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Abstract

Recent studies in multi-lingual and multi-speaker text-to-speech
synthesis proposed approaches that use proprietary corpora of
performing artists and require fine-tuning to enroll new voices.
To reduce these costs, we investigate a novel approach for gen-
erating high-quality speeches in multiple languages of speak-
ers enrolled in their native language. In our proposed system,
we introduce tone/stress embeddings which extend the language
embedding to represent tone and stress information. By manip-
ulating the tone/stress embedding input, our system can syn-
thesize speeches in native accent or foreign accent. To support
online enrollment of new speakers, we condition the Tacotron-
based synthesizer on speaker embeddings derived from a pre-
trained x-vector speaker encoder by transfer learning. We intro-
duce a shared phoneme set to encourage more phoneme sharing
compared with the IPA. Our MOS results demonstrate that the
native speech in all languages is highly intelligible and natural.
We also find L2-norm normalization and ZCA-whitening on x-
vectors are helpful to improve the system stability and audio
quality. We also find that the WaveNet performance is seem-
ingly language-independent: the WaveNet model trained with
any of the three supported languages in our system can be used
to generate speeches in the other two languages very well.
Index Terms: multi-lingual, multi-speaker, text-to-speech, x-
vector, tone/stress embedding

1. Introduction

In traditional text-to-speech (TTS) synthesis methods [1], many
system components such as the grapheme-to-phoneme model,
phoneme duration model, segmentation model, fundamental
frequency estimation model and synthesis model are trained
separately, and they require expert domain knowledge to pro-
duce high-quality synthesized speech. With the advance of deep
learning, they are gradually replaced by neural models. Deep
Voice [2] presents a neural TTS system which replaces each
separate component with a neural net-based model. Char2wav
[3] and Tacotron [4] and its improved version Tacotron2 [5] re-
sort to a totally end-to-end neural model' that uses an atten-
tion mechanism to convert a sequence of text directly to its cor-
responding sequence of vocoder features, from which speech
audios may be generated using a vocoder. Char2Wav gener-
ates WORLD features [6] and uses SampleRNN [7] to gener-
ate speech, while Tacotron/Tacotron2 generates linear/mel spec-
trograms and uses the Griffin-Lim (GL) [8] and WaveNet [9]
vocoder, respectively. Tacotron 2 can synthesize natural speech
comparable to genuine human speech.

Actually “end-to-end” here only means that both Char2Wav and
Tacotron generate vocoder features, not speech audios, from some rep-
resentation of input texts.
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Single-speaker neural TTS systems can be readily extended
to support multiple speakers’ voices. [10] takes the multi-task
learning approach and duplicates the output layer for each of
its training speakers so that each speaker is trained with its own
speaker-dependent output layer while sharing other hidden lay-
ers in the model. Obviously, the model parameters in its output
layer grow linearly with the number of training speakers. Multi-
speaker Tacotron [11] is introduced by conditioning Tacotron
2’s model on pre-trained d-vector speaker embeddings so that
new speakers can be enrolled with a few seconds of speech.
Similarly, Deep Voice 2 [12] and Deep Voice 3 [13] extends
Deep Voice to multi-speaker TTS. Unlike Tacotron 2, Deep
Voice 2 and 3 condition each layer of the model with speaker
embeddings which is jointly trained with the rest of the TTS
system. For example, Deep Voice 3 claims to support 2400
voices. However, enrollment of new speakers in [12] and [13]
will require additional training. VoiceLoop [14] uses a fixed-
size memory buffer to accommodate speaker-dependent phono-
logical information and facilitates multi-speaker synthesis by
buffer shifts. New speaker embeddings can be trained by an op-
timization procedure while fixing the other model parameters.
Neural Voice cloning [15] introduces a similar speaker adap-
tation method where both model parameters and speaker em-
beddings are fine-tuned with data from the new speaker. Multi-
lingual TTS further extends multi-speaker TTS to support syn-
thesis in more than one language. For example, [16] introduces
a cross-lingual TTS system in English and Mandarin trained
with IPA without language embedding. It succeeds in synthesiz-
ing speech in two languages, however, it can only synthesize na-
tive speech but not accented speech. It uses the GL vocoder (in-
stead of WaveNet or other neural-based high fidelity vocoders)
resulting in synthesized speech of lower quality.

