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Abstract
Different from the emotion estimation in individual utterances,
context-sensitive and speaker-sensitive dependences are vitally
pivotal for conversational emotion analysis. In this paper, we
propose a graph-based neural network to model these depen-
dences. Specifically, our approach represents each utterance
and each speaker as a node. To bridge the context-sensitive
dependence, each utterance node has edges between immediate
utterances from the same conversation. Meanwhile, the directed
edges between each utterance node and its speaker node bridge
the speaker-sensitive dependence. To verify the effectiveness
of our strategy, we conduct experiments on the MELD dataset.
Experimental results demonstrate that our method shows an ab-
solute improvement of 1%∼2% over state-of-the-art strategies.
Index Terms: deep learning, conversational emotion recogni-
tion, self-attention mechanism, graph neural networks,

1. Introduction
Conversational emotion recognition is an importance research
topic due to its potential applications in many tasks, such as di-
alogue generation [1, 2, 3], social media analysis [4, 5, 6] and
intelligent systems [7, 8, 9]. The task of conversational emo-
tion recognition requires understanding the way that humans
express their emotions during conversations. Despite its im-
portance, conversational emotion recognition is a complex task
due to the following challenges: (1) Since frame-level features
contain the temporal dynamics information, the first challenge
is how to effectively extract utterance-level features from these
frame-level features. (2) Since context-sensitive and speaker-
sensitive dependences are vitally important for conversational
emotion recognition [10, 11], the second challenge is how to
effectively model these dependences in conversations.

The key challenge in emotion recognition is how to learn a
good utterance-level representation that captures temporal dy-
namics from frame-level features. Previous works [12, 13] ap-
plied statistic functions (e.g., mean), mapping frame-level fea-
tures into utterance-level features. However, these approaches
roughly consider global information and ignore temporal dy-
namics of feature sequences. To address these shortcomings,
researchers rely on sequence models that can capture temporal
dynamics [14, 15], such as recurrent neural networks (RNNs)
and its variations (long-short term memory (LSTM) [16] and
gated recurrent unit (GRU) [17]). Recently, self-attention mech-
anism [18] has been verified to capture longer temporal dynam-
ics than typical RNN-based models [18, 19]. It provides an op-
portunity for injecting the global context information into each

input. Inspired by its success, we propose to use this mechanism
for utterance-level feature extraction in this paper.

Besides utterance-level feature extraction process, mod-
eling context-sensitive and speaker-sensitive dependences re-
mains an active research topic for conversational emotion
recognition [20, 21]. Recently, a graph neural networks (GNNs)
based method [22] has been proposed, and achieved promis-
ing results on conversational emotion recognition. This method
leverages context-sensitive and speaker-sensitive dependences
by modeling the conversation using a directed graph. The nodes
in the graph represent individual utterances. The edges between
a pair of nodes represent the dependency between the speak-
ers of those utterances, along with their relative positions in the
conversation. On this basis, the entire conversational corpus can
be symbolized as a large heterogeneous graph and the emotion
detection task can be recast as a classification problem of the
utterance nodes in the graph. However, if there are M distinct
speakers in a conversation, there can be a maximum of 2M2

distinct relation types in the graph [22]. Therefore, this graph
structure causes each relation type cannot be fully learned when
M is large, thus leading to performance degradation.

To address these difficulties, we propose to use a relation
reduction process in the graph. Concretely, in addition to utter-
ance nodes, we also use speaker nodes compared with [22]. To
bridge the context-sensitive dependence, each utterance node
has edges with the immediate utterance of the past, and the im-
mediate utterance of the future. And we use two relation types
to model both directions. To bridge the speaker-sensitive de-
pendence, there are directed edges between each utterance node
and its speaker node, and we use another relation type for these
edges. Totally, we only need to model three kinds of relation
types. We observe that our relation reduction process can im-
prove the performance of conversational emotion recognition.

The main contributions of this paper include three aspects:
1) We apply the self-attention mechanism for utterance-level
feature extraction, since this mechanism can capture longer
temporal dynamics that typical RNN-based models [18, 19];
2) We propose to use the relation reduction process in the
graph, thus improving the performance of conversational emo-
tion recognition; 3) Experimental results on the popular bench-
mark datasets MELD demonstrate that our method gains an ab-
solute improvement of 1%∼2% over state-of-the-art strategies.

The remainder of this paper is organized as follows: In Sec-
tion 2, we formalize the problem statement and describe our
proposed method. Section 3 presents the experimental datasets,
setup, results and analysis in detail. Finally, we give a conclu-
sion of the proposed work in Section 4.
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Figure 1: Overall structure of the proposed framework.

2. Proposed Method
2.1. Problem Definition

Suppose we have a conversation U = [u1, u2, ..., uN ], where
N is the total number of utterances. And there are M speakers
p1, p2, ..., pM (M > 2). Each utterance uj is uttered by one
speaker ps(uj), where the function s(.) maps the index of the
utterance into its corresponding speaker. The task is to predict
the emotion label for each utterance in the conversation.

