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Abstract
In this work, speech rate is estimated using the task-specific
representations which are learned from the acoustic-articulatory
data, in contrast to generic representations which may not be
optimal for the speech rate estimation. 1-D convolutional fil-
ters are used to learn speech rate specific acoustic representa-
tions from the raw speech. A convolutional dense neural net-
work (CDNN) is used to estimate the speech rate from the
learned representations. In practice, articulatory data is not
directly available; thus, we use Acoustic-to-Articulatory In-
version (AAI) to derive the articulatory representations from
acoustics. However, these pseudo-articulatory representations
are also generic and not optimized for any task. To learn
the speech-rate specific pseudo-articulatory representations, we
propose a joint training of BLSTM-based AAI and CDNN us-
ing a weighted loss function that considers the losses corre-
sponding to speech rate estimation and articulatory prediction.
The proposed model yields an improvement in speech rate es-
timation by ∼18.5% in terms of pearson correlation coefficient
(CC) compared to the baseline CDNN model with generic ar-
ticulatory representations as inputs. To utilize complementary
information from articulatory features, we further perform ex-
periments by concatenating task-specific acoustic and pseudo-
articulatory representations, which yield an improvement in CC
by ∼2.5% compared to the baseline CDNN model.
Index Terms: speech rate estimation, task-specific representa-
tion learning, acoustic-to-articulatory inversion.

1. Introduction
Speech rate is defined as the number of speech units per second
in a given speech recording. In our work, syllables are consid-
ered as speech units similar to the prior research works [1, 2].
Speech rate estimation is very important as it is used in many
speech related applications [1, 3, 4, 5, 6, 7, 8, 9, 10]. Various
techniques have been proposed in the literature to estimate the
speech rate. For example, several approaches [6, 7, 11, 12] used
hidden Markov model (HMM) to estimate the speech rate. The
HMM-based methods are not robust to noise and they require a
reference transcription which may not be available always [2].
Thus, typically, the speech rate is estimated using only acoustic
features without using reference transcription. For example, the
approaches presented in [13, 14, 15, 16, 17, 18] used the acous-
tic features for speech rate estimation. These approaches use
Gaussian mixture model [16], intensity-based envelope [15],
rhythm guided peak counting method [13], smoothed loudness
contour [14] and convex weighting criterion [17] for accurate
speech rate estimation. Another set of approaches [2, 18] used

a temporal correlation and selected sub-band correlation (TC-
SSBC) based feature contour which involves peak detection
with smoothing and thresholding operations. The TCSSBC
method is found to be better than the above mentioned ap-
proaches. Likewise, many works have been presented in the
literature for accurate speech rate estimation using acoustic rep-
resentations alone. However, the prior works on speech rate
estimation did not utilize the articulatory representations, al-
though the motion of the speech articulators such as upper lip,
lower lip, tongue, jaw, velum directly encodes the speech rate
[19, 20, 21, 22].

