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Abstract

We introduce Surfboard, an open-source Python library for

extracting audio features with application to the medical do-

main. Surfboard is written with the aim of addressing pain

points of existing libraries and facilitating joint use with mod-

ern machine learning frameworks. The package can be accessed

both programmatically in Python and via its command line in-

terface, allowing it to be easily integrated within machine learn-

ing workflows. It builds on state-of-the-art audio analysis pack-

ages and offers multiprocessing support for processing large

workloads. We review similar frameworks and describe Surf-

board’s architecture, including the clinical motivation for its

features. Using the mPower dataset, we illustrate Surfboard’s

application to a Parkinson’s disease classification task, high-

lighting common pitfalls in existing research. The source code

is opened up to the research community to facilitate future audio

research in the clinical domain.

Index Terms: Audio processing, healthcare, machine learning

(ML), mPower, Novoic, Parkinson’s disease, signal processing,

speech and language disorders, speech representations, Surf-

board.

1. Introduction

The diversity of applications of acoustic analysis is best demon-

strated by the last 10 years of the INTERSPEECH Computa-

tional Paralinguistics Challenges1, encompassing emotion de-

tection [1], gender prediction [2], speaker state trait prediction

[3, 4] and detection of medical conditions [5, 6] to name a few.

Acoustic speech changes have been identified in a multitude of

motor disorders (e.g. Parkinson’s disease) [7, 8, 9], affective

disorders (e.g. depression) [10] and respiratory diseases (e.g.

pneumonia) [11, 12]. These acoustic changes can often be de-

tected using features extracted from speech and it is common

for papers with a clinical application to define their own feature

sets [7, 8, 12]. However, the selection of features and how to

extract them is inconsistent across the field, resulting in a need

for harmonization.

Surfboard is a Python package for audio feature extraction,

written with the aim of making a library better suited to fast pro-

totyping and modern machine learning (ML) applications than

what is offered today. Our work is most similar to OpenSMILE

[13], an audio feature extractor implemented in C++ that was

first released in 2010 and had its latest release in 2016. OpenS-

MILE extracts ‘low-level descriptors’ (LLDs) from audio sig-

nals and combines them with ‘functionals’, functions that op-

erate on time series data to extract time-independent features.

Examples of LLDs include the mel-frequency cepstrum coeffi-

cients (MFCCs) and the loudness; statistics include mean and

standard deviation over time.

OpenSMILE is computationally efficient but custom con-

figuration is complex. There exists no simple Python inter-

1http://www.compare.openaudio.eu/

face for OpenSMILE, hindering use in conjunction with modern

ML frameworks such as scikit-learn [14], TensorFlow [15] and

PyTorch [16]. Praat [17] is another popular audio feature ex-

tractor, first released in 1991. Praat is desktop-based software

which since 2018 has been complemented by a Python wrapper,

Parselmouth [18], and suits detailed analysis of small numbers

of audio files. MATLAB [19] is frequently used by members

of the audio community to extract features from speech and

music, for example using Voicebox [20], MIRtoolbox [21] or,

more recently, Audio Toolbox. While these are reliable toolkits,

working within a MATLAB environment adds an unnecessary

constraint to audio feature extraction and inhibits usability. In

designing Surfboard, we attempt to combine the best of all these

approaches to suit multiple use cases, including large-scale de-

ployment.

In this paper, we first describe Surfboard’s architecture, in-

terface, audio features and the clinical rationale behind the fea-

tures. We compare these with features common to both OpenS-

MILE and Praat. Finally, we present a ML classifier trained on

Surfboard features extracted from part of the mPower dataset

[22] to highlight issues with prior work in Parkinson’s, and

provide a list of reference values derived from the LibriSpeech

dataset [23]. We release the Surfboard codebase2 to the research

community under an open-source license, along with notebooks

containing all the code used in this paper3.

2. Surfboard Architecture

2.1. Overview

Surfboard aims to address the flaws of comparable frameworks

while retaining their qualities. Specifically, we designed Surf-

board with a focus on:

• Ease of use within Python, the lingua franca of data sci-

entists and ML engineers [41] and the primary language

for ML frameworks such as PyTorch and TensorFlow.

• The ability to process large datasets, often needed for

modern ML approaches to audio processing.

Like OpenSMILE, Surfboard extracts ‘components’ (analogous

to LLDs) as single values (e.g. loudness) or time series (e.g.

