform speaker embedding between
languages from a bilingual speaker, then applied to other mono-
lingual speakers.

2.2. Multilingual synthesis from monolingual speakers

Professional-level multilingual speakers are rare and collect-
ing multilingual speech in quantity is expensive. A train of
researches turned to easily accessible large monolingual cor-
pora. [4–7] investigated combining monolingual speech from
different languages and speakers for multilingual parametric
TTS. As each speaker speaks only one language, speaker and
language characteristics are highly correlated. This may lead to
heavy accent carry-over in synthesized speech, or inconsistent
voice between languages.

2.3. Multilingual end-to-end

Recent progress in end-to-end monolingual TTS [8–12]
prompted studies to extend these systems to the multilingual
task [13–17]. [14] used Unicode bytes to unify the text input for-
mat across languages. Their system was trained on 127 hours of
speech and was capable of reading code-switched text, but suf-
fered from cross-language speaker inconsistency. [15] trained
an English-German-Spanish TTS with over 400 speakers. It
used a speaker preserving loss to improve the speaker consis-
tency across languages. [17] trained multilingual TTS with 550
hours of speech data from 92 speakers, using an adversarial
speaker loss to disentangle speaker from language.

2.4. Low-resource TTS

A majority of languages in the world remain low-resource for
various difficulties in data collection and labelling. Construc-
tion TTS for such languages often require different techniques.
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[18, 19] achieved low-resource statistical TTS by adapting a
parametric model trained on multiple languages to a new low-
resource language. [20] applied a similar method to end-to-
end TTS. The authors used data in a high-resource language
to pre-train their TTS engine, then adapted it to low-resource
languages.

In this paper we look at both the multilingual and low-
resource aspects of the problem.

3. Methods
3.1. Baseline

Our baseline synthesizer is adapted from [17], a multilin-
gual neural TTS based on Tacotron 2 [9], as shown in Figure
1. It uses an attentional encoder-decoder model as the back-
bone, an adversarially-trained speaker classifier to disentangle
speaker from language, a variational-autoencoder-like “resid-
ual encoder” to improve stability, and a post-processing net to
convert mel spectrogram to linear spectrogram. Speaker and
language embeddings are injected at decoder input. Griffin-
Lim [21] is used to construct audio output.
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Figure 1: Baseline architecture

We adapt this system to our specific setup as follows.

3.1.1. Input representation

Our synthesizer takes phoneme-tone sequence as inputs. No
phoneme is shared across languages. All double vowels and
nasal vowels in Mandarin are divided into two or three single
vowels. For tone embedding we use four pitched tones and one
“toneless” tone for Mandarin, “stressed” and “unstressed” tones
for English.

3.1.2. Speaker representations

We use x-vectors [22] for speaker embedding, which have been
successfully applied to multi-speaker TTS [23]. We train our
x-vectors following [22] with large amount of training data in
Mandarin and English. We argue this does not severely breach
low-resource assumption on Mandarin, as learning x-vectors
needs only speaker labels, which are cheaper than text labels.
When training the TTS model, we extract x-vector from each
training utterance for speaker embedding. At synthesis time the
target speaker’s mean x-vector during training is used.

Our preliminary experiment with speaker embeddings
learned within ML-TTS showed a tendency to render Mandarin
speech in the voice of the Mandarin speaker, rather than the
expected target speaker. We speculate this related to the syn-
thesizer seeing only one Mandarin speaker during training. X-
vectors learned on large number of speakers should relieve this
problem.

3.1.3. Residual encoder

The structure of the residual encoder is the same as that in [17].
The variational autoencoder-like residual encoder computes la-
tent factors of the audio during training phase. The prior mean

(all zeros) is fed at synthesis time. We observe that, although
training data of a speaker is noisy, clean speech can also be
generated just by feeding all zeros to decoder, which makes data
augmentation by adding noise possible.

3.1.4. Training objective

The objective function can be formulated as combining an evi-
dence lower bound (ELBO) with a domain adversarial training
objective:

L1(θ, φr; speech, text,ys)

= ELBO(θ, φr; speech, text)− λsL2(ψs; text,ys)
(1)

θ, φr and ψs are parameters of the synthesizer, residual encoder
and adversarial speaker classifier, respectively, and ys is the
speaker label. Our ELBO is actually a β-VAE objective [24]
under standard Gaussian latent prior:

Eq(zr|speech)[log p(speech|zr, text)]
− λKLDKL(q(zr|speech))‖N (0, I))

(2)

We will use 0<λKL<1, which favours accuracy over latent
space exploration.

3.2. Tone preservation mechanisms

How does accent carry-over happen in our synthesizer? Obvi-
ously the text input contains full information of target accent
and no information of source accent. Given that such carry-
over is rarely observed when source and target languages are
the same, we suspect that source accent has entered via speaker
embedding during cross-lingual synthesis, and competes with
target accent at the input layer of the decoder. Accent carry-
over happens if source accent wins.

