
Cross-lingual Text-To-Speech Synthesis via Domain Adaptation and
Perceptual Similarity Regression in Speaker Space

Detai Xin, Yuki Saito, Shinnosuke Takamichi, Tomoki Koriyama, and Hiroshi Saruwatari

Graduate School of Information Science and Technology, The University of Tokyo, Japan
{detai xin, yuuki saito, shinnosuke takamichi, tomoki koriyama,

hiroshi saruwatari}@ipc.i.u-tokyo.ac.jp

Abstract
We present a method for improving the performance of cross-
lingual text-to-speech synthesis. Previous works are able to
model speaker individuality in speaker space via speaker en-
coder but suffer from performance decreasing when synthesiz-
ing cross-lingual speech. This is because the speaker space
formed by all speaker embeddings is completely language-
dependent. In order to construct a language-independent
speaker space, we regard cross-lingual speech synthesis as
a domain adaptation problem and propose a training method
to let the speaker encoder adapt speaker embedding of dif-
ferent languages into the same space. Furthermore, to im-
prove speaker individuality and construct a human-interpretable
speaker space, we propose a regression method to construct per-
ceptually correlated speaker space. Experimental result demon-
strates that our method could not only improve the performance
of both cross-lingual and intra-lingual speech but also find per-
ceptually similar speakers beyond languages.
Index Terms: text-to-speech, cross-lingual, domain adaptation,
speaker embedding

1. Introduction
Recent advances in speaker individuality modeling based on
deep neural network (DNN) [1] have made multi-speaker end-
to-end text-to-speech (TTS) synthesis [2, 3, 4, 5] become pos-
sible by conditioning a TTS model on a distributed representa-
tion which is usually called speaker embedding. Multilingual
speech synthesis by a single TTS model is also possible by uti-
lizing language feature [6, 7] and unified text representation like
phoneme [8] or byte [9]. By combining the techniques men-
tioned above, it is possible to synthesize multilingual speech
of one speaker even if there is only monolingual data of the
speaker. This process is called cross-lingual TTS synthesis.

However, given a source language speaker, how to maintain
the naturalness and speaker similarity of the speech when syn-
thesizing target language speech is still an unsolved problem.
Although it is assumed that the speaker embedding extracted
from acoustic features encodes general voice information of the
speaker, in practice embeddings of different languages usually
gather in different clusters, which implies the speaker embed-
ding is language-dependent. In this paper, we refer this prob-
lem as the language-dependent problem of speaker embedding
in cross-lingual TTS synthesis.

One way to alleviate this problem is introducing common
text representation such as phoneme or byte. Chen et al. [10]
and Zhang et al. [8] proposed cross-lingual TTS model based
on Tacotron2 [11] by using this method. Although they found
phoneme was suitable for this task, the performance decreased
when doing cross-lingual TTS synthesis, and the language-
dependent problem remained.
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Figure 1: Overview of the core idea of our work. With domain
adaptation, speakers in source languages, which are outliers
of those in target languages, can transfer their voices to target
languages. With speaker similarity regression, speakers’ voices
are placed to be strongly correlated with humans’ perception.
Lang. indicates language.

Another way to resolve the discrepancy is adding restric-
tions on the speaker space directly. Nachmani et al. [12] pro-
posed a novel speaker preserving loss term to solve the problem.
They assumed the cross-lingual speech synthesized by a pre-
trained multilingual TTS model was ground truth data and min-
imized the L1 distance between speaker embedding of ground
truth intra-lingual speech and synthesized cross-lingual speech.
However, this method had a bad influence on the quality of syn-
thesized speech, since the synthesized speech was treated as
ground truth data in the training process. Most recently, Maiti et
al. [13] proposed a semi-supervised algorithm that could trans-
fer any source speaker embedding to target speaker space by
computing the difference between the speaker embedding of
source and target language of a bilingual speaker. This demon-
strated better performance than the baseline model that didn’t
transfer speaker embedding. However, it is not practical to ap-
ply this method to models with multiple languages, since seek-
ing a speaker who can speak all languages is almost impossible.

