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Abstract 

Dysarthria refers to a range of speech disorders mainly 

affecting articulation. However, impairments are also seen in 

suprasegmental elements of speech such as prosody. In this 

study, we examine the effect of using rhythm metrics on 

detecting dysarthria, and for assessing severity level. Previous 

studies investigating prosodic irregularities in dysarthria tend to 

focus on pitch or voice quality measurements. Rhythm is 

another aspect of prosody which refers to the rhythmic division 

of speech units into relatively equal time. Speakers with 

dysarthria tend to have irregular rhythmic patterns that could be 

useful for detecting dysarthria. We compare the classification 

accuracy between solely using standard prosodic features 

against using both standard prosodic features and rhythm-based 

features, using random forest, support vector machine, and 

feed-forward neural network. Our best performing classifiers 

achieved a relative percentage increase of 7.5% and 15% in 

detection and severity assessment respectively for the QoLT 

Korean dataset, while the TORGO English dataset had an 

increase of 4.1% and 3.2%. Results indicate that including 

rhythmic information can increase accuracy performance 

regardless of the classifier. Furthermore, we show that rhythm 

metrics are useful in both Korean and English.  

Index Terms: dysarthric speech, prosody, rhythm, dysarthria 

detection, severity assessment 

1. Introduction 

Speech impairments are one of the first indicators of 

degenerative or neurological disorders such as Parkinson’s or 

cerebral palsy. Typically, dysarthria is diagnosed by a trained 

speech therapist who uses perceptual tasks and/or an acoustic 

analysis to determine what aspects of speech are affected. 

While a professional diagnosis is important, their assessment 

can be biased and subjective. Therefore, an objective approach 

could aid the therapist to provide a more robust diagnosis. 

Although a common cue of dysarthria is misarticulation, 

several studies have found impairments in the suprasegmental 

domain [1, 2]. Acoustic studies on Korean speakers with 

dysarthria also found significant differences in pitch range, 

speaking rate, and duration of utterances and pauses [3,4,5]. 

While there have been many studies looking at pitch, a less 

studied prosodic element is rhythm. Rhythm refers to the 

duration-based division of speech units into equal pieces. Early 

studies found significant differences in rhythm metrics between 

healthy and dysarthric speakers [6]. However, few studies have 

been conducted using rhythm metrics for automatic dysarthria 

detection. In [7], mel-frequency cepstral coefficients (MFCCs) 

are combined with seven rhythm metrics as input to Gaussian 

mixture model (GMM) and multilayer perceptron (MLP) 

classifiers. Their results showed that depending on the 

classifier a 3% to 6% relative improvement in accuracy can be 

achieved compared to only using MFCCs. Similarly, a 

Gaussian Bayes-based classifier was used in [8] to determine 

which pair of rhythm metrics out of 10 measures was most 

useful for discriminating dysarthric speech from healthy speech. 

They found that measurements related to vowel segments were 

the most useful for discrimination. Lastly, a variety of prosodic 

measurements were taken in [9], including rhythm-based 

metrics. Results from this study showed that these prosodic 

features can be used in support vector machine (SVM) and 

GMM classifiers to accurately assess dysarthria into four levels 

(healthy, mild L1, severe L2 and severe L3).  

The results from previous studies are promising, but several 

limitations arise with the use of the Neymours database [10] 

which was used in all the above-mentioned studies. First, the 

speakers in the Neymours database are composed of 12 males, 

11 with dysarthria and only one healthy control. The lack of 

both healthy speakers and female speakers may limit the 

generalizability. Another issue relates to the limited structure of 

sentences. The database is mostly composed of simple non-

sense carrier sentences where the format is always: ‘the X is Y-

ing the Z”. X and Z come from a set of 74 monosyllabic nouns, 

while Y is selected from a set of 37 disyllabic verbs. Using 

carrier sentences can alter the natural rhythm of language 

leading to misleading results. 

The main contributions of this paper are as follows: First, 

we alleviate some of the previously mentioned issues with the 

Neymours dataset by using the TORGO database [11]. The 

TORGO database has a more diverse set of speakers and a 

larger set of speech samples including spontaneous speech. 

Second, we utilize the Quality of Life (QoLT) database which 

is composed of Korean speakers with dysarthria along with 

healthy counterparts [12]. These two data sets allow us to 

examine the generalizability of rhythm metrics to English and 

Korean dysarthric speech. Lastly, we include a wide range of 

prosodic measures related to speech rate, pitch, voice quality 

and rhythm. 

The paper is organized as follows: Section 2 introduces the 

full prosodic feature set including rhythm. Section 3 describes 

the TORGO and QoLT corpora in more detail. Section 4 

provides the training procedures for both detection and 

assessment. The results for all experiments are presented in 

Section 5. Lastly, Section 6 concludes the paper with a 

discussion of the results and possible directions for future work. 
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Table 1: Prosodic features used for classification. 