In this paper, we investigate a multi-lingual and multi-
speaker TTS approach to synthesize high-quality speech in
three languages and speakers enrol in their own native speech.
Our system provides accent control to synthesize accented and
native speech when the synthesized language is not the native
language of the speaker. [17] proposes a similar approach which
shares many ideas in our system. Nonetheless, there are the
following notable differences: (a) Our results are reproducible
as we used only publicly available training corpora while the
system in [17] was trained on proprietary data. (b) [17] aims
at synthesizing speech with only training speakers’ voices, and
their training data consists of few speakers (some are profes-
sional voice actors) but each has tens of hours of speech. On
the contrary, we trained our system on hundreds of speakers
with less than 25 minutes of speech from each speaker. We be-
lieve our system is more generalizable to new speakers and we
report results on unseen speakers while [17] does not. (c) Both
systems employ shared phonemes for inputs and tone/stress em-
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Figure 1: Multi-lingual multi-speaker TTS system using phoneme embedding, speaker embedding and tone/stress embedding.

beddings, and speaker embeddings. However, our phoneme
set encourages more sharing and is more computationally ef-
ficient. Different from their tone/stress embedding, ours com-
bines language information and tone/stress information so that
extra language embeddings are unnecessary. And we use the
state-of-the-art x-vector for speaker embedding while they use
d-vector. We expect our synthesized speech will be better in
terms of speaker similarity, especially for unseen test speaker.
(d) Our model is simpler with no residual encoding nor adver-
sarial training. Instead, we investigate on the effect of various
normalization methods on the speaker embedding vectors for
enhancing the intelligibility, naturalness and speaker similarity
of the synthesized speech. (e) We also investigate the effect of
training the WaveNet vocoder with speech in one language to
synthesize speech of all languages in the system.

2. Model Structure

Fig. 1 shows our multi-lingual multi-speaker TTS system.

2.1. Inputs: Phoneme, Tone and Stress Embeddings

Instead of character embedding in [3, 4, 5], we use phoneme
embedding which has been shown to generate more natural
speech. A shared phoneme set is created by mapping Mandarin
pinyin and Cantonese jyupting phonemes to ARPABET, with
the exceptions of pinyin phonemes ‘j’, ‘q” and ‘x’ which are
treated as distinct phonemes as no good ARPABET mappings
are found. We separately represent 5 Mandarin tones, 6 Can-
tonese tones and 3 English stresses as 14-D 1-hot embedding
and concatenate it to phoneme embedding as shown in Table 1.

2.2. Speaker Encoder

We train a separate speaker encoder using x-vectors described
in [18] as speaker embeddings. X-vectors are derived from a
TDNN-based speaker discriminative model which is trained to
classify the training speakers with a softmax layer. We extract
x-vectors from the output of the 6th hidden layer in the TDNN.
We investigate the performance of two normalization tech-
niques: L2-norm normalization and whitening on the generated
x-vectors and compared them with unnormalized x-vectors.

2.3. Mel-spectrogram Synthesizer

The mel-spectrogram synthesizer is implemented based on [11].
We input the concatenation of phoneme embeddings and addi-
tional tone/stress embeddings to the encoder. Speaker embed-
ding is concatenated with the encoder context output and they
are fed into the decoder as in [11]. In our preliminary exper-
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Table 1: One-hot embedding of tones and stresses.

| Index | Tone/stress \
0 Mandarin: Neutral tone
1 Mandarin: Tone one
2 Mandarin: Tone two
3 Mandarin: Tone three
4 Mandarin: Tone four
5 English: No stress
6 English: Primary stress
7 English: Secondary stress
8 Cantonese: High level (Tone one)
9 Cantonese: Mid rising (Tone two)
10 Cantonese: Mid level (Tone three)
11 Cantonese: Low falling (Tone four)
12 Cantonese: Low rising (Tone five)
13 Cantonese: Low level (Tone six)

iments, we have tried linear addition instead of concatenation
but it does not lead to any significant improvement.

2.4. WaveNet

WaveNet [9] is an auto-regressive sample-by-sample raw au-
dio synthesizer. We construct the WaveNet with 30 layer of
dilated causal convolutions and train it with 8-bit mu-law quan-
tization” using the CUSENT Cantonese corpus and demonstrate
that it can still synthesize high-quality and natural speech in
both English and Mandarin. We have also trained another two
WaveNet models using English LibriSpeech or Mandarin Surf-
ingTech corpora separately, and the quality of the synthesized
speech using any of the three models is similarly good. It seems
the WaveNet performance is language-independent.