MFCCs); in the latter case, statistics (e.g. the standard de-

viation) can be extracted from the time series to create time-

independent features. These features can then be fed into e.g.

a multilayer perceptron (MLP), a common use case for audio

classification tasks. One can also obtain the full time series

without extracting statistics for downstream sequential process-

ing, for example using LSTMs [42].

The audio features currently included in Surfboard are

shown in Table 1. Inspired by some of the excellent work

done by the audio community, Surfboard was built on top of a

number packages that we found to be well-maintained, such as

2https://github.com/novoic/surfboard
3https://github.com/novoic/surfboard-IS2020
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Table 1: Description of the Surfboard features, including implementation, reference values and clinical rationale. Surfboard v0.1

reference values based on a 40-hour subset of LibriSpeech [23] are provided. The right half of the table is adapted from [24, 25, 26, 10]

and summarizes clinical validation of recent review papers across indications. ↑ = feature increases compared with healthy controls; ↓
= feature decreases compared with healthy controls; l = feature can increase or decrease compared with healthy controls, depending

on derived feature (e.g. which MFCC component). ↔ is used to indicate that features have been applied for classification, but that how

they change is unknown. For WhC, the symbol ↔ has been used: none of the reviewed papers on respiratory conditions reported feature

values but the inclusion of spectral features was indeed motivated by the respiratory literature. - = unknown. PD = Parkinson’s disease;

MND = motor neurone disease, synonymous with amyotrophic lateral sclerosis (ALS); MS = multiple sclerosis; HD = Huntington’s

disease; MDD = major depressive disorder; HpM = hypomania; Anx = anxiety; Szo = schizophrenia; PTSD = post-traumatic stress

disorder; WhC = whooping cough, synonymous with pertussis. A dagger (†) indicates that the feature is a time series, so the reference

value shown is the mean over time. * The pitch period entropy (PPE) reference method [27] sometimes produces large negative outliers

and the crest factor method [28] large positive outliers, so we show here the more meaningful median and the median absolute deviation

statistics in lieu of the mean and standard deviation; we also note that PPE was developed to assess sustained phonations rather than

free speech. Novel, robust implementations of these features will be added in a future version of Surfboard.

Component Impl. LibriSpeech PD MND MS HD MDD HpM Anx Szo PTSD WhC

Entire waveform representations

MFCCs LibROSA - - l[29, 8, 30] - ↑[31] ↓[10] ↓[10] ↓[10] - - ↔[12]

Log mel spectrogram LibROSA - - - - - - - - - - -

Morlet continuous wavelet transform SciPy [32] - - - - - - - - - - -

Bark spectrogram Ours - - - - - - - - - - -

Magnitude spectrum LibROSA - - - - - - - - - - -

Chromas (music motivated)

Chromagram with STFT LibROSA - - - - - - - - - - -

Chromagram with CQT LibROSA - - - - - - - - - - -

Chroma CENS LibROSA - - - - - - - - - - -

Spectral features

Spectral slope† Ours (−1.10± 0.412)× 10−3 - - - - - - - - - ↔[12]

Spectral flux† Ours (15.2± 5.64)× 10−3 - - - - - - - - - -

Spectral entropy† Ours 4.46± 0.352 - - - - - - - - - -

Spectral centroid† Ours (1.70± 0.401)× 103 Hz - - - - - - - - - -

Spectral spread† Ours (1.50± 0.178)× 103 Hz - - - - - - - - - ↔[12]

Spectral skewness† Ours (1.74± 0.621)× 10−3 - - - - - - - - - ↔[12]

Spectral kurtosis† Ours −2.99± 0.00443 - - - - - - - - - ↔[12]

Spectral flatness† LibROSA (1.86± 15.4)× 10−3 - - - - - - - - - ↔[12]

Spectral rolloff† LibROSA (3.13± 0.677)× 103 Hz - - - - - - - - - ↔[12]

Classical speech features

F0 contour† pysptk 149± 35.6 Hz l[30] l[33] l[26] ↓[31] ↓[10] ↑[10] ↑[10] ↑[10] - -

F0 SD pysptk 26.5± 10.7 Hz ↓[24, 34, 30] ↓[33] ↓[26] ↑[31, 25] ↑[10] - ↑[10] ↓[10] ↓[10] -