In [23], the authors proposed a convolutional dense neural
network (CDNN)-based speech rate estimation technique using
acoustic-articulatory data. However, direct articulatory mea-
surements may not be available in the test case unlike acoustic
signal. Thus, an acoustic-to-articulatory inversion (AAI) model
[24] is typically learned for this purpose. In [23], a Bidirec-
tional Long Short Term Memory (BLSTM) network-based AAI
model is trained using the input acoustic features and output ar-
ticulatory features. The predicted articulatory movements from
AAI are considered as pesudo ariculatory representations which
are used as input to CDNN to estimate the speech rate. The
CDNN-based approach has been shown to perform better than
the TCSSBC approach. However, both TCSSBC and CDNN-
based approaches use generic representations such as sub-band
energies and Mel Frequency Cepstral Coefficients (MFCCs)
respectively. The pseudo-articulatory representations are also
generic as they are derived independent of the speech rate esti-
mation task. The generic acoustic and pseudo-articulatory rep-
resentations may not be optimal for all the speech tasks. Thus,
both acoustic and pseudo-articulatory representations need to be
learned in a task-specific manner. Unlike the generic represen-
tations, the task-specific representations are learned during the
optimization of the models that are used to perform the consid-
ered speech task. Thus, using task-specific acoustic represen-
tations may help in achieving better performance in the respec-
tive speech task. In [25, 26, 27], the task-specific acoustic rep-
resentations are learned from raw speech waveform using one-
dimensional convolutional and max-pooling layers (CONV1D).
In [25], the cascaded CONV1D and CDNN are jointly opti-
mized to learn the task-specific representations from raw speech
waveform for accurate speech rate estimation. However, these
approaches [25, 26, 27] have been proposed only for task-
specific acoustic representation learning and does not involve
articulatory representations. In this work, we propose a joint
training approach to learn the task-specific pseudo-articulatory
representations. We also learn the task-specific acoustic rep-
resentations using the CONV1D-based approach proposed in
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[25]. In [23], two CDNN models are trained separately using
the generic acoustic and articulatory representations. We hy-
pothesize that using the concatenated acoustic and articulatory
representations helps in better speech rate estimation as the ar-
ticulatory representations contain information complementary
to the acoustics [28, 29, 30]. Thus, in this work, we use the con-
catenated task-specific acoustic and articulatory representations
as input to the CDNN for accurate speech rate estimation. We
further provide an analysis comparing the learned task-specific
acoustic and articulatory representations with generic acoustic
and articulatory representations.

2. Dataset
In this paper, IEEE-EMA [31] and TIMIT [32] corpora are used
for experiments. IEEE-EMA corpus is used to learn the articu-
latory representations from acoustics. TIMIT corpus is used to
estimate speech rate using generic and task-specific represen-
tations. IEEE-EMA corpus contains simultaneously recorded
speech and electro-magnetic articulometry (EMA) data for 720
phonetically balanced sentences from 8 speakers (4 male and 4
female) at multiple speaking rates [31]. The speech and EMA
data are acquired at 44.1 kHz and 100 Hz sampling frequen-
cies respectively. The EMA readings are obtained from 8 sen-
sors placed on different articulators, namely, tongue rear (TR),
tongue blade (TB), tongue tip (TT), upper lip (UL), lower lip
(LL), mouth left (ML), lower jaw (JAW), and jaw left (JAWL).
Each EMA reading has X, Y and Z coordinates which measure
the movements in horizontal, lateral and vertical directions re-
spectively in three dimensional space. In this work, we consider
the horizontal (X) and vertical (Z) movements in the midsaggi-
tal plane forming a 24 dimensional articulatory feature vector
comprising six EMA points’ (TR, TB, TT, UL, LL, JAW) X
and Z coordinates (6×2=12) and their velocity (6×1=6) and
acceleration (6×1=6) components [24]. From acoustics, the
MFCC features are obtained using HTK toolkit [33]. For each
sentence, the 39-dimensional MFCC features are computed us-
ing a window length of 20 msec with a shift of 10 msec. Since,
the MFCCs are obtained at a frame rate of 100 Hz and the ar-
ticulatory features are extracted at a sampling rate of 100 Hz,
there is one-to-one correspondence between them. Thus, for a
given sentence, the MFCC features have a dimension of M×39
and the corresponding articulatory features have a dimension of
M × 24 where M is the number of frames. Each subject on
an average provides ∼1607 synchronous acoustic and articula-
tory movement recordings. In our work, we consider the entire
IEEE-EMA corpus. TIMIT corpus [32] contains 630 subjects
with 8 major dialects. For each subject, 10 sentences’ record-
ings are available. Each sentence is recorded at 16 kHz sam-
pling frequency. For our work, we consider 8 sentences for each
subject, excluding ‘sa1’ and ‘sa2’ sentences resulting in a to-
tal of 5040 recordings. In IEEE-EMA and TIMIT corpora, the
phonetic transcriptions for all the speech recordings are avail-
able, these are used to obtain the ground truth speech rate. The
ground truth speech rate is calculated as the number of vow-
els (as we consider the vowels as syllables) divided by the total
duration of the speech chunk. In this work, the speech rate is es-
timated for a fixed length of one-second duration chunks which
ranges from 2 to 8 vowels per second.