In this paper, we propose a method for resolving language
dependency in speaker space by regarding cross-lingual TTS
synthesis as a domain adaptation problem. As illustrated in
Figure 1, when synthesizing target language speech of a source
speaker, the voice information of the source speaker can be en-
coded to the language-independent space to assist the synthesis
and consequently improves naturalness and similarity. Our idea
is inspired by the domain adversarial neural network (DANN)
[14], which has been proved to be an effective algorithm for
domain adaptation. An adversarial loss term is added in our
speaker encoder to force it to ignore the difference between
languages. Furthermore, to improve speaker individuality of
the synthesized speech and make the speaker space constructed
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Figure 2: General architecture of cross-lingual TTS synthesis.
Here FC refers to fully connected layer.

by our method correlates to human perception, we use inter-
speaker perceptual similarity score [15] as an additional loss
term. Experimental results demonstrate that (1) our method
improves speech naturalness in not only cross-lingual but also
intra-lingual speech synthesis, (2) our model can find speakers
with similar voice, even they speak different languages. Au-
dio samples of our work are publicated on our project page:
https://aria-k-alethia.github.io/clttsda/.

2. Conventional Method
In this section, we introduce a conventional method of cross-
lingual TTS synthesis [8, 10, 12, 13]. Figure 2 illustrates the
general architecture of the method. Generally, it consists of two
parts: speech synthesis part and speaker encoder. The speech
synthesis part is extended from Tacotron2 [11] but further con-
ditions on speaker embedding and language embedding. The
speaker encoder is used to extract a distributed representation
of the speaker called speaker embedding from mel-spectrogram.
Usually, DNN is used as the architecture of the speaker encoder.
Besides, each language has a randomly initialized trainable em-
bedding as a hidden variable to model speaker-independent lan-
guage feature. The language embedding has been proved to be
effective in improving the naturalness of speech synthesized by
multilingual TTS model [8]. The cross-lingual TTS model is
first trained with multilingual and multi-speaker speech data.
When synthesizing cross-lingual speech of a source language
speaker, target language text and embedding are fed to the
model, and the speaker embedding is obtained from source lan-
guage mel-spectrogram. We basically follow the original archi-
tectures but slightly modified it to improve the performances.
The modification is used for both this conventional and our pro-
posed method. See Section 4 for the detail.

One may assume the speaker embedding should only en-
code language-independent voice feature, but the speaker em-
bedding generated by a conventional method usually forms dif-
ferent clusters according to different languages. This implies
the speaker embedding encodes not only general voice feature
but also language-dependent feature, which makes any source
speaker embedding an outlier when synthesizing target lan-
guage speech.

3. Cross-lingual TTS via Domain
Adaptation and Perceptual Similarity

To solve the language dependency problem, we extend the
speaker encoder of conventional method illustrated in Figure 2.
We propose (1) domain adaptation objective (Section 3.1) and
(2) inter-speaker similarity regression objective in speaker space
(Section 3.2). The general architecture of our speaker encoder
is illustrated in Figure 3.
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Figure 3: Speaker encoder architecture of proposed cross-
lingual TTS model.

3.1. The Domain Adaptation Objective
In order to obtain language-independent speaker embedding,
we regard the speaker classifier and language classifier as la-
bel predictor and domain classifier in DANN [14], respectively.
The domain classifier in our work tries to minimize the language
classification loss. On the other hand, the gradient reversal layer
(GRL) reverses the gradient before it is propagated to the fea-
ture extractor, which actually makes the feature extractor have
an opposite objective of domain classifier, i.e., ignoring the lan-
guage difference of each speaker. Meanwhile, the speaker clas-
sifier makes the feature extractor learn text-independent voice
feature from the input, which forms a minimax game with the
domain classifier. After converging at a saddle point, the ex-
tracted speaker embedding will not include language informa-
tion but still retain speaker identity information. As a result,
all speaker embeddings together form a language-independent
speaker space. The architecture of the feature extractor is based
on resCNN [16], which is an effective deep residual convolu-
tion neural network for speaker identification task. We find
resCNN is useful for extracting text-independent feature when
we use adversarial loss, while other simple architectures like
long short-term memory (LSTM) fails to converge.