Intensity† Ours (4.16± 5.63)× 10−3 - - - - ↓[10] - ↓[10] ↓[10] - -

Intensity SD Ours (6.33± 5.61)× 10−3 ↓[24] - - - ↓[10] - - ↑[10] - -

Sliding-window root mean square (energy)† LibROSA 0.0444± 0.0201 l[24] - ↓[26] - - - - - - -

Log energy Ours −25.0± 3.22 ↑[29] - - - - - - - - -

Sliding-window log energy† Ours −34.7± 4.81 - - - - - - - - - -

Zero-crossing rate LibROSA 0.0528± 0.0183 - - - - - - - - - ↔[12]

Sliding-window zero-crossing rate† LibROSA 0.0527± 0.0182 - - - - - - - - - -

Number of zero-crossings LibROSA (2.92± 1.34)× 104 - - - - - - - - - -

Loudness pyloudnorm [35] −24.5± 2.89 dB ↓[36] ↓[33] ↓[26] - - - - - - -

Loudness variation (sliding-window SD) pyloudnorm 5.80± 2.72 dB ↓[36] ↓[33] ↑[26] - - - - - - -

Crest factor*† Ours 4.35± 1.15 (median±MAD) - - - - - - - - - -

Motivated by the clinical literature

Pitch period entropy* Ours 3.96± 3.37 (median±MAD) ↑[7] - - ↑[31] - - - - - -

Jitter variants - - l[30] ↑[33, 37] ↑[26, 38, 39] ↑[31, 25] ↑[10] - ↑[10] - - -

Jitter (local) Ours 0.0128± 0.00374 - - - - - - - - - -

Jitter (local, absolute) Ours (9.31± 2.97)× 10−5 s - - - - - - - - - -

Jitter (RAP) Ours (3.14± 0.928)× 10−3 - - - - - - - - - -

Jitter (PPQ5) Ours (5.53± 1.62)× 10−3 - - - - - - - - - -

Jitter (DDP) Ours (9.43± 2.78)× 10−3 - - - - - - - - - -

Shimmer variants - - ↑[8, 30] - ↑[26, 38, 39] ↑[31, 25] ↑[10] - ↑[10] - - -

Shimmer (local) Ours 0.0966± 0.0231 - - - - - - - - - -

Shimmer (local, db) Ours 0.737± 0.113 dB - - - - - - - - - -

Shimmer (APQ3) Ours 0.0363± 0.00906 - - - - - - - - - -

Shimmer (APQ5) Ours 0.0615± 0.0161 - - - - - - - - - -

Shimmer (APQ11) Ours 0.135± 0.0497 - - - - - - - - - -

Detrended fluctuation analysis Ours 0.940± 0.152 ↑[7, 8, 29] - - ↑[31, 31] - - - - - -

Linear spectral coefficients LibROSA - - - - - - ↑[10] - ↑[10] - -

Linear spectral frequencies Ours - - - - - - - - - - -

Formant F1 Ours (1.16± 0.455)× 103 Hz l[40] - - - l[10] ↑[10] l[10] l[10] - -

Formant F2 Ours (1.93± 0.468)× 103 Hz - - - - - - - - - -

Formant F3 Ours (2.73± 0.452)× 103 Hz - - - - - - - - - -

Formant F4 Ours (3.52± 0.453)× 103 Hz - - - - - - - - - -

Formant ∆F1† Ours 0.0417± 1.17 - - - - - - - - - -

Formant ∆F2† Ours 0.0564± 1.12 - ↓[33] ↓[26] - - - - - - -

Formant ∆F3† Ours 0.0883± 1.15 - - - - - - - - - -

Formant ∆F4† Ours 0.123± 1.21 - - - - - - - - - -

Sliding-window formant F1† Ours (1.27± 0.150)× 103 Hz - - - - - - - - - -

Sliding-window formant F2† Ours (2.20± 0.140)× 103 Hz - - - - - - - - - -

Sliding-window formant F3† Ours (3.09± 0.131)× 103 Hz - - - - - - - - - -

Sliding-window formant F4† Ours (3.96± 0.137)× 103 Hz - - - - - - - - - -

Sliding-window amplitude kurtosis† Ours 1.74± 1.96 - - - - - - - - - -

Amplitude shannon entropy Ours (8.28± 6.93)× 103 - - - - - - - - - -

HNR Ours 9.11± 2.29 dB ↓[7, 8] - - ↓[31, 25] ↑[10] - - - - -

LibROSA [43] and pysptk [44]. Further external implementa-

tions are referenced in Table 1. We first picked components and

statistics which we deemed the most prominent in the ML au-

dio/speech analysis literature, for example those in [45, 46, 47].

