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Abstract

Classifying bioacoustic signals is a fundamental task for
ecological monitoring. However, this task includes several
challenges, such as nonuniform signal length, environmental
noise, and scarce training data. To tackle these challenges, we
present a discriminative mechanism to classify bioacoustic sig-
nals, which does not require a large amount of training data
and handles nonuniform signal length. The proposed method
relies on transforming the input signals into subspaces gener-
ated by the singular spectrum analysis (SSA). Then, the differ-
ence between the subspaces is used as a discriminative space,
providing discriminative features. This formulation allows a
segmentation-free approach to represent and classify bioacous-
tic signals, as well as a highly compact descriptor inherited from
the SSA. We validate the proposed method using challenging
datasets containing a variety of bioacoustic signals.

Index Terms: subspace analysis, Fisher criterion, bioacoustic
classification

1. Introduction

Environmental monitoring has taken on an increasingly impor-
tant role by providing means to analyze and evaluate climate
changes. Cataloging and counting animals through bioacoustic
monitoring offers a large amount of information to understand
and solve various problems. For example, recent studies have
pointed out that the migratory route of some species of birds has
been drastically affected by global warming [1]. Since these an-
imals are susceptible to such changes, it is valuable to study the
dynamics of their populations [2].

Ecological monitoring presents many challenges, such as
the need for obtaining information from remote access areas and
the requirement for specialized types of equipment, which are
often expensive. Many authors have presented solutions based
on the bioacoustic signal classification to cope with these chal-
lenges. Current solutions usually employ a bioacoustic sensor
network to capture signals in remote locations. Then, a classifi-
cation model may be employed to identify and count individu-
als of each species and send its results, decreasing the data load
on the network. Solutions based on bioacoustic signals have
minimal impact on the ecosystem and can be implemented with
low-cost hardware [3]. Challenges in matching bioacoustic sig-
nals include handling different syllable length and alignments,
requiring sophisticated feature extraction techniques. Overall,
the recordings may also present a high level of redundancy and
long segments with no informative data.

Recently, subspace-based methods have been employed to
represent bioacoustic signals for classification problems. These
methods attempt to group data into clusters called subspaces,
where the learning patterns are represented as the linear combi-
nation of the basis vectors. These basis vectors can be ranked
according to its information contribution, providing a data com-
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pression and selection mechanism. Subspace-based methods
operate on multiple patterns at once, achieving higher recog-
nition rates than methods that operate on single patterns [4].

Since bioacoustic sensors may collect redundant signals,
subspace-based methods are useful for compacting bioacoustic
signals, proving a suitable representation [5]. Mutual singular
spectrum analysis (MSSA) is a framework designed to handle
signals of nonuniform length, achieving competitive accuracy
results on supervised learning problems [6]. MSSA employs
the eigenvectors obtained by singular spectrum analysis (SSA)
to represent the bioacoustic signals. As the eigenvectors span
a subspace, the comparison among bioacoustic signals is sim-
plified by the use of canonical angles. This method achieved
encouraging results in very challenging databases. Moreover,
MSSA requires only one singular value decomposition to rep-
resent a bioacoustic signal of any length.

Another advantage of MSSA is its relative robustness to en-
vironmental noise with Gaussian characteristics, including an
automatic feature extraction mechanism. Since the method op-
erates directly on signals of different sizes, the extraction of syl-
lables becomes unnecessary, which makes the method compu-
tationally efficient. As a result, MSSA is a time and memory-
efficient method, which is expected in bioacoustic signals clas-
sification applications. Also, the linear subspaces express data
through the linear combination of the features. Thus, the eigen-
vectors extracted from a few examples may represent a vast
number of signals, allowing subspace-based methods to obtain
excellent results even when few learning samples are available.

Despite its capabilities, MSSA has no discriminative mech-
anism, i.e., the subspaces generated to represent the bioacoustic
classes may not be optimal for classification, since the bioa-
coustic subspaces are computed independently, neglecting the
relationship between them. This difficulty may prevent MSSA
from achieving even more competitive results [7].

