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Abstract

We propose a new acoustic-to-articulatory inversion (AAI)
sequence-to-sequence neural architecture, where spectral sub-
bands are independently processed in time by 1-dimensional
(1-D) convolutional filters of different sizes. The learned fea-
tures maps are then combined and processed by a recurrent
block with bi-directional long short-term memory (BLSTM)
gates for preserving the smoothly varying nature of the articu-
latory trajectories. Our experimental evidence shows that, on a
speaker dependent AAI task, in spite of the reduced number of
parameters, our model demonstrates better root mean squared
error (RMSE) and Pearson’s correlation coefficient (PCC) than
a both a BLSTM model and an FC-BLSTM model where the
first stages are fully connected layers. In particular, the average
RMSE goes from 1.401 when feeding the filterbank features di-
rectly into the BLSTM, to 1.328 with the FC-BLSTM model,
and to 1.216 with the proposed method. Similarly, the average
PCC increases from 0.859 to 0.877, and 0.895, respectively. On
a speaker independent AAI task, we show that our convolutional
features outperform the original filterbank features, and can be
combined with phonetic features bringing independent informa-
tion to the solution of the problem. To the best of the authors’
knowledge, we report the best results on the given task and data.
Index Terms: Acoustic-to-articulatory inversion, deep learn-
ing, sequence-to-sequence neural models, 1-D convolution.

1. Introduction

The acoustic to articulatory inversion (AAI) problem is about
estimating the vocal tract shape in the form of articulator posi-
tions based on the uttered speech. The actual articulatory po-
sitions can be obtained from speakers through different tech-
niques, such as MRI [1], X-ray microbeam [2], and electro-
magnetic articulography (EMA) [3]. In recent years, AAI has
attracted increasing attention because of its suitability in dif-
ferent applications, namely speech synthesis [4, 5], second lan-
guage learning [6, 7], and automatic speech recognition (ASR)
[8]. In a companion paper submitted to this conference [9], we
show that AAI is beneficial for the continuous phone recogni-
tion task. Unfortunately, this inversion problem is highly non-
linear and non-unique [10, 11], which means that different artic-
ulator configurations can produce the same sound. In addition
coarticulation [12], i.e. the impact of adjacent phonemes on the
articulators’ movement, makes the AAI problem harder.
Different machine learning techniques and various input
representations have been proposed to address the AAI task.
For example, search of joint acoustic and articulatory space
codebooks [13], Gaussian mixture models (GMMs) [14], hid-
den Markov models (HMMs) [7], mixture density networks
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(MDNs) [15], deep neural networks (DNNs) [16], and recur-
rent neural networks (RNNs) [17, 18]. It is reported to obtain
better accuracy than the DNN-based solution proposed in [16]
exploiting an RNN-based AAI approach [19]. This result was
mainly due to the better capability at capturing temporal dy-
namics that the RNN has through its memory elements. Differ-
ent acoustic representations, such as line spectral frequencies
(LSF), Mel-frequency cepstral coefficients (MFCC) and filter-
bank energies (FBE) have also been employed as input of the
AAI system [17, 18]. Linguistic features have also been proven
useful when used as stand-alone input features [20], or together
with acoustic features [21, 18]. Such linguistic features are for
example: phonemic (PHN) and attribute (AF) features [18].
Those features can be estimated by using a phone recognizer
[22] or, a forced phone aligner [18] whenever we have access to
the transcription of the uttered speech, e.g. in language learning
or speech synthesis applications.

Although LSTM-based RNNs are promising for tackling
the AAI task, the AAI accuracy could be further improved by
exploiting ad-hoc connectionist components that can help re-
move redundant information in the speech signal. In fact, there
exist many sources of information in the speech acoustic sig-
nal, which are not all relevant for the target task. Deep learn-
ing methods can reduce the effects of that irrelevant informa-
tion leveraging upon large amounts of training material and pa-
rameters; however, lack of ad-hoc corpora providing an appro-
priate amount of data is a peculiar curse of the AAI problem.
Therefore, the use of connectionist blocks that can better ex-
ploit the intrinsic characteristic of the speech signal could be
beneficial to improve AAI results. We know that the vocal tract
movements encode the linguistic message, and the speech sig-
nal reflects these movements. Non-linguistic components in the
speech signal have a rate of change that lies outside the typ-
ical rate of the change of the vocal tract. 1-D convolutional
connectionist components can intrinsically be more robust to
the speech variability by suppressing spectral components that
change more slowly or quickly than the typical range of change
of the speech signal. Furthermore, convolutional components
offer the advantage to reduce the amount of connectionist pa-
rameters with respect to fully connected components, which im-
plies that a smaller amount of data can be sufficient to learn the
1-D convolutional filters. Bi-directional recurrent components
with LSTM gates can instead be used to capture temporal re-
lationships and better estimate the articulatory parameters. In
this work, we thus propose 1-D convolutional layers prior to the
BLSTM-based recurrent blocks to project FBE features to a new
space to deal with lack of data and temporal variability. More-
over, the scarcity of relevant speaker specific data makes build-
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ing speaker dependent (SD) systems challenging, and the per-
formance typically drops significantly when moving to speaker
independent (SI) systems, where data from the test speaker is
not used in the training stage of the neural architecture. To over-
come the drop in performance caused by data scarcity in the SI
configuration, we proposed to combine the feature maps from
1-D convolutions and phonetic features.