We then reviewed similar frameworks, including OpenSMILE

and Praat, and conducted a clinical literature review of the ap-

plication of speech to medical diagnosis to identify further fea-

tures for inclusion. In [29, 8, 30, 48] for instance, the authors

make use of features including the jitter variants, the shimmer

variants and the harmonics-to-noise ratio to detect Parkinson’s
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disease (PD) from speech. Another example from [12] is the

crest factor, which can be used for whooping cough detection.

More details of motivation can be found in Table 1.

Unlike OpenSMILE, Surfboard is released under an open-

source license (the GNU GPL v3). We do this to ensure that

the research community has the freedom to use and modify this

software as they please, to empower new open source libraries

built using Surfboard, and in the hope of fostering an active

community of contributors.

2.2. Using Surfboard

There are two ways to use the package:

• Native Python: The user imports the Surfboard mod-

ule and instantiates the Waveform class to load an au-

dio signal from an array or a file. Features are then ex-

tracted by calling Waveform’s methods, or in batches

using the extract features helper function. This

mode of use was designed for data exploration, medium-

scale and on-the-fly feature extraction, for example when

training a moderately sized ML model. The output is a

Pandas DataFramewith each row representing the fea-

tures extracted from a single waveform.

• Command line interface (CLI): The CLI is designed

to extract features from a folder of audio files, given a

configuration YAML file describing the desired features

(i.e. the combination of components and statistics). The

output is a CSV file corresponding to the DataFrame

described above. See the documentation in our codebase

for more details. We designed the CLI envisioning use

for large-scale feature extraction requiring multiprocess-

ing and/or submission to cloud virtual machine instances

or local clusters.

2.3. Feature Comparison with OpenSMILE and Praat

Surfboard, Praat and OpenSMILE extract different features,

with a significant overlap. We consider a subset of the fea-

tures (local shimmer, local jitter, DDP jitter) offered by all three

frameworks. None of the three produces directly comparable

values using default parameters due to substantial implementa-

tion differences. We therefore compare them using Spearman’s

rank correlation coefficient. The values obtained are given in

Table 2.

Table 2: Comparison of the three frameworks using Spearman’s

rank correlation coefficient. LJ = local jitter, DDPJ = DDP

jitter, LS = local shimmer.

Comparison ρLJ ρDDPJ ρLS

Praat vs OpenSMILE 0.30 0.31 0.43

Surfboard vs OpenSMILE 0.21 0.18 0.40

Surfboard vs Praat 0.32 0.13 0.33

We note significant rank correlation between the chosen

features across all three pairs of frameworks. However, none of

the three pairs agree perfectly. This can be attributed to differ-

ing implementations; for instance, Surfboard makes use of the

RAPT pitch-tracking algorithm [49] inspired by [29], whereas

OpenSMILE and Praat each employ custom peak-picking algo-

rithms (see [17] and the OpenSMILE codebase4) for jitter/shim-

4https://www.audeering.com/opensmile/

mer calculations. Furthermore, feature extraction functions typ-

ically require parameters (e.g. sampling rate of the waveform

and hop length); here we choose framework-dependent default

parameters, which could impact the rank correlations.

3. Application: Classifying Parkinson’s
Disease Using the mPower Dataset

3.1. Experimental Design

A substantial number of the components developed in the Surf-

board package were motivated by the clinical literature. Speech

changes have been reported in a multitude of diseases (see Table

1); in this section we take the example of Parkinson’s disease

(PD). The main symptoms of PD include tremor and rigidity

but effects on the motor system extend to the vocal cord, where

vocal impairments are common [50, 51], with up to 70-90%

prevalence after the onset of the disease [52, 53]. These vocal

impairments may be one of the earliest indicators of disease [54]

and deterioration of speech accompanies PD progression [54].