2.2. Utterance-level Feature Encoding via Self-attention

In this section, we propose to use self-attention mechanism [18]
for utterance-level feature encoding. As shown in Figure 1, we
assume the input sequence as xα ∈ RTα×dα for modality α
(where modality α can be either acoustic or lexical modality).
Tα and dα represent sequence length and feature dimensions,
respectively. To learn the temporal contexts between the ad-
jacent frames, we feed xα into a 1-dimensional convolutional
layer (Conv1D). To take the order of sequence into account,
we inject triangle positional embeddings [18] into each frame.
Then we pass these features intoN identical blocks. Each block
contains a multi-head self-attention layer [18] and a feed for-
ward layer. We also employ a residual connection [23] around
these modules, followed with the layer normalization. We de-
fine the outputs of the last block as zα ∈ RTα×d. Finally, we
utilize the frame-level attention mechanism to focus on impor-
tant frames. The weights of frames αatt ∈ RTα×1 and fusion
representations gα ∈ R1×d are calculated as follows:

αatt = softmax(zαWz) (1)

gα = αTattzα (2)
where Wz ∈ Rd×1 is the trainable parameter.

2.3. Speaker-level Context Encoding via GNNs

In this section, we propose to use GNNs for context-sensitive
and speaker-sensitive modeling.

2.3.1. Graph Construction

A graph can be defined as G = {V, E ,W,R}. V denotes the
set of nodes and E denotes the set of edges connecting these
nodes. W andR represent weights and relation types of edges.

Nodes: As shown in Figure 1, the graph contains two kinds
of nodes: utterance nodes and speaker nodes. We need to gener-
ate node representations hi for each node. (1) Utterance nodes:
As for unimodal settings, we generate representations by feed-
ing acoustic features (or lexical features) into the utterance-level
feature encoding module in Section 2.2. As for multimodal set-
tings, to focus on important modalities, we generate represen-
tations via the attention-based fusion strategy in [24]. Specif-
ically, we first compute the weights of different modalities via
attention mechanisms. The weighted average results are uti-
lized as the multimodal representations for utterance nodes. (2)
Speaker nodes: To capture speaker characteristics, we extract
representations for speaker nodes using the pre-trained speaker
verification system, known as x-vector [25].

Edges with relations: We use edges to model the context-
sensitive and speaker-sensitive dependences in the conversation.
(1) The context-sensitive dependence is represented by directed
edges between two utterances nodes from the same conversa-
tion. Each utterance node has edges with the immediate utter-
ance of the past, and the immediate utterance of the future. To
model both directions in the directed graph, we use two rela-
tion types. (2) The speaker-sensitive dependence is represented
by the directed edge between an utterance node and its speaker
node. And we use another relation type for these edges.

As shown in Figure 1, we assume ui and ui+1 are immedi-
ate utterances from the same conversation. ps(ui) and ps(ui+1)

are their corresponding speakers, respectively. Our graph has
edges between ui and ui+1 in both directions with different re-
lation types. To model speaker-sensitive dependence, the graph
also has directed edges from ui (or ui+1) to ps(ui) (or ps(ui+1)).

Edge weights: Edge weights measure the importance of
the connection between nodes. To model the context-sensitive
and dependence-sensitive dependences, we choose different
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weight determination strategies. (1) As for the context-sensitive
dependence, we need to determinate weights between utter-
ance nodes. Different from previous works that predetermined
weights using distant functions and rules [26], we attempt to
learn optimal weights via attention mechanisms. Concretely,
as for the utterance ui, it has edges with ui−1 and ui+1.
hi−1 ∈ R1×d, hi ∈ R1×d and hi+1 ∈ R1×d represent node
representations of ui−1, ui and ui+1, respectively. To cal-
culate weights for these edges, we linearly project hi−1 and
hi+1, and concatenate them together as hcat ∈ R2×d. Then we
use the dot-product score function to calculate attention vectors
αweight ∈ R1×2, which are treated as edge weights:

hcat = [hi−1Wh;hi+1Wh] (3)

αweight = softmax(hih
T
cat) (4)

where Wh ∈ Rd×d is the trainable parameter.
(2) As for the speaker-sensitive dependence, we need to de-

terminate the weight between the utterance node and its corre-
sponded speaker node. Considering the fact that speaking fre-
quency is unbalanced in the corpus, we use the inverse speaking
frequency to release such imbalance [26]. Concretely, as for the
utterance ui, the weight between ui and its speaker ps(ui) is
set to be 1/F , where F represents the utterance number of the
speaker ps(ui) in the whole corpus.

2.3.2. Graph Learning

To aggregate the local neighborhood information, we use the
relation specific GNNs [27]. For a single-layer GNN, the new
feature vector h(1)

i is computed for the node vi ∈ V:

h
(1)
i = ReLU(

∑
r∈R

∑
j∈Nri

αij
|Nr

i |
W (1)
r h

(0)
j ) (5)

where αij is the edge weight between node vi and node vj . Nr
i

represents the neighboring indexes of node vi under relation
r ∈ R, and |Nr

i | is the number of Nr
i . W (1)

r is the trainable
parameter for relation r and h(0)

j is the original representation
for node vj . As for a multi-layer GNN, the node features are
updated by the following formula:

h
(l)
i = ReLU(

∑
r∈R

∑
j∈Nri

αij
|Nr

i |
W (l)
r h

(l−1)
j ) (6)

where l denotes the layer number. In our approach, we employ
GNNs with L layers, where L is treated as a hyper-parameter.