Contribution: Motivated by the recent results obtained by
MSSA, we develop a discriminative mechanism for bioacous-
tic subspaces denominated Discriminative Singular Spectrum
Analysis (DSSA). DSSA is based on the difference between the
subspaces and extracts discriminative features from bioacoustic
signals, maintaining the compact representation provided by the
subspaces. Thus, DSSA inherits the advantages of MSSA, such
as the ability to compare signals of different lengths without
segmentation, and robustness to noise.

The proposed DSSA! relies on transforming the input sig-
nals into subspaces generated by the singular spectrum analysis
(SSA). Then, the difference between the subspaces is used as
a discriminative space, providing discriminative features. This
formulation allows a segmentation-free approach to represent
and classify bioacoustic signals, as well as a highly compact
descriptor inherited from the SSA. The validation is given us-
ing datasets containing a variety of bioacoustic signals.

IThe code is available upon request.
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2. Proposed Method

In this work, we use the following notations. Scalars and matri-
ces are denoted by lowercase and uppercase letters, respectively.
Calligraphic letters are assigned to subspaces, and Greek letters
to eigenvectors and canonical angles. The subspace S spanned
by the eigenvectors {¢; € R'}7_; is d—dimensional.

Problem formulation: Let us consider a classification
problem where a dataset containing supervised signals { X; }7—;
is available, and each signal is labeled with one of the c avail-
able classes. In the proposed method, the supervised signals are
expressed by subspaces, and a discriminative space D is com-
puted to preserve the fundamental information for classification.
Now, given an input signal Y, its subspace Q is extracted, pro-
viding a compact representation of Y. After that, the projection
of the subspaces onto D produces subspaces more adequate for
classification, which can be conducted by a k—NN classifier.

SSA for bioacoustic subspace representation: The tradi-
tional SSA consists of 2 stages. The first stage decomposes the
signal, and the second stage reconstructs the decomposed series
to provide an enhanced signal. We are interested in the decom-
position properties presented by SSA. The decomposition pro-
duces independent components, which can represent trends, pe-
riodic components, or noise, depending on the application [8].

First, SSA transforms an input signal X = {z1, ..., Tm}
into a matrix structure. This procedure is conducted by select-
ing a vector of [ consecutive sub-signals of X and moving this
throughout the input signal. This operation can also be regarded
as an embedding and generates the trajectory matrix H with di-
mensions [ by k, where k = m — [ 4+ 1. By embedding X into
its time-delayed coordinates results in a sequence of lagged vec-
tors. Finally, this set of lagged vectors is arranged as columns
of a trajectory matrix with a Hankel structure, as follows:

X1 o

xrs3 Tk

H= (1)

Ty Ti41  Ti42 Tm

During the decomposition stage, a window length ! should
be set. The parameter [ is usually chosen experimentally (un-
less strong assumptions are made) and depends on the structure
of the data. A useful strategy is to set [ proportionally to the
periodicity of the data, usually, [ < k. The Nyquist rate gives
some direction about how to set [ appropriately when specific
information about the observations is available [9].

By computing the correlations between the entries of H,
one can obtain a matrix U whose columns form an orthogonal
basis of the [—dimensional space. The matrix U can be obtained
by the eigenvalue decomposition of the [ x [—dimensional au-
tocorrelation matrix A = HH ' as follows: A = USU . This
decomposition presents the related bioacoustic signal X by the
matrix U of eigenvectors and corresponding eigenvalues ¥ =
diag(o1,- -+ ,01). One advantage of this new representation is
that it presents the most representative components of the signal
in an orderly fashion, allowing the selection of the most relevant
components in terms of the reconstruction error.

The dimension p (p < 1) is a critical parameter. By se-
lecting an adequate subspace to represent a bioacoustic signal,
the trade-off between memory storage and representation can
be highly optimized. Similar to PCA, we define p by the cu-
mulative energy of the eigenvectors. For different datasets and
applications, it is not trivial to set p uniformly.

Canonical angles for bioacoustic subspaces: The canon-
ical angles between two p—dimensional subspaces P and Q
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can be computed by the singular values of W = U V. The
eigenvectors U and V' span the bioacoustic subspaces P and Q,
respectively. By using the singular values of W, {d1,...,d,},
the canonical angles can be obtained by the following equation:

{61,...,0,} = {cos ' (61),...,cos " (,)}. 2)

Where the first canonical angle 6, is the smallest angle be-
tween the subspaces spanned by the basis vectors U and V.
Then, the second angle 65 is the smallest angle in the orthogonal
direction of 0. The remaining angles follow the same concept.