3. Methodology
Figure 1 illustrates the steps followed in the proposed approach,
which involves three models to learn acoustic representation
(CONV1D), pseudo-articulatory respresentations (AAI) and to

IEEE

 MFCC 
Extraction

  Raw
Speech

AAI CDNN
  Speech
    Rate

EMA points

TIMIT
CONV1D CDNN   Speech

    Rate
Concatenation

Task specific representation 
                learning

  Raw
Speech

Σ

CONV1D-CDNN

J

T

CJ

J
I

I

CJ

T

Figure 1: Illustration of steps in the proposed speech rate esti-
mation approach using task-specific representation learning.

estimate speech rate (CDNN). We first present a brief review of
each model followed by the proposed approach. For speech rate
estimation, we use the CDNN model which has similar architec-
ture as presented in [23]. Speech rate estimation is formulated
as a regression problem; hence, mean squared error (MSE) loss
is optimized to train the CDNN. The MSE loss between the
estimated and ground truth speech rates for a batch of speech
chunks is denoted asLSR. The generic pseudo-articulatory rep-
resentations are learned using a BLSTM-based AAI which is
proposed by Aravind et. al [24]. In [24], the BLSTM network
has been shown to overcome the problems of capturing context
and smoothing techniques and achieves the state-of-the-art AAI
performance. As explained in section 2, we use IEEE-EMA
corpus to train the BLSTM-based AAI model with three lay-
ers (each layer has 256 nodes) to estimate the 24 dimensional
EMA points from 39 MFCCs. As the speech rate is estimated
for one-second duration chunks, the articulatory points are also
estimated for one-second duration chunks. Thus, the input and
output of AAI have dimensions of 100×39 and 100×24, re-
spectively. The articulatory representation estimation is formu-
lated as a regression problem; hence, MSE loss is optimized to
train BLSTM-based AAI model. The MSE loss between the es-
timated and ground truth articulatory representations for a batch
of speech chunks is denoted as LEMA.

In this work, we propose a joint training approach using
a weighted loss function to derive the speech rate-specific ar-
ticulatory representations from acoustics. The weighted loss
function to jointly train the cascaded BLSTM-based AAI and
CDNN is defined as: Ltotal=w×LEMA + (1−w)×LSR,
where w ∈ {0.1, 0.2..., 0.9}. As shown in Figure 1, we use
IEEE-EMA corpus which consists of parallel acoustic and artic-
ulatory data to jointly train the BLSTM-based AAI and CDNN
to optimize Ltotal. The cascaded trained model is denoted as
AAIJI -CDNNJ

I (‘J ’ and ‘I ’ indicate joint training and IEEE-
EMA corpus respectively). Since, the AAIJI -CDNNJ

I model
is trained for both articulatory prediction and speech rate es-
timation, the AAIJI model predicts the articulatory represen-
tations which are optimal for speech rate estimation. The
AAIJI -CDNNJ

I takes MFCCs as inputs using which the AAIJI
model predicts the speech rate-specific articulatory representa-
tions which are used as inputs to CDNNJ

I for speech rate esti-
mation. Likewise, for each w value, the AAIJI -CDNNJ

I model
is trained separately using IEEE-EMA training data. Among all
these models, to obtain the pseudo-articulatory representations
for TIMIT corpus, we select the AAIJI model which provides
the best performance (using AAIJI -CDNNJ

I ) in speech rate es-
timation for IEEE-EMA test data.