The rest of paper is organized as follows. We describe the
proposed AAI approach in Section 2. The experimental setup is
given in Section 3, where the “Haskins Production Rate Com-
parison database ”(HPRC) [23], input features and output pa-
rameters, and network parameters are presented. The experi-
mental results are discussed in Section 3. Section 5 concludes
our work.

2. Proposed method

In this work, we propose a new AAI approach, where spectral
sub-bands are independently processed in time by 1-D convo-
lutional filters of different sizes. The learned features maps
are then combined and processed by an RNN with BLSTM
gates for preserving the smoothly varying nature of the articu-
latory trajectories. We use mel filterbank energies as features in
the present work to have a higher resolution for low frequency
bands.

1-D convolutional layers are mostly known as the feature
extraction layers from sequences and widely used in many
speech applications, e.g. ASR [24, 25], speech synthesis [26],
and machine translation [27]. This is the first time, to the best
of the authors’ knowledge, that 1-D convolutional layers on the
features are employed in the AAI task. Here we employ convo-
lutional layers along the time axis: we consider the output of the
filterbank in each of the frequency bands as a one dimensional
data stream and apply the filters on it. These filters’ outputs are
then linearly combined and represent new feature maps. The
computations are formulated as:

Li_1

=bj+ > Foryi™,,

k=1

Yij M
where, * shows the convolution operation of weights F'; in con-
volutional layer 4 with the feature maps y;™; ; from the previ-
ous layer ¢ — 1. A bias b; is added to the result of the convo-
lution, to calculate the new feature map y;; for the j ¢ chan-
nel feature map. Zero padding is used to guarantee that the
input sequence (acoustic space) and output sequence (articula-
tory space) have the same length. The 1D-CNN layers are used
and concatenated along the channel axis as depicted in Fig. 1.
The filter length is different in each of the CNN layers which
provides more information about adjacent frames with different
resolutions along the time axis. The first convolutional layer
plays an important role by high-passing or low-passing differ-
ent frequency bands. In our architecture, this layer has the goal
of sensing significant energy changes in the speech spectrum,
which may indicate a phone transition. It is built of first or-
der FIR filters in the form by + moz !, where bg is a bias and
mo a multiplicative factor. These can be either low-pass filters
when bg and mo have the same sign, or high-pass, otherwise.
The next convolutional layers tries to capture more temporal in-
formation and filter out undesired temporal variabilities. After
those convolutional layers, two BLSTM layers are employed
to capture dynamical information and estimate smoothly vary-
ing articulator trajectories. Further analysis with regards to the
extracted feature maps and their representation is presented in
Section 4.
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Figure 1: Architecture of our proposed AAI method.

3. Experimental Setup
3.1. Database

The EMA method is one of the most used techniques for record-
ing of articulatory data which also allows for simultaneous
recording of the speech. One of the available databases is
the “Haskins Production Rate Comparison”(HPRC) [23], which
covers material from eight native American English speakers,
namely four female (F1-F4), and four male (M1-M4) speak-
ers. There are 720 sentences available in this database with the
normal and fast Speaking Rate (SR). For some of the normal
speaking utterances, there are repetitions available.

Speech waveforms are sampled at rate of 44.1 KHz, and
the synchronously recorded EMA data are sampled at 100 Hz.
EMA data are measured from eight sensors capturing informa-
tion about the tongue rear or dorsum (TR), tongue blade (TB),
tongue tip (TT), upper and lower lip (UL and LL), mouth left
(ML), jaw or lower incisors (JAW) and jaw left (JAWL). The ar-
ticulatory movements are measured in the midsagittal plane in
X, Y and Z direction, which denote movements of articulators
from posterior to anterior, right to left and inferior to superior,
respectively. In this work, we used the X and Z directions of
TR, TB, TT, UL, LL and JAW for the speaker dependent AAIL
In case of SI modeling, we employed nine tract variables (TV)
[28] which are obtained by geometric transformations on EMA
measurements. Those TV are Lip Aperture (LA), Lip Protru-
sion (LP), Jaw Angle (JA), Tongue Rear Constriction Degree
(TRCD), Tongue Rear Constriction Location (TRCL). In a sim-
ilar way for TB and TT we have TBCD, TBCL, TTCD and
TTCL, respectively.