2.5. Synthesis of Native and Accented Speech

The use of tone/stress embeddings allow us to synthesize na-
tive or accented speech in a language X spoken by a speaker
whose mother tongue is language Y, where X and Y may be any
of the 3 languages supported by our model. To generate native
speech, the correct tone or stress is used for each phoneme in the
speech. To simulate accented speech by a Cantonese/Mandarin
speaker, all phonemes are spoken with Cantonese/Mandarin
tone 1, whereas phonemes in an accented speech by an English
speaker are spoken with no stress. Table 2 shows which element
in the one-hot tone/stress embedding vector will be set to gener-

2Training a WaveNet with 8-bit mu-law outputs allows much faster
convergence and the output quality is still very good.



Table 2: Example: Simulation of native and accented English.

Text Through out the centuries ...
Phoneme Sequence | TH,R,UW,AW,T,DH,AH,S,EH,N,CH,ER,IY,Z...
Native 5,5,5,6,5,5,5,5,6,5,5,5,5,5...
Cantonese Accent 8,8,8,8,8,8,8,8,8,8,8,8,8,8...
Mandarin Accent 1,1,1,1,1,1,1,1, 1,1, 1, 1, 1, 1...

ate an English utterance in native English and accented English
with Cantonese or Mandarin accent.

3. Experiments and Results
3.1. Training Corpora

We trained our model on 4 datasets in three languages: (1)
The “clean” set in Librispeech (LS) [19] consists of 1172/40
training/test English speakers, each with 25 minutes of speech;
(2) SurfingTech (ST) [20] is a Mandarin corpus which has 855
speakers, and 10 minutes of speech per speaker. We further ran-
domly select 800 speakers’ data for training, others for testing;
(3) CUSENT (CU) [21] is a Cantonese corpus with 20 hours of
speech from 68/12 training/test speakers; (4) Aishell (Al) [22]
is a Mandarin corpus consisting of 150 hours of speech from
340 speakers. We used all data to train the x-vector speaker
encoder, and used only CUSENT, Librispeech and SurfingTech
data to train the synthesizer. CUSENT was also used to train the
WaveNet. Librispeech data were segmented by forced align-
ment to shorter audios (2s-12s) upon silences that are longer
than 0.3s, and denoised by block thresholding [23]. Google
Translate was used pinyin transcriptions from the Mandarin
texts which were then mapped to ARPABET phonemes. Forced
alignment was performed on SurfingTech data to label signifi-
cant short pauses in its speech.

3.2. Speaker Verification Evaluation

We conducted objective speaker verification (SV) evaluations
on x-vector speaker embeddings with an increasing number of
training speakers. Enrolment utterances are 3 minutes long and
test utterances vary from 5—12s. We first tested 400-D i-vectors,
64/128/512-D x-vectors on Librispeech SV, and the results are
shown in Table 3. In our experiments, even though the EERs
vary from 1 to 3.25 for different models, the TTS systems using
i-vectors or 128-D x-vectors can generate better speech with
very similar quality. In contrast, although 64-D x-vectors give
the best SV EER, we found that they produce audios of poorer
quality in our TTS system. It seems that embeddings that give
better SV EER are no guarantee of better synthesized audios.
At the end, we chose the 128-D x-vectors that were trained on
all corpora for our speaker embeddings, and the SV-EER on
LibriSpeech is reduced to 0.75.

Table 3: Librispeech SV EER (%).

System [ Dim [ Train set [ Speakers [ SV-EER ‘
i-vector | 400 LS 1172 3.25
X-vector 64 LS 1172 1.00
x-vector | 128 LS 1172 1.50
x-vector | 512 LS 1172 1.25
x-vector | 128 | LS, CU, ST, Al 2380 0.75
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3.3. Subjective Evaluation

We conducted two mean opinion score (MOS) tests to subjec-
tively evaluate the performance of our TTS system on speak-
ers who are unseen in both synthesizer and x-vector training.
We first constructed three models with the proposed architec-
ture but with unnormalized, L2-norm normalized and whitened
128-D LS+CU+ST+AI x-vectors. We carried out one crowd-
MOS test using the Amazon Mechanical Turk with the hope
of having more raters to rate more synthesized outputs. An-
other MOS test was conducted with 20 multilingual raters from
Guangdong, China where 15 raters are native in both Cantonese
and Mandarin; 1 rater is native in Cantonese only and 4 raters
are native in Mandarin only; and all are fluent in their non-native
languages among the three languages. Both MOS tests use an
Absolute Category Rating Scale from 1-5 with 0.5 increments.