On the other hand, the task-specific acoustic representations
are learned from raw speech waveform using CONV1D filters
following the approach presented in [25]. To perform the rep-
resentation learning from raw speech waveform, we first down-
sample the speech from 16kHz to 8kHz. Then, the speech sig-
nal is converted into speech frames of short segments using a
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Hamming window of length wl=280 samples (35 msec) and
shift ws=80 samples (10 msec). The CONV1D block uses 1-
D convolutional layer with nf number of filters with a filter
length of fl=240 and a max-pooling layer with kernel size as
wl−fl+1=41. Thus, the input to the CONV1D has a dimen-
sion of 100×wl and the corresponding output has a dimension
of 100×nf for a one-second duration chunk. The optimum
value of nf is decided based on the performance on the val-
idation data. As shown in Figure 1, for TIMIT corpus, for a
given raw speech input (100×wl), the corresponding CONV1D
block’s output (100×nf ) and AAIJI model’s output discarding
the velocity and acceleration components (100×12) are con-
catenated and fed to CDNN for speech rate estimation. During
training, the CONV1D and CDNN are cascaded and jointly op-
timized for accurate speech rate estimation and the model is
denoted as CONV1D-CDNNCJ

T (‘T ’ and ‘C ’ indicate TIMIT
corpus and concatenation respectively). However, we do not
update the AAIJI model weights to preserve the articulatory in-
formation in its output. The CONV1D-CDNNCJ

T model uses
concatenated task-specific acoustic and pseudo-articulatory rep-
resentations as input and estimates the speech rate.

For TIMIT corpus, we also train the CDNN model using
speech rate-specific pseudo-articulatory representations (ob-
tained from AAIJI ) as input for speech rate estimation which
is denoted as AAIJI -CDNNT. In addition to this, the CONV1D
and CDNN models are cascaded and trained for accurate
speech rate estimation as explained in [25] which is denoted as
CONV1D-CDNNT. Thus, in this case, the CDNN model uses
task-specific acoustic representations. For baseline compari-
son, we also train the CDNN models using MFCCs (denoted
as CDNNT) and using pseudo-articulatory representations ob-
tained from AAI model which is trained using IEEE-EMA data
without having the knowledge of speech rate estimation (de-
noted as AAII-CDNNT) as explained in [23]. Thus, CDNNT

and AAII-CDNNT (which is nothing but AAIJI -CDNNT with
w=1) models use generic acoustic and pseudo-articulatory rep-
resentations, respectively, for speech rate estimation.

4. Experimental Setup
We estimate the speech rate for one-second duration speech
chunks. Thus, each speech recording is divided into one-second
duration chunks with an overlap of 0.5 seconds. IEEE-EMA
corpus is used to train and validate AAII and AAIJI -CDNNJ

I

models. The IEEE-EMA corpus consists of 8 subjects. From
each subject, we consider 80%, 10% and 10% of the data for
train, validation and test sets respectively. The AAII and AAIJI -
CDNNJ

I models are trained for a maximum of 40 epochs with
early stopping criterion based on the validation loss. TIMIT
corpus is used to train and evaluate the CDNN models with dif-
ferent input representations. We consider two experimental con-
ditions to evaluate the CDNN-based speech rate estimation: 1)
Seen subject condition - train and test on same subjects and 2)
Unseen subject condition - test subjects are different from those
used in training. In both seen and unseen conditions, the CDNN
is trained for 40 epochs with early stopping criterion based on
the validation loss. The seen and unseen subject experiments
are explained below:
Seen subject condition: In this case, the training and evalua-
tion of all the models (CDNNT,CONV1D-CDNNT, AAII-
CDNNT, AAIJI -CDNNT, CONV1D-CDNNCJ

T ) are done in
a four-fold cross-validation setup using the TIMIT corpus. In
TIMIT, 8 sentences are available for each speaker which are di-
vided into four sets. We assign two sets for training, one set for

validation and remaining one set for testing. Likewise, the sets
are chosen in a round robin fashion forming a four-fold cross-
validation setup. Each fold, on an average, consists of ∼11575,
∼5787 and∼5787 one-second duration chunks in train, valida-
tion, and test sets respectively.
Unseen subject condition: In this case, similar to the seen sub-
ject condition, a four-fold cross-validation setup is used. We di-
vide the TIMIT corpus into 4 sets with 157, 157, 157, 159 num-
ber of subjects. We consider two sets for training, one set for
validation and remaining one set for testing. Likewise, the sets
are chosen in a round robin fashion to form a four-fold cross-
validation setup. Each fold, on an average, consists of ∼11575,
∼5787 and∼5787 one-second duration chunks in train, valida-
tion, and test sets respectively.
Evaluation Metric: The performance of the proposed approach
for speech rate estimation is evaluated based on the Pearson
correlation coefficient (CC) between the ground truth and the
estimated speech rates (denoted as CCSR) [2, 18]. The AAI
model performance is also evaluated using CC [24] (denoted as
CCEMA).
Table 1: CCSR and CCEMA values using AAIJI -CDNNJ