2. Prosodic Features 

As mentioned in the introduction, speakers with dysarthria 

often have irregular prosodic measurements when compared to 

healthy speakers. In this study, we extract a range of prosodic 

features both related to rhythm and unrelated to rhythm which 

we separate into 4 categories; speech rate, pitch, voice quality, 

and rhythm. The full feature list can be seen in Table 1. 

2.1. Speech Rate  

In general, speakers with dysarthria show a reduced tempo and 

slower speech rate compared to healthy speakers [13,14]. 

Therefore, we include a number of measurements which reflect 

speech rate. First, we include the number of pauses which is 

higher in dysarthric speech. Speaking rate is the number of 

syllables per seconds including pauses, while articulation rate 

is the number of syllables not including pauses. In both cases, 

speakers with dysarthria tend to have a lower rate since they 

often have prolonged pronunciations. Lastly, we include 

speaking duration as speakers with dysarthria tend to have 

higher durations given their tendency of prolonged 

pronunciation. 

2.2. Pitch  

Pitch is a commonly studied cue of dysarthria, showing 

differences not only with healthy speakers but also between 

speakers of different severity levels. Mild dysarthric speakers 

tend to be more monotonic while severe speakers often have 

significantly higher F0 values than both mild and healthy 

speakers [15]. We include standard pitch measurements such as 

mean, median, minimum, and maximum F0 along with standard 

deviation, 25% and 50% quantiles.  

2.3. Voice Quality 

Voice quality refers to the properties of speech related to the 

vocal folds. Individuals with dysarthria tend to have less control 

over their vocal folds leading to irregular measurements [16]. 

Voice quality features have been shown to be useful in 

sentence-level classification of impaired speech [17]. Jitter 

represents the variations of F0 within a time period. Shimmer is 

similar to jitter except that perturbation falls in the amplitude 

domain. Harmonics to noise ratio (HNR) refers to the 

periodicity of a speech signal over noise. Speakers with 

dysarthria tend to have trouble maintaining the phonation of 

voiced segments. Therefore, we extract two voice break related 

measures. The first being the number of voice breaks. Second, 

we include degree of voice breaks, which is total duration of the 

breaks over the signal, divided by the total duration, excluding 

silence at the beginning and end of the sentence. 

2.4. Rhythm Metrics 

Unlike pitch or voice quality measures, rhythm does not have a 

specific acoustic cue. Instead, linguists have proposed several 

durational measures of vocalic and intervocalic segments. 

These measures have been shown to be correlates of rhythm 

[18-20]. All rhythm metrics are extracted using the software 

Correlatore 2.3.4 [21]. 

2.4.1. Deltas  

One of the first rhythm metrics was proposed in [18], based on 

divisions of speech into vocalic and consonantal parts. The 

proportion of the vocalic intervals of a sentence (%V), the 

standard deviation of vocalic intervals (ΔV) and the standard 

deviation of consonantal intervals (ΔC) are the proposed 

metrics. It was found that the proportion of time of vocalic 

intervals in the sentence (%V) and the standard deviation of 

intervocalic intervals (ΔC) were the best correlate for 

distinguishing different rhythm classes. 

2.4.2. Varcos 

Researchers have tried to normalize delta values in order to 

reduce the interaction between speech rate and deltas [19]. This 

study proposed a method where the values of deltas are divided 

by the mean duration of (vocalic or consonantal) intervals, then 

multiplied by 100. We use both VarcoV and VarcoC in our 

feature set.   

2.4.3. Pairwise Variability Index (PVI) 

Another approach to rhythm was taken in [20], where the 

temporal succession of the vocalic and consonantal intervals is 

taken into consideration instead of joining all the values and 

calculating the standard deviation. The influence of speech rate 

variation can be controlled by calculating the normalized PVI, 

which calculates the mean absolute normalized difference 

between durations of neighboring interval pairs. We include the 

following PVI measurements: CrPVI, VrPVI, CnPVI and 

VnPVI, where C refers to consonants and V for vowels. 

3. Corpora 

3.1. TORGO 

The TORGO dataset contains 15 speakers, 8 with dysarthria (5 

males, 3 females) and 7 healthy controls (4 males, 3 females). 

Four speakers were considered to have mild dysarthria using 

the Frenchay assessment [22]. Two fell into the severe group, 

one into the moderate group and one was considered 

moderate/severe. We group this speaker into the moderate 

category while conducting our severity-based assessment. All 

15 speakers had utterances in training and test sets but with 

varying sentences such that no sentence in the test set was seen 

in the training set. Sentences come from a mixture of read 

passages and spontaneous speech elicited from an image 

description task. For this study we use 160 unique sentences 

split between training and test sets. In total this led to 577 total 

utterances: 156 healthy utterances and 421 dysarthric utterances. 