3.2. Input representation

In our experiments, acoustic features are extracted from a down-
sampled waveform at 16 KHz using an analysis window of
length 25ms with frame shift of 10ms, yielding a frame rate
that matches the EMA recordings. Acoustic features are calcu-
lated from 40 filters, which are linearly spaced on the Mel-scale
frequency axis. Energies in the overlapping frequency bands
are called filterbank energy (FBE) features. Phonetic (PHN)
features are extracted by the Penn phonetics lab forced aligner
[29]. Each PHN feature is represented as one-hot 39 dimen-
sional vector [18], and the attribute features (AF) are directly
mapped from PHN features as in [18].

3.3. Neural parameters & settings

We compare three different neural architectures. In the first and
most simple configuration, referred to as BLSTM, the unpro-
cessed filterbank energies are directly fed at the input of the
neural architecture, which is BLSTM-based RNN. Two fully
connected layers are introduced between the FBEs and the
BLSTM-based RNN in the second configuration, referred to as
FC-BLSTM. The third configuration, 1D-CNN-BLSTM, is our
proposal, and 1-D convolutional filters are employed between



the FBEs and the BLSTM-based RNN. In all cases 2 BLSTM
layers with 128 cells for each of the forward and backward lay-
ers are used. Sigmoid and tanh activation functions are used for
the recurrent layers[18]. The output layer has 12 nodes, cor-
responding to the EMA dimension with linear activation func-
tion. In FC-BLSTM the first two layers are fully connected with
512 nodes with ReLU activation functions. In the 1D-CNN-
BLSTM, 5 convolutional layers are used for feature extraction
with the filter size of [1, 3, 5, 7, 9], respectively for each layer
with ReLU non-linearity. The channel number for each of the
convolutional layers are kept the same as L; = 128. A batch
size of 5 is used.

The experimental material is chosen from the subsets “N1”
and “N2”, which have the normal speaking rate. The training
data consist of 576 sentences, validation and test data each con-
tains 72 sentences. The data splitting for the HPRC database
is as in [30]. Experiments were performed in an utterance by
utterance fashion, which requires that all of the utterances are
zero padded to 4 sec in the feature domain for ease of training
implementation. The same strategy was applied to mean nor-
malized EMA utterances in order to obtain 4 sec duration. The
Adam optimizer [31] is chosen for training the network. Keras
[32] with TensorFlow backend [33] were used to train all of the
neural networks. An early stopping patience of 10 iterations
has been employed by checking the validation loss function to
prevent over-fitting to the training data.

3.4. Performance measures

To measure the accuracy of the AAI approach, root mean
squared error (RMSE) and Pearson’s correlation coefficient
(PCC) are chosen. The first criterion reports the mean devi-
ation between estimated and the ground-truth trajectories, and
the latter measures the similarity of the two trajectories. The
measures are defined as follows:

RMSE = \/ %Eiil (u(i) = 9())”, @
S (@) — 9)@0) - 9)
VEL (w6) - 9)° S, (36) - §)°
where y(7) and §(i) are the ground-truth and estimated EMA

values of the i*® frame, respectively; 7 and §j are mean values
of y(2) and ().

4. Experimental Results

PCC = 3)

In this section, we compare and contrast the three architectures
described in Section 3.3. We also present additional analysis to
gain a better understanding of the proposed approach.

4.1. Performance evaluation for acoustic features

For each of the three methods, we conduct 20 simulations in
order to eliminate the effect of random initialization of the net-
work parameters. Table 1 shows RMSE values, and we can
observe that the proposed method outperforms both baseline
approaches by almost 0.1 and 0.2 mm RMSE. A t-test shows
that the reduction in RMSE with respect to both baselines is
significant with p-values less than 0.05. The proposed method
outperforms FC-BLSTM with lower number of parameters, as
it can be observed by comparing the number of parameters re-
ported in the table. Finally, PCC scores, related to the similarity
between trajectories, are given in Table 2 and show a similar
trend to that observed for RMSE.
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Table 1: RMSE for various baselines and proposed method for
different speakers for AAI system.

Neural Architecture & No.Parameters
Speaker | BLSTM FC-BLSTM  1D-CNN-BLSTM
571657 1748233 1585033
F1 1.363 1.226 1.090
F2 1.588 1.546 1.380
F3 1.296 1.231 1.160
F4 1.355 1.309 1.200
M1 1.211 1.133 1.053
M2 1.645 1.550 1.435
M3 1.523 1.479 1.368
M4 1.228 1.154 1.048
Avg. 1.401 1.328 1.216

Table 2: PCC for various baselines and proposed method for
different speakers for AAI system.