During training of the system the target speaker is always
native in the target speech. Both encoder output and speaker
embeddings provide information to construct correct prosodic
accent of target speech. This gives the speaker embeddings a
chance to “explain-away” some prosodic information from en-
coder output, so that during cross-lingual synthesis the decoder
receives weakened target accent information from encoder. In
this subsection we introduce two simple, independent mech-
anisms for tone preservation. They work on the principle of
strengthening target tone information at decoder input.
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Figure 2: Tone preservation mechanisms
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3.2.1. Implicit tone preservation (ITP)

We add an auxiliary classifier that predicts tone labels from en-
coder output, as shown in Figure 2(a), and train it along with
the TTS engine via a regularizer:

L(θ, φr, ψt; speech, text,ys,yt) =

L1(θ, φr; speech, text,ys) + λtL3(ψt; text,yt)
(3)

where ψt parameterizes the tone classifier and yt is the tone la-
bel. Doing so promotes preservation of target tone information
throughout the encoder. Speaker embedding does not contribute
to this classifier therefore has no path to explain this information
away. We call this scheme implicit tone preservation.

We use a two-layer feedforward network for tone classifi-
cation and standard cross-entropy loss for L3.

3.2.2. Explicit tone representation (ETR)

We move target tone input from encoder input to decoder input,
as shown in Figure 2(b). Doing so directly provides the decoder
with strong target accent information that cannot be explained
away. We call this scheme explicit tone representation.

Similar treatment is also found in expressive TTS, which
often feeds a style embedding to the decoder [25,26] to generate
different expressions of the same text. The analog is relevant as
both tone and style encode prosodic modulation characteristics.

We use either ITP or ETR in our synthesizer, but not both
together.

3.3. Data augmentation

Data augmentation is a common strategy training large model
on small data. We apply 10-fold data augmentation to the train-
ing set of low-resource language by noise and speed perturba-
tions. For each training example we create 4 additional versions
speed-perturbed to 80%, 90%, 110% and 120% of original rate
and tag them as 4 new speakers. Vehicle noise is then added to
all examples at SNR 0dB to double the data size.

4. Experiments
4.1. Setup

4.1.1. Data

Our experiments are conducted on an internal American En-
glish and Mandarin Chinese datasets, with no bilingual speaker.
The English training set has 6 English speakers, 3 male and 3
female, about 12,000 utterances in total. The Mandarin training
set has one female Mandarin speaker, 333 utterances in total
(15min). All utterances come with transcriptions as phoneme-
tone sequences.

Recordings are sampled at 24k Hz. 80-dimension mel-scale
and 1025-dimension linear-scale spectrograms are extracted ev-
ery 10ms.

4.1.2. Details

We use >200 hours of speech data from 300 Mandarin and
American English speakers to train our x-vector extractor us-
ing Kaldi toolkit [27]. The size of x-vectors is set at 64.

Details of the baseline model is the same as [17], except that
we set λKL to 0.2, which we find beneficial for generating clean
speech. Training the TTS engine took about 150k steps at batch
size 32 on one P40 GPU. Different methods are compared in our
experiments. The configuration of each method is described as
follows.

• Implicit tone preservation (ITP): The auxiliary tone
classifier has two feedforward layers and hidden layer
size 256. We set λt to 0.2.

• Explicit tone representation (ETR): We concatenate
tone, speaker and language embeddings and feed them
to the decoder along with encoder output.

• Data augmentation (DA): Noise adding and speed per-
turbation are applied for Mandarin. We use SoX tool
[28] for speed perturbation.

4.2. Subjective evaluation

We evaluate our proposed techniques on a strong multilin-
gual baseline adapted from [17]. Comparisons are made be-
tween baseline (Base), baseline+ITP+DA (ITP-DA) and base-
line+ETR+DA (ETR-DA).

4.2.1. MOS

We first investigate mean option score (MOS) in speaker simi-
larity, intelligibility and target accent [4]. All speakers in both
languages are evaluated. 20 native Mandarin speakers are asked
to listen to the generated utterances and rate them on a scale be-
tween 1 and 5. The results are given in Table 1.

All three synthesizers achieve similar speaker similarity
when synthesizing target speaker’s native language. Slightly
lower score is observed in Mandarin, we may be attributed to
insufficient training data. For cross-lingual synthesis we find
our methods hurt similarity MOS by ∼ 0.25. We suspect this is
related to entanglement of speaker identity with preserved tar-
get tone information, which was suppressed by the adversarial
regularizer in the baseline.

The comparison of the performance on intelligibility shows
that all three methods achieve consistent and good performance
when the source and target language are the same. Mandarin
gets slightly higher scores probably due to the raters being na-
tive Mandarin speakers. For cross-language synthesis, the base-
line has a large gap behind the proposed methods, which illus-
trates the effectiveness of the latter.