3.3.1. CrowdMOS Results

In crowdMOS test conducted in the US, we randomly selected
40 ground truth utterances in total from 10 test speakers unseen
in both synthesizer and x-vector training for each language and
synthesized 40 unseen utterances from them using each model®.
We asked all raters to rate speaker similarity but we asked only
those raters who understand the target language (verified by a
transcription question) to rate the naturalness of the synthesized
speech. The number of distinct raters (given in parentheses
in Table 4) is smaller than expected because some raters may
rate multiple assignments. We found that there are much fewer
raters who understand Cantonese and Mandarin. Additionally,
the original crowdMOS results were very noisy. The natural-
ness MOS of ground truth English speech was only 3.65. Thus,
we added a qualification question in each MOS task to ask the
raters to rate a ground truth utterance, and filtered out those re-
sponses that rated the ground truth utterances lower than 3.5.
The results are shown in Table 4.

Table 4a shows the naturalness and speaker similarity MOS
of the ground truth utterances. It seems difficult for English
raters to rate the similarity of Chinese speakers, especially Man-
darin speakers. Table 4b shows the speaker similarity MOS of
same-language voice cloning of Cantonese and English speak-
ers using models trained with different x-vector normalization
techniques. Both whitening and L2-norm normalization help
improve the performance. However, we found that the syn-
thesis of some texts failed to stop: Out of our 600 syntheses,
1 failed to stop with L2-norm normalization; 24 failed to stop
with whitening, and 9 failed to stop with no normalization. It
shows that L2-norm normalization helps improve the model
stability. Nonetheless, the quality of synthesized speech pro-
duced by whitening is slightly better and whitening normaliza-
tion was used in all the remaining experiments. Table 4c gives
the naturalness MOS of voice cloning of speakers of different
mother tongues to speak native/accented English. The synthe-
sized native speech is more natural than accented speech as ex-
pected. Same-language voice cloning performs slightly better
than cross-lingual voice cloning. Table 4d and 4e show the
speaker similarity MOS of voice cloning to native and accented
speech, respectively. Interestingly, it seems that speaker simi-
larity is not highly correlated to either the target or the source
language, or the accents.

3Only performance on unseen speakers is reported as this is the more
difficult task. The performance on seen speakers are generally better.



Table 4: CrowdMOS results with 95% confidence interval (Stu-
dent’s t-distribution). The figures in ( ) are the numbers of dis-

tinct raters after filtering in each case. (TL: target language of

Table 5: Multilingual raters’ MOS with 95% confidence interval
(Student’s t-distribution).

synthesized speech; SL: source language or mother tongue)

Language | Naturalness | Speaker Similarity

Cantonese | 4.53+0.15(4) 3.95+0.18 (10)
English 4.15+0.12 (12) 4.22+0.22 (11)

Mandarin 4.31+0.18 (3) 3.59+0.19 (11)

(a) MOS of ground truth speech.

Language\Normalization | whitening | L2-norm none
Cantonese (23) 3.15+0.16 | 3.14+0.15 | 3.08+0.15
English (30) 3.33z0.15 | 3.31x0.14 | 2.93z0.15

language voice cloning.

(b) Effect of x-vector normalization on speaker similarity MOS of same-

TL\SL Cantonese English Mandarin
Native English 3.67+0.15(18) | 3.83+0.16 30) | 3.64+0.15 (22)
Accented English | 3.27+0.17 (18) - 3.01+0.18 (22)

(c) Naturalness MOS of voice-cloning for speakers of different mother

tongues to speak native/accented English.

(d)

mo.

TL\SL Cantonese English Mandarin
Cantonese | 3.15+0.15(23) | 3.35+0.11 (20) | 3.34+0.10 (17)

English 3.27+0.12(18) | 3.33+0.1530) | 3.19+0.12 (22)
Mandarin | 3.29+0.11 21) | 3.33+0.10(17) | 3.0620.15 (25)

Speaker simila

rity MOS of cross
ther tongue SL to speak like a native speaker of TL.