Neural Architecture & No.Parameters
Speaker | BLSTM FC-BLSTM  1D-CNN-BLSTM
571657 1748233 1585033
F1 0.917 0.932 0.945
F2 0.852 0.858 0.887
F3 0.827 0.841 0.861
F4 0.916 0.921 0.933
M1 0.865 0.887 0.902
M2 0.861 0.880 0.893
M3 0.816 0.841 0.860
M4 0.825 0.856 0.875
Avg. 0.859 0.877 0.895

4.2. Feature extraction layers analysis

As we discussed in Section 2, 1D-CNN extract new features
from FBEs. These feature maps are weighted sums of sub-band
signals which have been processed by filters with different fre-
quency responses. Fig. 2 shows an example of FBEs, and net-
work activations through the 1D-CNN model. We can see some
channel activations match phonemic segments in the first layer.
Going to the next layers, the filter outputs become sparser and
activations become more intense within the phoneme bound-
aries. For justifying our claim about channel output activations
during the phonemic segments, we picked some channels out-
put from the first layer by using correlation analysis with PHN
and AF features as the reference patterns. This analysis pro-
vided a better insight for choosing the corresponding filter out-
puts with regards to PHN and AF features with higher corre-
lation. As an example, we have chosen attribute fricative and
phoneme /3/ which are depicted in Fig. 3. The corresponding
filters” output which are chosen after doing correlation analy-
sis are depicted in Fig. 3. We can see that these filters outputs
have high energies when the chosen attribute and phoneme are
active. Therefore, we can say these 1D-CNN layers are extract-
ing the linguistic information from FBEs. This is inline with
our expectation of sensing the significant energy changes at the
phone transition. Furthermore, we can see for the second CNN
layer compared to the first CNN layer, we have less activation
outside the ground truth activation times of the chosen attribute
and phoneme. By comparing the results for the SD experiment
using i) the proposed architecture, and (ii) the BLSTM model
that uses PHN features along with FBEs, from Fig. 4, it can be
observed, the proposed architecture’s better performance could
be explained by its inherent capability of 1D-CNN layers at ex-
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Figure 2: FBE features for utterance “The birch canoe slid on the smooth planks.” and the resulted convolutional feature maps for the
15, 214 gnd 3*Y layers.
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Figure 3: AF feature for fricative and PHN features for
phoneme /3/ ( ) and channel output from the 1% 1D- 5. Conclusion
CNN layer ( ==--)and 2™ ID-CNN layer ( —-—-—- ).

In this paper, we address the problem of articulatory inversion
by employing 1D-CNNs as preprocessing layers to BLSTM lay-
ers. We show that this architecture improves the performance
for the SD AAI task compared both to a BLSTM network alone,
but also to BLSTM whose input is obtained with fully con-
nected layers with a larger number of parameters. We also show
that the representations obtained by the 1D-CNNs can be com-

tracting speaker dependent information not available in one-hot
encoded PHN features.

4.3. Speaker independent analysis
For evaluating the proposed method for SI training, we adopt a

leave—one—.out strategy, where each speaker is in turn COI}Sider.ed bined with phonetic features to improve performance both for
as the testing speaker, and the rest of speakers are used in train- SD and SI systems. The best result from only acoustic features

ing. For articulatory data, we use TV trajectories as targets, and for SD AAI of TV trajectories is PCC=0.895 and by consider-
FBE and PHN features are fed at the input of the neural archi- ing phonetic features is PCC=0.901. As a comparison the SD

Fect_urevs ’ We used P,CC as the performance measure, because of results obtained by [30] on the same data set but with another
its intrinsic normalized nature that makes it less dependent on architecture, is PCC=0.826. Our best results from only acoustic
the differences between speake‘rs’ anatomy, and range of move- features for SI AAI of TV trajectories is PCC=0.755, by con-
ments. We can observe from Fig. 4 that ID-CNN improves the sidering phonetic features with the proposed architecture, we
performance of both SD and SI conﬁguratl(?ns. Moreover, by reached averaged PCC equals to 0.810 for SI system. For the
comparing the performances of 1D-CNN with FBE, PHN and future works, we will focus on language learning and miss pro-

their combination, we can O?SGYVG ,1D.'(?NN has extrac?ed more nunciation detection by employing AAI systems while we have
speaker dependent information while it is less speaker indepen- the transcription in this application.

dent compared to FBEs. Using processed FBE features with
1D-CNN filters together with PHN features enhances the sys-
tem performance in both SD and SI. 6. Acknowledgements
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