Formally, we denote feature extractor, speaker classifier and
language classifier as Gf , Gy and Gd respectively. For speaker
i, given the mel-spectrogram xi and corresponding speaker em-
bedding ei = Gf (xi), the one-hot speaker label vector yi, the
binary language label li, the domain adaptation lossLDA

i for this
speaker is computed by summing the classification loss of the
two classifiers:

LDA
i =−

Ns∑
j=1

y
(j)
i log softmaxj(Gy(ei))

− li log σ(Gd(4ei))− (1− li) log (1− σ(Gd(4ei))),
(1)

where Ns is the number of speaker, σ and 4 are the sigmoid
function and gradient reversal operation, respectively. We use
binary classification loss since the dataset used in experiments
only contains two languages.

3.2. The Inter-speaker Similarity Regression Objective
Our domain adaptation method makes it possible to compare
the similarity of speakers even they speak different languages.
However, it has no guarantee that the speaker space generated
by the speaker encoder correlates with subjective inter-speaker
similarity, i.e., speakers with similar voice are not necessarily
close to each other. Thus, to further improve the speaker in-
dividuality of the synthesized speech and construct a human-
interpretable speaker space (i.e., highly correlated with human
perception), we use inter-speaker perceptual similarity [15] to
train the speaker encoder. This score is obtained by crowd-
sourcing involving a large number of human evaluators. Each
evaluator is asked to give a preference score of voice similarity
of two speakers. Thus the scores could represent the percep-
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Table 1: Results of MOS evaluation on naturalness. The language column represents the language of synthesized speeches. Bold
indicates better method without overlapping 95% confidence interval

Task Language Speaker Conv. Conv.+sim DA DA+sim Ground truth

Intra-lingual
English Seen 3.18 3.24 3.25 3.27 4.07

Unseen 3.19 3.26 3.24 3.24 4.00

Japanese Seen 2.71 2.80 2.80 2.73 4.44
Unseen 2.88 2.95 2.89 2.64 4.35

Cross-lingual
English Seen 3.19 3.23 3.36 3.34 3.82

Unseen 3.25 3.23 3.31 3.14 3.95

Japanese Seen 2.68 2.84 2.79 2.80 4.33
Unseen 2.64 2.78 2.98 2.94 4.42

tually correlating level of two speakers. However, since it is
originally used to construct human-interpretable speaker space
for monolingual TTS system, the scores are only provided for
intra-lingual speakers. The straightforward way to apply it to
cross-lingual TTS system is to annotate scores for cross-lingual
speaker pairs. But this is not realistic due to the scalability of the
number of languages. In this paper, we solve this problem by
combining speaker similarity regression and domain adaptation.
The speaker similarity regression works to construct human-
interpretable but language-specific speaker spaces. Meanwhile,
the domain adaptation is used to match these spaces. Therefore,
the intra-lingual similarity knowledge can be easily transferred
to cross-lingual speaker pairs.

We normalize ground truth score between [−1, 1], and aug-
ment Equation (1) with a regression loss term. Given the inter-
speaker similarity score si,j for speaker i and j, the final loss
value of speaker i is:

Lsim
i = LDA

i +
∑

j∈{k|lk=li}

|e>i ej − si,j |. (2)

Here the speaker embedding is L2 normalized, so the inner
product is the cosine similarity.

4. Experiments
4.1. Experimental setup
We investigated cross-lingual TTS synthesis between English
and Japanese. We first used LJ Speech corpus (English) [17]
and JSUT corpus (Japanese) [18] for pretraining the cross-
lingual TTS model, which was beneficial for model conver-
gence. The speaker encoder and the rest of the model were
trained separately in this stage. After the pretraining, we jointly
trained all components using female speakers’ speech included
in VCTK [19] and JVS [20] corpora. We randomly chose 8
speakers (4 English and 4 Japanese) for unseen speaker eval-
uation and excluded them from the training set. The training
set totally contained 107 speakers, in which 59 were English
and 48 were Japanese. Different from the previous works, we
used character as text representation, which was completely
non-overlapping and language-dependent. All Chinese char-
acter in Japanese text was transformed to Hiragana by KyTea
[21] to reduce character number in the data. To reduce compu-
tational cost, we downsampled all audios to 16 kHz. We also
trained a WaveRNN neural vocoder [22] separately to convert
80-dimensional mel-spectrogram into time-domain waveform.
The inter-speaker similarity score of JVS is included in the orig-
inal dataset, the one of VCTK can be downloaded from internet.