I on
the IEEE-EMA test data.

w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CCSR 0.541 0.645 0.661 0.671 0.660 0.670 0.677 0.665 0.667
CCEMA 0.007 0.564 0.656 0.674 0.684 0.689 0.689 0.691 0.692

Table 2: Average (± standard deviation) of CCSR value for
TIMIT test data across the four folds in seen and unseen subject
conditions.

Method Seen Subject
Condition

Unseen Subject
Condition Input representations to CDNN

TCSSBC 0.57 ± 0.026 0.56 ± 0.019 Sub-band energies
CDNNT 0.79 ± 0.016 0.80 ± 0.004 MFCCs

AAII-CDNNT 0.65 ± 0.039 0.60 ± 0.110 Generic pseudo EMA points
AAIJI -CDNNT 0.74 ± 0.047 0.74 ± 0.020 Task-specific pseudo EMA points

CONV1D-CDNNT 0.80 ± 0.012 0.80 ± 0.015 Task-specific acoustic representations
CONV1D-CDNNCJ

T 0.82 ± 0.007 0.82 ± 0.009 Concatenated representations
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Figure 2: Spectra of trajectories of JAW and TT in Z-direction
(blue curve) (denoted as JAWZ, TTZ respectively) (I) Directly
measured, taken from IEEE-EMA (II), (III) Estimated using
AAII and AAIJI for a sentence from IEEE-EMA data respec-
tively. (IV), (V) Estimated using AAII, AAIJI for a sentence
from TIMIT data respectively. The vertical red line indicates
the frequency (fc) corresponding to the 99% of the energy of
the entire trajectory.

5. Results and Discussions
Table 1 shows the performance of AAIJI -CDNNJ

I in terms
of CCSR and CCEMA evaluated on IEEE-EMA test data for
w ∈ {0.1, 0.2..., 0.9} in the joint loss function (Ltotal). It
is observed that CCEMA increases as the value of w increases
since the contribution of LEMA increases in Ltotal. Thus, the
model AAIJI -CDNNJ

T training focuses more on accurate EMA
points estimation than the accurate speech rate estimation. As w
increases, CCSR does not show consistent improvement. How-
ever, the highest CCSR value is observed for w=0.7 and we
select the corresponding trained AAI model (AAIJI ) to estimate
the speech rate-specific pseudo-articulatory representations for
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TIMIT data. On the other hand, the AAII model provides
the generic pseudo-articulatory representations. The AAII and
AAIJI (for w=0.7) models provide CCEMA values of 0.7310
and 0.6893 on the IEEE-EMA test data respectively. CCEMA

from AAIJI is less than CCEMA from AAII, as the AAIJI model
is trained not only for accurate articulatory representation esti-
mation but also for accurate speech rate estimation. We further
examine the extent to which the outputs of AAII and AAIJI
networks have characteristics similar to those of articulatory
movements which are smoothly varying and low-pass in nature
[34, 35]. Figure 2 illustrates the spectra of trajectories of JAW
and TT in Z-direction (denoted as JAWZ, TTZ) (a) for a sen-
tence from the IEEE-EMA (b), (c) estimated using AAII and
AAIJI ,respectively, a sentence from the IEEE-EMA data (d),(e)
estimated using AAII, AAIJI , respectively, for a sentence from
the TIMIT data. The vertical red line indicates the frequency
(fc) corresponding to the 99% of the energy of the entire tra-
jectory. It is observed that, all the estimated trajectories are
low-pass in nature similar to a directly measured articulatory
trajectory. The fc values corresponding to the AAII and AAIJI
models do not vary much from each other. Thus, the speech-
rate specific articulatory representations preserve the original
spectral characteristics of the articulators although they are op-
timized for the speech rate task.