For target accent, we observe that the results are very simi-
lar to those on intelligibility. We suppose that target accent and
intelligibility have an interdependence with each other and the
proposed methods improve the performance of the both.

4.2.2. AB preference test

We run A-B preference tests to evaluate effects of tone preserva-
tion and data augmentation separately. For each test we present
the rater with two speech stimuli, one synthesized with ETR (or
DA) and one without, and ask the rater to choose a preferred
one.

Figure 3: AB preference results of Base-DA and ETR-DA on
tone accuracy for cross-language synthesis
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Table 1: Comparison of MOS on speaker similarity, intelligibility and target accent

Source
Language Method Speaker similarity Intelligibility Target accent

CN EN CN EN CN EN

CN Base 4.08 ± 0.17 3.60 ± 0.25 4.97 ± 0.00 3.01 ± 0.31 4.94 ± 0.01 2.98 ± 0.31
ITP-DA 4.13 ± 0.35 3.33 ± 0.35 4.96 ± 0.00 4.47 ± 0.10 4.93 ± 0.01 4.24 ± 0.07
ETR-DA 4.09 ± 0.28 3.35 ± 0.37 4.98 ± 0.00 4.40 ± 0.15 4.91 ± 0.01 4.24 ± 0.16

EN-Female Base 3.80 ± 0.26 4.55 ± 0.20 3.75 ± 0.26 4.70 ± 0.06 2.83 ± 0.11 4.71 ± 0.03
ITP-DA 3.54 ± 0.25 4.64 ± 0.16 4.43 ± 0.12 4.64 ± 0.10 3.54 ± 0.10 4.71 ± 0.04
ETR-DA 3.55 ± 0.31 4.50 ± 0.23 4.55 ± 0.09 4.67 ± 0.08 3.56 ± 0.11 4.71 ± 0.04

EN-Male Base 3.86 ± 0.26 4.56 ± 0.14 3.61 ± 0.20 4.67 ± 0.05 2.90 ± 0.12 4.67 ± 0.03
ITP-DA 3.59 ± 0.33 4.51 ± 0.15 4.20 ± 0.16 4.65 ± 0.07 3.26 ± 0.14 4.67 ± 0.04
ETR-DA 3.62 ± 0.22 4.63 ± 0.17 4.22 ± 0.14 4.63 ± 0.08 3.29 ± 0.14 4.67 ± 0.04

Figure 3 compares Base-DA and ETR-DA on tone accuracy
for cross-language synthesis. We see that ETR obtains signifi-
cantly higher preference score on tone accuracy. We believe that
utilizing ETR, strong target accent information can be provided
for decoder directly to construct correct prosodic accent.

Figure 4: AB preference results of ETR and ETR-DA on natu-
ralness for Mandarin synthesis

For data augmentation we evaluate synthesizers trained on
smaller training sets of 3 minutes and 9 minutes, constructed as
two random subsets of the 15 minutes. Figure 4 compares ETR-
DA trained on 3 minutes’ data and ETR trained on 3/9/15 min-
utes on naturalness of direct Mandarin synthesis. Performance
of ETR-DA trained on 3 minutes’ data is between those trained
on 9 and 15 minutes without DA. This indicates significant po-
tential of DA for improving quality on extremely-low-resource
languages, as expected.

4.3. An objective score: tone preservation

Table 2: Accuracy of tone classifiers trained on text encodings

Base-DA ITP-DA

accuracy(%) 72.50 99.98

We quantify the degree of tone preservation described in
3.2.1 by classifying tones from encoder output. Two linear dis-
criminative analysis classifiers are trained to predict tone class
from text encodings of ITP-DA and Base-DA, respectively. The
results are given in Table 2. ITP-DA achieves a higher tone
prediction accuracy, implying that stronger tone information is
maintained.

Figure 5: t-SNE visualization of x-vectors extracted from speech
synthesized by ETR-DA and Base-DA with different speakers
and languages

4.4. A visualization: speaker similarity

We use t-SNE [29] to visualize x-vectors computed from speech
synthesized with ETR-DA and Base-DA, and give the result in
Figure 5. When source and target languages are consistent, x-
vectors from ETR-DA and Base-DA roughly overlap. These
represent the “correct” positions of the speakers because they
get high scores in similarity evaluation. When it comes to cross-
lingual synthesis, the x-vectors of ETR-DA and Base-DA form
two clusters, the former drifting further away from the “correct”
positions, linking ETR to lower speaker similarity.

5. Conclusions

We build a Mandarin-English TTS engine where all training
speakers are monolingual and Mandarin data is limited. Two
methods of tone preservation are proposed to help generate ut-
terance in proper prosodic accent of target language. Data aug-
mentation is used to improve the quality of synthesis in low-
resource language.

For future work, first, we consider building the training set
of high-resource language with more speakers but less data for
each speaker. Doing so reduces the difficulty of data collection
while providing the synthesizer with various speaker identities
and pronunciations. Then, we plan to continue investigating
methods to improve speaker similarity further.
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