 

 

 

Speech rate Pitch 
Voice 

Quality 
Rhythm 

# of pauses F0 mean Shimmer %V 

Speaking rate F0 std Jitter ΔV, ΔC 
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% of voice 

breaks 
Varcos 

Duration 
F0 25% 
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HNR nPVIs 
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Table 2: Mean values of rhythm metrics for all speaker groups. 

 

 

 

 

 

 

 

 

 

 

3.2. QoLT 

The continuous section of the QoLT dataset has 90 dysarthric 

speakers and 10 healthy controls (5 males, 5 females). To have 

more balanced group sets we only examine 28 dysarthric 

speakers (15 males, 13 females): 8 with severe dysarthria, 10 

moderate and 10 mild. All speakers recorded 5 sentences twice 

leading to 280 utterances for dysarthric speakers and 100 

utterances for healthy speakers. While we could not separate 

unique sentences for training and test sets as we did for the 

TORGO dataset, we instead chose to build speaker-independent 

models where no speaker in the test set appeared in the training 

set.  

3.3. Corpus Comparison using Rhythm Metrics  

To examine any group differences, we take mean scores of 

rhythm metrics for all speaker groups which can be seen in 

Table 2. As seen from the Table 2, healthy English speakers 

have a higher ΔC but lower %V compared to Korean speakers. 

English speakers also have lower varco and nPVI means 

compared to Korean speakers. Speakers with dysarthria from 

both language groups have overall higher means for deltas and 

rPVI metrics. This is likely due to difficulty in articulating, 

leading to highly variable durations of consonantal and vocalic 

intervals. Both Varcos and nPVI measures show minimal 

difference between healthy and dysarthric speakers. 

4. Training Procedure 

4.1. Classifiers 

Dysarthria detection is implemented by training features on 

random forest (RF), support vector machine (SVM) and feed-

forward neural network (MLP) classifiers. For severity 

assessment we use SVM and MLP classifiers. SVM’s have 

often been used for impaired speech classification tasks as they 

consistently perform well even with small datasets [23-26]. Our 

baseline models use all non-rhythm prosodic features, while the 

proposed model uses all prosodic features including rhythm 

metrics.  

4.2. Dysarthria Detection  

For detection we build binary classifiers. Hyperparameters for 

each model are optimized by applying a grid search. The 

number of trees and maximum depth are optimized for the 

random forest classifier, while margin parameter C and 

Gaussian kernel γ are optimized for the SVM using values 

between 10-4 to 103. Lastly, we optimize our MLP by finetuning 

the learning rate, hidden layer size, number of neurons, epochs, 

activation function and optimization algorithm. 

4.2.1. TORGO 

We balance the data so that both healthy and dysarthric groups 

have around 200 utterances for training. A k-fold cross 

validation where k=10 is implemented during training for 

hyperparameter fine tuning. A separate test set is used for the 

final evaluation where about 140 utterances containing 

difference sentences are used. 

4.2.2. QoLT 

A similar training procedure as above is performed with the 

exception of the data split. Instead of splitting training and test 

sets by sentences, we split them by speakers. For training we 

use 6 healthy speakers and 17 dysarthric speakers. The test set 

contains 4 healthy speakers and 11 dysarthric speakers. 

Furthermore, for each set we balance the number of utterances 

to have equal amount of data in both groups. 

4.3. Severity Assessment 

Severity assessment is treated as a multiclass classification 

problem. This is inherently handled by our MLP when applying 

a softmax function instead of a sigmoid as the output function. 

For our SVM we apply a one-versus-one approach where if n is 

the number of classes, then n * (n - 1) / 2 classifiers are 

constructed and each one trains data from two classes. We 

construct four severity levels, healthy, mild, moderate and 

severe. For the TORGO database each group has an average of 

85 utterances for training and 60 utterances each for testing. The 

QoLT data has around 60 utterances in each group for training 

and 35 for testing.  

5. Results 

5.1. Dysarthria Detection 

As shown in Table 3, including rhythm improves the 

performance of TORGO detection results for all three 

classifiers. MLP classifiers saw an accuracy increase from 82.3% 

to 85.7% and a precision increase from 83.1% to 86.4%. Recall 

and F1-scores saw similar improvements. As shown in Table 6, 

relative increases of 3.3%, 1%, and 4.1% are achieved for RF, 

SVM and MLP classifiers, respectively.  

In Table 4, an accuracy increase from 94.4% to 97.8% is 

obtained for the QoLT data when including rhythm metrics. 