In all our experiments, we used 64-dimensional speaker
embedding, 16-dimensional language embedding. We normal-
ized all speaker embeddings to unit length to stabilize the train-
ing process. The language classifier was a two-layer multi-layer
perceptron. We found that simple architecture was more suit-

able for speaker classifier, so we used a linear classifier directly.
To condition Tacotron2 on speaker embedding and lan-

guage embedding, we adopted the following modifications: (1)
We concatenated language embedding with text embedding in
the text encoder. (2) In the attention module, speaker embed-
ding and language embedding were used as additional input.
(3) In the decoder, we first used a linear transformation to trans-
form the language embedding and context vector to a compact
feature, then concatenated it with speaker embedding and fed
it to the decoder. We found this could avoid possible entangle-
ment of speaker embedding and language embedding.

We used Adam [23] as optimizer. During pretraining, we
set the initial learning rate to 10−3 and got all embeddings
from a randomly initialized embedding table. The batch size
was set to 64. We multiplied the gradient back-propagated
from language classifier to feature extractor by a factor λp =

2
1+exp (−10·p)−1, where p represents the training progress rang-
ing from 0 to 1. This allowed the feature extractor to be less
influenced by the language classifier at the early training stage
[14]. An L2 regularization term with 10−5 weight was added to
the speaker encoder loss to avoid overfitting. After pretraining,
we trained the model with 32 batch size on the whole training
data and set the initial learning rate to 10−4.

Four models are trained for comparison. Except for a base-
line model trained by the conventional method (“Conv.”) using
speaker classifier only, two proposed models are trained using
equation 1 and 2 separately, which are denoted by “DA” and
“DA+sim” respectively. We finally train a model by adding
similarity loss term to the baseline model, which is denoted by
“Conv.+sim”.

4.2. Subjective Evaluation
We evaluate naturalness and similarity score of the speech syn-
thesized by each model. Each speaker has 20 intra-lingual utter-
ances and 20 cross-lingual utterances for evaluation. All texts
of these utterances are not included in the training data.

4.2.1. Naturalness Evaluation
We used five-level Mean Opinion Score (MOS) tests to evalu-
ate the naturalness of speech. The MOS tests were conducted
in each of all combinations of speaker settings (seen/unseen),
languages (English/Japanese), and tasks (intra-/cross-lingual).
100 Japanese listeners participated in each evaluation, and 800
listeners participated in total. Each listener evaluated 25 ut-
terances. The top half of Table 1 shows the result of intra-
lingual TTS. We notice that our proposed models (DA+*) and
Conv.+sim model obtained better scores than the baseline model
(Conv.), though our method is not designed for intra-lingual
synthesis. This improvement may be because the adversarial
loss and similarity loss term have regularization effects on the
model since they prevent speaker embedding distribute together
and avoid possible overfitting.
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Table 2: Results of XAB tests on speaker similarity. The language column represents the language of synthesized speeches. Bold score
indicates preferred method has p value less than 0.05

Task Language Speaker Conv. vs. DA Conv.+sim vs. DA+sim Conv. vs. Conv.+sim DA vs. DA+sim

Intra-lingual
English Seen 0.436 - 0.564 0.512 - 0.488 0.488 - 0.512 0.556 - 0.444

Unseen 0.464 - 0.536 0.476 - 0.524 0.464 - 0.536 0.496 - 0.504

Japanese Seen 0.448 - 0.552 0.572 - 0.428 0.496 - 0.504 0.580 - 0.420
Unseen 0.416 - 0.584 0.608 - 0.392 0.360 - 0.640 0.568 - 0.432

Cross-lingual
English Seen 0.420 - 0.580 0.588 - 0.412 0.440 - 0.560 0.536 - 0.464

Unseen 0.584 - 0.416 0.576 - 0.424 0.524 - 0.476 0.568 - 0.432

Japanese Seen 0.572 - 0.428 0.552 - 0.448 0.524 - 0.476 0.508 - 0.492
Unseen 0.468 - 0.532 0.484 - 0.516 0.432 - 0.568 0.496 - 0.504