A reasonable method of estimating the similarity between
two p—dimensional subspaces is by averaging the sum of the
canonical angles. This procedure can be achieved as follows:

p
+(P,Q) = % 3" cos?(6;). 3)
j=1

The average 7(-,-) provides interpretability, since when
the bioacoustic subspaces share a large amount of oscillatory
components, ~y(-,-) approaches 1, indicating that these sub-
spaces have very high similarity. Otherwise, (-, -) approaches
zero, suggesting that the subspaces represent distinct bioacous-
tic classes. Additionally, The canonical angles are computation-
ally efficient, requiring only an SVD computation.

The difference between bioacoustic subspaces: The sum
subspace S of two p—dimensional subspaces P; and P»
spanned by the basis vectors U; and Us can be computed
through the sum of the autocorrelation matrices of Uy and Us:

Gy =Uily +UsU; @

The matrix G () contains the sum of the autocorrelation
matrices of U; and U and, therefore, its eigenvectors span the
sum subspace S. The algebraic intuition behind this procedure
is that the sum of two subspaces is equal to the span of their
union [10]. Therefore, we obtain the basis vectors that span S
by solving the following eigen problem:

G = B Ay Ey). ©)
In (5), the columns of E(3y = {¢1,...,¢,} are the nor-
malized eigenvectors of G(2), and A (g is the diagonal matrix
with corresponding eigenvalues { A1, ..., Ap} in descending or-
der, where p = rank(G/(2)). A practical interpretation of this
concept is that the sum subspace S is composed of the oscil-
latory components contained in both PP; and P2, in addition to
their linear combinations. This property allows the bioacous-
tic subspaces to represent a high amount of data with few basis
vectors. We can further decompose S so the principal subspace
F and the difference subspace D can be brought in evidence:

S=FoD. (6)

In Equation 6, the symbol & stands for the decomposition
of S into two subspaces. This decomposition can be accom-
plished by examining the eigenvalues associated with the eigen-
vectors spanning the sum subspace [11, 12]. The dimensions of
JF and D can be obtained directly by checking the distribution
of the eigenvalues of G'(2y. Since the sum of two autocorrela-
tion matrices composes G (2), it will present eigenvalues varying
from 2.0 to 0.0, where the common structures (principal space
JF) will be allocated on the first eigenvectors (1.0 < \; < 2.0).
Then, the difference subspace D is spanned by the eigenvectors
associated with the eigenvalues ranging from 1.0 to 0.0.

GDS of bioacoustic subspaces: In a classification prob-
lem, {P;}i—, is the set of reference bioacoustic subspaces
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Figure 1: Accuracy of the methods when [ is modified.

spanned by {U;}i=;. A subspace D that can act on P; can
be developed to extract discriminative information. In DSSA,
this method is conducted through the removal of the principal
subspace that represents the intersection between the different
class subspaces. By projecting the subspaces onto D, we ex-
pect to obtain useful information for classification. Then, the
normalized sum of the matrices Gy, is computed as follows:

1 — .
Gy =~ 2; uU (7
=
Since the matrix G ) has information regarding all the n
bioacoustic subspaces, it is interesting to exploit it to extract dis-
criminative elements, by eigen decomposing G ;) as follows:

Gy = E(my Ay By ®)
The subset of E,), E;,) = {¢1,...,%a} associated with
the smallest eigenvalues A (,,) preserves most of the discrimina-
tive information contained in G(,,) and can be used to generate
D. The optimal subspace dimension d is set experimentally
by maximizing the orthogonality degree among the bioacous-
tic class subspaces projected on D. Once equipped with D and
{Pi}i=1, we can project {P;};; onto D, obtaining a set of
bioacoustic subspaces {?i}?zl, where their oscillatory compo-
nents are more discriminative than the ones given in {P; };- .
Fisher score for bioacoustic subspaces: We adapt the
Fisher score [13] to estimate the orthogonality degree between
the bioacoustic subspaces. This score is employed to optimize
the discriminative subspace D. The Fisher score is broadly
employed for model selection and consists of scoring a nested
model according to its discriminative importance. More pre-
cisely, the Fisher score evaluates a given model regarding the
distances between data points in different classes and the dis-
tances between data points in the same class. A high Fisher
score ensures high between-class and low within-class variabil-
ity, providing a stable learning model. Since we represent bioa-
coustic signals by subspaces, we introduce Fisher’s formulation
in terms of subspaces. The average between-class and within-
class variability F{;) and F{,,) can be defined as follows:

1 < P
Foy=—> (Pi,P), ©)
i=1
1 n  ng .
Fay = 2220 7 (PePa), (10)

i=1 k=1

where P; stands for the Karcher mean of the i—th class sub-
space, P is the Karcher mean of the ‘P; subspaces, n; is the
number of subspaces of the :—th class and r n - n;. Fi-
nally, (-, -) is described in (3). The Karcher mean can be ob-
tained by solving the following optimization problem [14, 15]:
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Figure 2: Accuracy of the methods when p is modified.

P; = argmin Svi, v(P,Pr)?. Then, F(M) = Fy/Flu
is the orthogonality degree for the projection space M. The
given score is employed to select the optimal dimension of D.

3. Experimental Results

In this section, we first present the employed databases, and
then we provide a series of experiments to demonstrate the effi-
cacy of the proposed DSSA. In the first experiment, we evaluate
the parameters of DSSA, such as the window length [ and the
bioacoustic subspace dimension p that result in the best repre-
sentation. Finally, we visualize the clusters produced by MSSA
and DSSA. In the last experiment, we compare the proposed
method with existing bioacoustic classification methods.

Databases employed for the experiments: The NU-Hive
dataset [16] contains 576 files of 10 min duration each, resulting
in approximately 96 hours of recordings. The task is to classify
whether the bee queen is present or not in the beehive. The sam-
ples from two hives have been employed, collected with sam-
pling frequency = 32 kHz by microphones inside the hives.

The Mosquito wingbeat dataset [17] contains 626 record-
ings of 20 different species of mosquitoes. The records reflects
the bioacoustic signatures of free-flying and were acquired us-
ing mobile phones at different sampling rates (8 kHz ~ 44.1
kHz). The samples were sampled to 44.1 kHz for evaluation.

The Anuran dataset [18] contains 60 recordings of 10 dif-
ferent species of frogs with varying lengths collected under
noise conditions, with the number of records per species vary-
ing from 3 to 11. It provides a genuine challenge due to the
limited number of exemplars caused by cataloging difficulties.

The datasets employed in this experimental section are rel-
atively small; we understand that deep neural methods, such
as CNN, cannot be directly employed. An alternative to using
deep networks would be to employ methods involving transfer
learning, which restricts the range of applications.

Parameter evaluation: We employ the NU-Hive dataset to
evaluate the window length [ of the Hankel matrix, and the num-
ber of basis vectors p, which maximizes the accuracy of MSSA
and DSSA. This analysis is crucial to understand how robust the
proposed method is regarding the parameter change compared
to MSSA. Also, knowing how [ and p affect the model allows
the development of new bioacoustic systems in similar datasets.

Figure 1 shows the changes in terms of accuracy in both
methods when the window length [ varies from 10 to 200. The
horizontal axis denotes the window length [ used for computing
the Hankel matrix. For this experiment, we set p to represent
95% of the variance contained in each bioacoustic subspace.
From the results, we can verify that the accuracy of MSSA
and DSSA increases, as the window length [ increases until it
reaches the neighborhood of 40. The value of / that maximizes
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Figure 3: T-SNE embeddings showing distances between the 20 classes of the Mosquito wingbeat dataset using 4 features.

the accuracy of both methods is in the range 90 to 95, which
produces about 95% and 84% of accuracy on DSSA and MSSA,
respectively. This result shows the effect of selecting the proper
window length [ to represent a subspace. When selecting sub-
spaces with [ > 100, the accuracy no longer improves, suggest-
ing that a [ > 100 includes noise data.

Figure 2 shows the effects on the accuracy of the models
when the number of eigenvectors p changes from 1 to 200.
According to the results, DSSA requires fewer eigenvectors to
achieve a higher recognition rate. This note confirms that equip-
ping the model with a discriminative space improves its accu-
racy. We set [ to 95, which was the optimal value obtained in
the previous experiment. When p is set to 51 and 18, it produces
96% and 85% of accuracy on DSSA and MSSA, respectively.