These early signs include reduced voice volume (hypophonia)

and breathiness, hoarseness or creakiness in the voice (dyspho-

nia), preceding more generalized speech disorder [52, 53]. Such

impairments can be detected using audio analysis; in [7], the

authors collected sustained phonations from 31 participants and

selected 10 measures to use as input to a classifier, achieving

91.4% accuracy. A follow-up study extended this set of features

and achieved 99% accuracy [8]. However, [9] criticized their

work by arguing that the dataset was small (263 phonations)

and that their training and test sets featured the same partici-

pants, an antipattern in ML that can lead to scientifically invalid

conclusions.

We illustrate the application of Surfboard to the task of

classifying PD sufferers versus healthy controls (HC). We work

with the mPower dataset, a large, real-world dataset of sustained

phonations from PD sufferers and HCs. Illustrating how test

set design can be leveraged to achieve more rigorous evalua-

tion metrics, we first create a subset S of 12,094 of the 62,609

phonations, leaving 50,515 for training. We ensure that S is

balanced in terms of diagnosis (6,157 labelled PD and 6,157 la-

belled HC) and further split S into three test sets, S1, S2 and

S3, such that:

• S1 comprises 2,500 phonations labelled HC and 2,500

phonations labelled PD, randomly sampled from S. We

do not restrict the inclusion of phonations from partici-

pants already present in the training set.

• S2 comprises 2,547 phonations labelled HC and 2,547

phonations labelled PD, randomly sampled from S \ S1

with the additional constraint that the phonations con-

tained in S2 cannot be produced by participants already

in the training set (i.e. S2 and the training set are disjoint

by participant).

• S3 comprises the remaining 1,000 HC participants and

1,000 PD participants. We ensure that S3 is age- and

gender-matched, and that S3 and the training set are dis-

joint by participant.

We extract features using Surfboard v0.1, choosing the sub-

set of Surfboard components with demonstrated clinical rele-

vance to PD (see Table 1): MFCCs, jitter variants, shimmer

variants, PPE, HNR, loudness, formants, log energy, RMS. We

use the entire statistics set offered by Surfboard to generate

feature vectors from the time series components, resulting in

one 377-dimensional vector per phonation. If feature extraction
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fails, for example if the F0 extraction fails to recognize voiced

segments for a given phonation, we replace missing fields with

column averages, as is common with tabular data (albeit flawed

[55]).

We use the remaining 50,515 phonations to train a single

gradient boosting classifier using the scikit-learn library and

evaluate separately on S1, S2 and S3. We hypothesize that a

decrease would be seen in our trained classifier’s performance

between S1 and S2, since the classifier can no longer benefit

from merely identifying participants. We likewise expect a de-

terioration in performance between S2 and S3, since the clas-

sifier can no longer learn to leverage the difference in age and

gender distributions between the PD and HC subsets of the data.

3.2. Results

The results are shown in Table 3, illustrating a progressive de-

crease in performance. This supports our hypothesis and the

criticism raised in [9]. In this work, we do not carry out a thor-

ough feature selection process to optimize classification met-

rics. Instead, we illustrate how Surfboard can be used for audio

analysis and exhibit some of the prior flaws in the existing liter-

ature, hopefully stimulating additional statistical rigor in future

PD research.

Table 3: PD/HC classification results on the three test sets. See

main text for a description of S1, S2 and S3.

Test set Precision Recall Accuracy AUC

S1 0.82 0.80 0.80 0.90

S2 0.74 0.73 0.73 0.79

S3 0.72 0.70 0.70 0.78

4. Conclusion

This paper presented Surfboard, a Python package for clini-

cal audio analysis using modern ML workflows. We described

Surfboard’s high-level architecture and the rationale behind our

design choices. A comparison of features implemented in Surf-

board, Praat and OpenSMILE showed that all three differ sub-

stantially, even using a measure of rank correlation in lieu of

comparing absolute values. This result emphasizes the need for

harmonization of speech features to facilitate more consistent

research. The clinical significance of Surfboard features was

demonstrated through a thorough literature review and the de-

velopment of a state-of-the-art Parkinson’s disease classifier us-

ing voice data from the mPower dataset, which also addressed

persistent issues of bias in existing work in this area. Our hope

is that Surfboard will provide this much-needed harmonization

and inspire more consistent research in the field of audio analy-

sis, particularly at its intersection with the clinical domain.