-lingual voice-cloning for a speaker of

TL\SL Cantonese English Mandarin
Cantonese - 3.18+0.11 20) | 3.25+0.10 (17)

English 3.28+0.12 (18) - 3.27+0.12 (22)
Mandarin | 3.40+0.11 21) | 3.49+0.10 (17) -

(e) Speaker similarity MOS of cross-lingual voice-cloning for a speaker of

mother tongue SL to speak TL with his/her own SL accent.

3.3.2. MOS Results from Multilingual Raters

Table 5 shows the MOS results from 20 multilingual raters.
We randomly selected 2 ground truth utterances from 2 unseen
speakers per language, and synthesized 1 unseen utterance per
language for selected speakers. Each rater had to rate all ground
truth and synthesized utterances. Table 5a shows the ground
truth MOS. The speaker similarity is particularly high for Man-
darin speech, and a probable reason is that the raters almost all
raters can speak native Mandarin.

Table 5b/Sc gives the intelligibility MOS of native/accent
speech, respectively, whereas 5d/5e gives their naturalness
MOS. As expected, same-language voice cloning performs sig-
nificantly better than cross-lingual voice cloning in terms of
both intelligibility and naturalness. Cross-lingual voice cloning
of native speech between Cantonese and Mandarin speakers
performs better than their voice cloning to native English proba-
bly because of the similarity between Cantonese and Mandarin.
However, the foreign accent simulated by wrong input tones in
the synthesized accented Cantonese and Mandarin speech re-
sults in worse MOS than accented English. Interestingly, using
our proposed model, Cantonese speakers can speak English bet-
ter than Mandarin speakers while English speakers can speak
better Mandarin than Cantonese. The results seem to indicate
that the x-vector speaker embedding contains language infor-
mation of the speakers. Table 5f and 5g give the speaker simi-
larity MOS. Different from the crowdMOS results, this group
of multilingual raters gave higher similarity MOS for same-
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Language | Intelligibility | Naturalness | Spkr Similarity
Cantonese 4.45+0.08 4.0520.11 4.55+0.06
English 4.34+0.08 4.45+0.07 4.450.06
Mandarin 4.60+0.07 4.0320.13 4.9820.01
(a) Ground truth speech.
TL\SL Cantonese | English | Mandarin
Cantonese | 4.50z0.11 | 3.28+0.23 | 3.84+0.20
English 4.07+0.15 | 4.54£0.07 | 3.78+0.14
Mandarin 4.43+0.09 | 4.1720.15 | 4.4220.15
(b) Intelligibility MOS of native speech.
TL\SL Cantonese | English | Mandarin
Cantonese - 2.05+0.27 | 1.70+0.15
English 3.09=z0.14 - 2.1420.17
Mandarin 2.26+0.21 | 2.57+0.20 -
(c) Intelligibility MOS of accented speech.
TL\SL Cantonese | English | Mandarin
Cantonese | 4.28+0.18 2.92+023 | 3.51x0.21
English 3.792020 | 4.30+0.13 | 3.45£0.20
Mandarin 4.24+0.12 | 3.7020.15 | 4.32+0.18
(d) Naturalness MOS of native speech.
TL\SL Cantonese | English | Mandarin
Cantonese - 2.1320.17 | 1.5420.09
English 2.9120.20 - 2.05+0.17
Mandarin 2.12+035 | 2.30+0.19 -
(e) Naturalness MOS of accented speech.
TL\SL Cantonese | English | Mandarin
Cantonese | 3.82+0.37 | 2.91x038 | 3.00+0.51
English 3.57x032 | 3.84+037 | 3.30+0.40
Mandarin 3.28+0.36 | 3.20+0.33 | 4.49+0.18
(f) Speaker similarity MOS of native speech.
TL\SL Cantonese | English | Mandarin
Cantonese - 3.0720.39 | 2.9620.69
English 2.53+0.39 - 3.01+0.53
Mandarin 2.45£044 | 3.39+035 -

(g) Speaker similarity MOS of accented speech.

language voice cloning than cross-lingual voice cloning.

4. Conclusion

This paper presents a novel multi-lingual multi-speaker TTS
model that can enroll new speakers without fine-tuning and syn-
thesize speech in languages different from the speakers’ mother
tongue. The model can clone a voice to speak intelligibly and
naturally in its own language or another language as if he/she
is a native speaker of the other language. It can also gener-
ate accented speech in another language with an accent due to
the speakers’ mother tongue. We further find that the WaveNet
could be trained in any of the supported languages in this paper
and then used to synthesize speech in the other languages well.
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