Evaluating the separability of DSSA: The efficiency of
DSSA is verified on the Mosquito wingbeat dataset using the
Fisher score. This score approaches 1.0 when the distance be-
tween the subspaces of different classes is high, and the dis-
tance between the same classes subspaces is low. Differently, it
approaches 0.0 otherwise. We also employ two feature descrip-
tors for audio data: MFCC and Linear Prediction Coefficients
(LPC) [19]. Figure 3 shows the scatter plots of LPC, MFCC,
MSSA, and DSSA produced by the t-SNE. In the plots, each
point corresponds to one sample from the Mosquito wingbeat
dataset, and the different colors denote the different classes. We
employed 20 MFCCs and 12 LPCs to represent the samples
since these parameters are commonly used in literature [18].
According to the t-SNE plots, the clusters presented by MFCC
are visually more compact, and the different classes are more
distinguishable than the ones given by LPC. In contrast, the
clusters generated by LPC present a high amount of overlap,
which may negatively interfere with the classification accuracy.

For the subspace-based methods, we set [ to [ = 200, and
p is set to 9. The dimension d of the discriminative subspace
that maximizes the Fisher score is 41. The Fisher score is 0.41
for MSSA and 0.79 for DSSA. These indexes indicate that the
discriminative mechanism employed by DSSA for bioacoustic
subspaces offers more reliable features for classification than
the ones provided by MSSA. According to the results shown
by t-SNE, MSSA and DSSA consistently exhibit more com-
pact clusters than those attained by LPC and MFCC. These re-
sults suggest that the bioacoustic signals benefit from the fea-
ture extraction representation provided by the subspaces. Also,
the clusters presented by the DSSA exhibits higher separability
among the different classes than the produced by MSSA, sug-
gesting that the discriminative mechanism adopted by DSSA
provides more reliable clusters than the ones given by MSSA.

Evaluating the accuracy of DSSA: We evaluate DSSA
and three baselines under limited training data conditions. This
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experiment is important since many practical problems can only
be solved when the learning model handles scarce training data.
The number of training samples is set to 40%, 60%, and 80%
on the dataset-1, -II, and -III, respectively. The remaining data
were used for testing. In each case, we randomly select the
training data and repeat the experiment 10 times. We report the
average classification rates attained in each scenario. The CNN
configuration corresponds to the reported in [16], where CNN-
I and CNN-II stand for CNN operating on MFCC and HHT,
respectively. Table 1 shows the classification results of differ-
ent algorithms by the measurement of accuracy in percentage.
The top value is highlighted in bold font and the second-best
in italic. The overall performance of DSSA is competitive with
the presented by the baselines. In particular, DSSA works well
when the training data is limited, confirming the suitability of
subspaces for representing and classifying bioacoustic signals
under limited resources conditions. The linear combinations of
the oscillatory components described by the eigenvectors are
able to express distinct patterns even when few data is available.

Table 1: Classification results of different methods.

Datasets CNN-I CNN-IIT MSSA DSSA
Anuran-I 61.91 57.23 55.64 66.29
Anuran-II 68.56 65.74 57.39 69.67
Anuran-II1 76.27 73.11 62.88 75.31
Beehive-I 87.71 85.88 74.87 89.32
Beehive-11 92.48 90.67 81.19 93.36
Beehive-IIT 97.33 94.15 85.57 96.20
Mosquito-I 66.33 66.67 61.93 69.15
Mosquito-II 73.35 72.24 65.41 72.83
Mosquito-III ~ 75.21 76.33 69.27 75.62

4. Conclusions and Future Work

We proposed a bioacoustic signal classification method based
on subspace representation. We achieved improvements in clas-
sification accuracy employing several datasets by introducing a
discriminative mechanism using the concept of the difference
between subspaces. For future directions, we will investigate di-
verse types of signals (e.g., speech and seismic signals), which
can benefit from the low computational cost and robustness of
the proposed method. We will apply DSSA in a lightweight net-
work architecture [20, 21], which may improve its performance.
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