5. Acknowledgements

We would like to acknowledge and thank the participants of the

mPower study who made our use case of classifying PD from

sustained phonations possible. This data was contributed by

users of the Parkinson’s mPower mobile application as part of

the mPower study. The study was run by Sage Bionetworks and

data access is managed via the Synapse platform5.

5https://www.synapse.org/

6. References

[1] B. Schuller, S. Steidl, and A. Batliner, “The interspeech 2009
emotion challenge,” in Tenth Annual Conference of the Interna-

tional Speech Communication Association, 2009.

[2] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers,
C. Muller, and S. S. Narayanan, “The interspeech 2010 paralin-
guistic challenge,” in Eleventh Annual Conference of the Interna-

tional Speech Communication Association, 2010.

[3] B. Schuller, S. Steidl, A. Batliner, F. Schiel, and J. Krajewski,
“The interspeech 2011 speaker state challenge,” in Twelfth Annual

Conference of the International Speech Communication Associa-

tion, 2011.

[4] B. Schuller, S. Steidl, A. Batliner, E. Noth, A. Vinciarelli,
F. Burkhardt, R. v. Son, F. Weninger, F. Eyben, T. Bocklet et al.,
“The interspeech 2012 speaker trait challenge,” in Thirteenth An-

nual Conference of the International Speech Communication As-

sociation, 2012.

[5] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer,
F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi
et al., “The interspeech 2013 computational paralinguistics chal-
lenge: Social signals, conflict, emotion, autism,” in Proceedings

INTERSPEECH 2013, 14th Annual Conference of the Interna-

tional Speech Communication Association, Lyon, France, 2013.

[6] B. Schuller, S. Steidl, A. Batliner, S. Hantke, F. Honig, J. R.
Orozco-Arroyave, E. Noth, Y. Zhang, and F. Weninger, “The in-
terspeech 2015 computational paralinguistics challenge: native-
ness, parkinson’s & eating condition,” in Sixteenth annual con-

ference of the international speech communication association,
2015.

[7] M. Little, P. McSharry, E. Hunter, J. Spielman, and L. Ramig,
“Suitability of dysphonia measurements for telemonitoring of
parkinsons disease,” Nature Precedings, pp. 1–1, 2008.

[8] A. Tsanas, M. A. Little, P. E. McSharry, J. Spielman, and L. O.
Ramig, “Novel speech signal processing algorithms for high-
accuracy classification of parkinson’s disease,” IEEE transactions

on biomedical engineering, vol. 59, no. 5, pp. 1264–1271, 2012.

[9] J. Orozco-Arroyave, F. Honig, J. Arias-Londoño, J. Vargas-
Bonilla, K. Daqrouq, S. Skodda, J. Rusz, and E. Noth, “Auto-
matic detection of parkinson’s disease in running speech spoken
in three different languages,” The Journal of the Acoustical Soci-

ety of America, vol. 139, no. 1, pp. 481–500, 2016.

[10] D. M. Low, K. H. Bentley, and S. S. Ghosh, “Automated assess-
ment of psychiatric disorders using speech: A systematic review,”
Laryngoscope Investigative Otolaryngology, vol. 5, no. 1, pp. 96–
116, 2020.

[11] U. R. Abeyratne, V. Swarnkar, A. Setyati, and R. Triasih, “Cough
sound analysis can rapidly diagnose childhood pneumonia,” An-

nals of biomedical engineering, vol. 41, no. 11, pp. 2448–2462,
2013.

[12] R. X. A. Pramono, S. A. Imtiaz, and E. Rodriguez-Villegas, “A
cough-based algorithm for automatic diagnosis of pertussis,” PloS

one, vol. 11, no. 9, 2016.

[13] F. Eyben, M. Wollmer, and B. Schuller, “Opensmile: the munich
versatile and fast open-source audio feature extractor,” in Pro-

ceedings of the 18th ACM international conference on Multime-

dia, 2010, pp. 1459–1462.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine

learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A
system for large-scale machine learning,” in 12th Symposium on

Operating Systems Design and Implementation, 2016, pp. 265–
283.

2920



[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, 2019, pp.
8024–8035.

[17] P. Boersma and D. Weenink, “Praat: Doing phonetics by computer
[computer program]. version 6.0. 37,” RetrievedFebruary, vol. 3,
p. 2018, 2018.

[18] Y. Jadoul, B. Thompson, and B. De Boer, “Introducing parsel-
mouth: A python interface to praat,” Journal of Phonetics, vol. 71,
pp. 1–15, 2018.