In this work, we use nf=32 CONV1D filters for both
CONV1D-CDNNT and CONV1D-CDNNCJ

T based on the
performance on the validation data. Table 2 shows the av-
erage (± standard deviation) of CCSR values for TIMIT test
data across the four folds in seen and unseen subject condi-
tions respectively for the baseline and proposed approaches.
It is observed that, due to the supervised nature, the CDNN-
based approaches perform better than the TCSSBC approach.
In seen subject case, the task-specific acoustic representations
provide better performance compared to MFCCs with a per-
centage improvement of 1.3% [25]. However, in unseen sub-
ject case, the learned representations are on par with MFCCs.
The task-specific pseudo EMA points provide better perfor-
mance compared to the generic pseudo EMA points with per-
centage improvements of 13.85% and 23.33% in seen and un-
seen subject conditions respectively. Thus, the task-specific
pseudo-articulatory representations help in better speech rate
estimation compared to the generic pseudo-articulatory repre-
sentations. The CONV1D-CDNNCJ

T , which uses concatenated
speech rate-specific acoustic and pseudo-articulatory represen-
tations, performs better than CDNNT, CONV1D-CDNNT,
AAII-CDNNT, and AAIJI -CDNNT with a relative improve-
ment of 3.79%, 2.50%, 26.15%, and 10.81% respectively.
Hence, concatenated acoustic and articulatory representations
help in better speech rate estimation compared to using either of
them alone. In [25], an analysis on the learned representations
from CONV1D is done compared to MFCCs. It is interesting
to see the variation in the frequency response of the learned 1-
D convolutional filters when the articulatory representations are
involved. For this, we observe the center frequencies of the fil-
ters used in computation of MFCCs, and those of the learned fil-
ters from CONV1D-CDNNCJ

T and CONV1D-CDNNT which
are illustrated in Figure 3. The log-magnitude responses of the
learned 32 1-D convolutional filters in CONV1D-CDNNCJ

T and
CONV1D-CDNNT are illustrated in Figure 4. The x-axis and
y-axis indicate the frequencies and the filter index in the sorted
order, respectively. The color intensity variations represents the
magnitude response of the filters.

From Figure 3 and 4, it is observed that the frequency re-
sponses of the CONV1D filters are low pass in nature and ma-
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jority of the filters are centred below 1000 Hz unlike filter banks
of MFCCs. For speech rate estimation, the primary focus is on
identifying vowel nuclei regions [36]. The energy of a vowel
typically lies in low frequency regions. This could be a rea-
son why the CONV1D filters learn the speech rate-specific rep-
resentations which lie in the low-frequency regions. Interest-
ingly, incorporating articulatory representations further reduces
the effect of high frequency components and emphasize more
on low frequencies. From Figure 4, it is observed that the mag-
nitude of the filters from CONV1D-CDNNCJ

T and CONV1D-
CDNNT is high in low frequency regions. However, in the
case of CONV1D-CDNNT, the magnitude of the side lobes is
high. In contrast to this, in the case of CONV1D-CDNNCJ

T , the
magnitude of the side lobes is attenuated in the high frequency
regions. Thus, involving articulatory representations along with
acoustic representations, helps in learning better task-specific
representations.

6. Conclusion
In this work, we proposed a joint training approach to learn the
task-specific pseudo-articulatory representations. We used the
concatenated task-specific acoustic and articulatory represen-
tations to utilize the benefit from complementary information
provided by articulatory representations compared to acoustics.
From experiments in seen and unseen conditions, we observed
that the task-specific representations provide better performance
for speech rate estimation compared to the generic representa-
tions. The concatenated acoustic and articulatory representa-
tions have shown to provide better performance compared to
using either of them alone. From the frequency response of the
learned CONV1D filters, it is observed that the filters empha-
size low-frequency regions indicating emphasis on the vowel
regions. Involving articulatory representations further helps in
suppressing the high frequency components which lead to even
more accurate speech rate estimation. Our future work includes
estimating the syllable boundaries using CONV1D output.
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