The bottom half of Table 1 shows the result of cross-
lingual TTS. The score of ground truth score was relatively
low, which may be because the listeners were all Japanese.
Our proposed model obtained significant naturalness improve-
ment when synthesizing cross-lingual speech. This demon-
strates that our language-independent speaker embedding en-
codes more general voice information. We also notice that the
DA+sim model sometimes fails to beat the baseline model. We
consider this is because the similarity score between different
languages doesn’t exist, which introduces biases in the train-
ing process. All in all, our model can improve the naturalness
of cross-lingual TTS synthesis, while maintaining the perfor-
mance of intra-lingual TTS synthesis.

4.2.2. Speaker Similarity Evaluation
We conducted preference XAB tests to compare speaker sim-
ilarity of the speech synthesized by each model. To study the
effect of domain adaptation and perceptual similarity separately,
we compared methods with and without domain adaptation, i.e.,
Conv. and DA, with and without speaker similarity regression,
i.e., *+sim. 25 Japanese listeners participated in each test, and
800 listeners participated in total. Each listener evaluated 10
pairs of utterances. In all tests, we used the speech of the
speaker’s original language as ground truth.

The result is shown in Table 2. Our proposed model per-
forms better than the baseline model in most intra-lingual cases
and has comparable performance in cross-lingual cases when
similarity loss is not used. This demonstrates that our proposed
model has better speaker identity modeling ability and captures
more general voice feature. However, we observe that when
the similarity loss is added, our proposed model is beaten by
the baseline model. A similar observation can be obtained from
the rest two pairs, in which the baseline model is beaten by its
similarity version, while our proposed model beats its similarity
version. Again, we think this is because the lack of similarity
score between different languages introduces more bias in the
training process.

To sum up, the overall result demonstrates that our adver-
sarial loss and perceptual similarity could improve the similar-
ity score most of the time. However, how to combine these two
methods to get more performance gains is unknown. We leave
this as future work.

4.3. Speaker Space Evaluation
We evaluate speaker space generated by our method from var-
ious aspects. We first visualize English and Japanese speaker
embedding with and without domain adaptation by the t-SNE
algorithm [24]. The result is shown in Figure 4. We can
see that, in the baseline model, the English speakers (circle)
and Japanese speakers (cross) can be separated easily by lan-
guages. By using our method, speaker embeddings mix together
and form a language-independent speaker space, which implies

Table 3: Results of XAB tests on speaker similarity of the near-
est cross-lingual speaker pair. Bold score indicates preferred
method has p value less than 0.05

Conv. vs. DA Conv. vs. DA+sim DA vs. DA+sim
0.360 - 0.640 0.256 - 0.744 0.312 - 0.688

(a) Conv. (b) DA

Figure 4: t-SNE visualization of speaker embeddings learned by
(a) baseline model and (b) proposed DA model.

our method has better generalization ability when encountering
multiple languages.

To verify whether our perceptual similarity regression con-
tributes to transfer intra-lingual perceptual similarity knowledge
to another language, we conducted preference XAB test to eval-
uate speaker similarity of the nearest cross-lingual speaker pair
of each model. We assume that, if our method can construct a
language-independent and human-interpretable speaker space,
it is expected to find more perceptually similar speaker pairs be-
yond languages than the baseline model. We randomly picked
5 English speakers and found the Japanese speaker who has the
highest cosine similarity with them in the speaker space gen-
erated by Conv., DA, and DA+sim models. Table 3 shows the
result. Our DA model beats the baseline model, demonstrat-
ing that the speaker encoder trained by our domain adaptation
method could capture more general voice information. Finally,
our DA+sim model wins the DA model, which shows that the
perceptual similarity could further improve the interpretability
of the speaker space. All in all, our method could construct a
language-independent and human-interpretable speaker space.

5. Conclusions
In this paper, we described cross-lingual TTS synthesis via do-
main adaptation and perceptual similarity regression in speaker
space. Experimental results demonstrated that the speaker en-
coder of our model could not only improve synthesis perfor-
mance but also find perceptually similar cross-lingual speaker
pairs.
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