[19] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[20] M. Brookes et al., “Voicebox: Speech processing toolbox for mat-
lab,” Software, available [Mar. 2011] from www. ee. ic. ac. uk/h-

p/staff/dmb/voicebox/voicebox. html, vol. 47, 1997.

[21] O. Lartillot and P. Toiviainen, “A matlab toolbox for musical fea-
ture extraction from audio,” in International conference on digital

audio effects. Bordeaux, 2007, pp. 237–244.

[22] B. M. Bot, C. Suver, E. C. Neto, M. Kellen, A. Klein, C. Bare,
M. Doerr, A. Pratap, J. Wilbanks, E. R. Dorsey et al., “The
mpower study, parkinson disease mobile data collected using re-
searchkit,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[23] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[24] V. Boschi, E. Catricala, M. Consonni, C. Chesi, A. Moro, and
S. F. Cappa, “Connected speech in neurodegenerative language
disorders: a review,” Frontiers in psychology, vol. 8, p. 269, 2017.

[25] J. C. Chan, J. C. Stout, and A. P. Vogel, “Speech in prodromal
and symptomatic huntingtons disease as a model of measuring
onset and progression in dominantly inherited neurodegenerative
diseases,” Neuroscience & Biobehavioral Reviews, 2019.

[26] G. Noffs, T. Perera, S. C. Kolbe, C. J. Shanahan, F. M. Boonstra,
A. Evans, H. Butzkueven, A. van der Walt, and A. P. Vogel, “What
speech can tell us: A systematic review of dysarthria characteris-
tics in multiple sclerosis,” Autoimmunity reviews, vol. 17, no. 12,
pp. 1202–1209, 2018.

[27] M. Vashkevich. Troparion github repository. [Online]. Available:
https://github.com/Mak-Sim/Troparion/

[28] S. Boyd, “Multitone signals with low crest factor,” IEEE trans-

actions on circuits and systems, vol. 33, no. 10, pp. 1018–1022,
1986.

[29] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, “Non-
linear speech analysis algorithms mapped to a standard metric
achieve clinically useful quantification of average parkinson’s dis-
ease symptom severity,” Journal of the royal society interface,
vol. 8, no. 59, pp. 842–855, 2011.

[30] T. Bocklet, S. Steidl, E. Noth, and S. Skodda, “Automatic evalu-
ation of parkinson’s speech-acoustic, prosodic and voice related
cues.” in INTERSPEECH, 2013, pp. 1149–1153.

[31] J. Rusz, C. Saft, U. Schlegel, R. Hoffman, and S. Skodda, “Phona-
tory dysfunction as a preclinical symptom of huntington disease,”
PloS one, vol. 9, no. 11, 2014.

[32] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright
et al., “Scipy 1.0: fundamental algorithms for scientific comput-
ing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[33] B. Tomik and R. J. Guiloff, “Dysarthria in amyotrophic lateral
sclerosis: A review,” Amyotrophic Lateral Sclerosis, vol. 11, no.
1-2, pp. 4–15, 2010.

[34] S. Skodda, W. Gronheit, and U. Schlegel, “Intonation and speech
rate in parkinson’s disease: General and dynamic aspects and re-
sponsiveness to levodopa admission,” Journal of Voice, vol. 25,
no. 4, pp. e199–e205, 2011.

[35] C. Steinmetz. pysptk github repository. [Online]. Available:
https://github.com/csteinmetz1/pyloudnorm

[36] A. Bayestehtashk, M. Asgari, I. Shafran, and J. McNames, “Fully
automated assessment of the severity of parkinson’s disease from
speech,” Computer speech & language, vol. 29, no. 1, pp. 172–
185, 2015.

[37] A. K. Silbergleit, A. F. Johnson, and B. H. Jacobson, “Acoustic
analysis of voice in individuals with amyotrophic lateral sclerosis
and perceptually normal vocal quality,” Journal of Voice, vol. 11,
no. 2, pp. 222–231, 1997.

[38] M. Dogan, E. Eryuksel, I. Kocak, T. Celikel, and M. A. Sehitoglu,
“Subjective and objective evaluation of voice quality in patients
with asthma,” Journal of Voice, vol. 21, no. 2, pp. 224–230, 2007.
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