Furthermore, a precision of 100% and F1-score of 98% can be 

reached when using an RF classifier. Lastly, Table 6 shows 

relative increases of 3.6%, 4.9% and 7.5% for RF, SVM, and 

MLP classifiers, respectively. 

 

 

Speaker Group %V ΔV ΔC varco-V varco-C Vrpvi Crpvi Vnpvi Cnpvi 

English Healthy 41.72 60.70 73.28 53.18 50.89 66.20 81.85 55.85 56.89 

English Dysarthric 43.54 93.30 107.56 50.66 55.07 102.86 116.34 54.03 58.58 

Korean-Healthy 54.37 65.69 51.79 57.59 55.23 67.52 65.78 61.51 70.36 

Korean-Dysarthria 57.83 139.57 96.65 58.43 60.05 148.56 110.56 60.90 69.18 
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Table 3: Detection results in % for TORGO data. First 

row only uses non-rhythm features. Second row using 

all features including rhythm. 

 

Classifier Accuracy Precision Recall F1-score 

RF 78.9 76.9 83.3 80 

SVM 

MLP 

81.5 

82.3 

86.5 

83.1 

75 

85 

80.4 

82.4 

RF 81.5 78.8 86.7 82.5 

SVM 

MLP 

82.3 

85.7 

81 

86.4 

85 

86 

82.9 

85.7 

 

Table 4: Detection results in % for QoLT data. First 

row only uses non-rhythm features. Second row using 

all features including rhythm. 

 

Classifier Accuracy Precision Recall F1-score 

RF 94.4 97.9 92 94.9 

SVM 

MLP 

88.9 

87.8 

97.6 

91.5 

82 

86 

89.1 

88.7 

RF 97.8 100 96 98 

SVM 

MLP 

93.3 

94.4 

97.8 

97.9 

90 

92 

93.8 

94.8 

5.2. Severity Assessment  

Table 5 displays the accuracy scores for both TORGO and 

QoLT datasets when using SVM and MLP classifiers. An 

accuracy improvement of 66.8% from 64.73% is achieved with 

the TORGO data when using a rhythm based SVM classifier. 

From Table 6 we see that the rhythm based SVM provides a 3.2% 

relative increase in accuracy. However, including rhythm in an 

MLP classifier does not improve accuracy. When implementing 

MLP classifiers we see an accuracy of 64.35% when using non-

rhythm features and an accuracy of 63.9% when using rhythm.  

Similar to the TORGO dataset, the QoLT dataset also 

achieved higher accuracy scores with the SVM classifier 

compared to MLP classifiers. When using rhythm with SVM 

classifiers we see an accuracy of 63.6% while an accuracy of 

59.1% was reached for the MLP classifier. However, a large 

relative increase is seen for both SVM (15% relative increase) 

and MLP classifiers (13.4% relative increase) when including 

the rhythm metrics. See Table 6 for a full comparison of relative 

increase for both tasks from both datasets. 

 

Table 5: Assessment Accuracy in % for                  

QoLT and TORGO data. 

 

Corpus Classifier 
Accuracy 

w/o rhythm 

Accuracy 

w/ rhythm 

TORGO 
SVM 

MLP 

64.7 

64.3 

66.8 

63.9 

QoLT 
SVM 

MLP 

55.3 

52.1 

63.6 

59.1 

Table 6: Relative % accuracy improvement            

when using rhythm. 

 

Corpus Experiment Model Relative increase (%) 

TORGO 

Detection 

RF 

SVM 

MLP 

3.3 

1 

4.1 

Assessment 
SVM 

MLP 

3.2 

-0.6 

QoLT 

Detection 

RF 

SVM 

MLP 

3.6 

4.9 

7.5 

Assessment 
SVM 

MLP 

15 

13.4 

 

6. Discussion and Conclusion 

In this paper we examine the effects of including rhythm-based 

metrics for both detecting dysarthria and assessing severity 

level. We extracted the following rhythm measures: %V, ΔV/C, 

varco-V/C, V/Crpvi, and V/Cnpvi and used them as input along 

with standard prosodic measures to RF, SVM and MLP 

classifiers. The results suggest that rhythm metrics can be used 

along with other prosody-based features to improve dysarthria 

detection and severity assessment for both English and Korean 

speakers. For detection, larger benefits were seen with the 

Korean QoLT dataset with a 7.5% relative increase in accuracy 

compared to the English TORGO dataset with a 4.1% increase. 

For assessment, a 3.2% and 15% relative increase was seen for 

English and Korean, respectively. 

The differences seen between English and Korean results 

suggest that rhythm metrics may be more useful in detecting 

dysarthria with Korean speech.  More research will need to be 

conducted on other languages or with larger datasets to make 

any claims for specific language benefits. Future research 

should include a more thorough investigation on the specific 

rhythm metrics and their individual contribution towards 

detection or assessment. 
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