After feature transformation by GNNs, we concatenate the
final layer node embeddings h(L)

i ∈ Rd and original node em-
beddings h(0)

i ∈ Rd for the node vi. These embeddings are fed
into a softmax classifier for emotion recognition.

hi = [h
(0)
i , h

(L)
i ] (7)

Pi = softmax(hiWl) (8)
where Wl ∈ R2d×c is the trainable parameter. Here, hi ∈ R2d

and c is the number of emotion labels. Pi ∈ Rc is the predicted
label for the node vi. We choose the cross-entropy loss function
during training:

L = − 1∑K
s=1 Ls

K∑
i=1

Li∑
j=1

Y
(j)
i logP

(j)
i (9)

whereK is the number of conversations andLs is the number of
utterances in the sth conversation. P (j)

i ∈ Rc and Y (j)
i ∈ Rc

are the emotion-class probabilities and one-hot vector ground
truth for the jth utterance in the ith conversation, respectively.

3. Experiments and Discussion
3.1. Corpus Description

We perform experiments on the popular benchmark dataset, the
Multi-modal EmotionLines Dataset (MELD) [28]. MELD is a
multi-party dataset where three or more speakers are involved
in a conversation. All the conversations are split into small ut-
terances, which are annotated using the following categories:
anger, joy, sadness, neutral, disgust, fear and surprise. Totally,
it contains 1433 conversations and 13708 utterances of various
dialogue scenarios. To compare our method with state-of-the-
art methods, we utilize the train/val/test splits in [22, 28]. The
data distribution of the MELD dataset is listed in Table 1.

Table 1: Dataset Statistics of the MELD dataset.

Dataset #dialogues #utterances
train val test train val test

MELD 1039 114 280 9989 1109 2610

3.2. Data Representation

Frame-level acoustic features are extracted from raw wave-
forms using the openSMILE [29] speech toolkit with 25 ms
frame window size and 10 ms frame intervals. Specifically,
we use the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) introduced by Eyben et al. [30]. Totally, 88-
dimensional frame-level acoustic features are extracted; Word-
level lexical features are extracted from the transcripts of spoken
words. Specifically, we get 300-dimensional vector representa-
tion of words using the public available Word2Vec [31] model.

3.3. Experimental Setup

In the Utterance-level Feature Encoding process, Conv1D lay-
ers map acoustic and lexical features into the fixed dimension of
size d = 30, followed with 5 multi-head attention blocks (with
30 dimensional states and 5 attention heads). To optimize the
parameters, we use the Adam optimization, starting with an ini-
tial learning rate of 0.001. We train our model for 100 epochs
with a batch size of 32. To alleviate over-fitting problems, we
also use the dropout [32] with the rate 0.4. In our experiments,
each configuration is tested 20 times with varied weight initial-
izations. Experimental results are evaluated using the weighted
average accuracy.

3.4. Impact of Multi-layer GNNs

To illustrate the impact of different numbers of GNN layers,
we conduct experiments to compare the performance among
unimodal and bimodal results. Experimental results are listed
in Table 2. As for the textual modality, experimental results
show that the performance of our proposed method first rises
and then decreases, as the number of GNN layers increases. It
shows that our method gains the best performance when using
a two-layer GNN for the textual modality. Differently, as for
the acoustic modality and multi-modality, we find that the per-
formance decreases when the number of GNN layers increases.
These results are the same with previous works [33, 34]. These
works also show the limitations of stacking multiple GNN lay-
ers, which leads to highly complex back-propagation and the
common vanishing gradient problem. Therefore, more than
three layers of GNN seems not a good choice.
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Table 2: Classification performance (WA%) with different numbers of GNN layers. Note: Bold front denotes the best performance.

GNN layers’ number Acoustic Modality Textual Modality Multi-modality
layer=1 48.8 61.0 61.8
layer=2 48.7 61.5 61.6
layer=3 48.5 60.7 61.0
layer=4 48.5 56.6 51.9

Table 3: Ablation study for individual components on the MELD dataset. Note: Bold front denotes the best performance.

Model Acoustic Modality Textual Modality Multi-modality
S1 Ours 48.8 61.5 61.8
S2 Ours without Utterance-Level Feature Encoding 48.0 57.0 57.3
S3 Ours without relation reduction process 48.1 60.5 61.0

3.5. Importance of Individual Components

In this section, we evaluate the contribution of each component.
Two comparison systems are implemented to compare with our
proposed method. Table 3 provides the results on this analysis.

(1) System 1 (S1): It is our proposed method.
(2) System 2 (S2): It comes from (S1), but removing the

utterance-level feature encoding process (in Figure 1). Specifi-
cally, to extract utterance-level features, we utilize mean values
of frame-level (or word-level) features in the utterance.

(3) System 3 (S3): It comes from (S1), but removing the
relation reduction process. Specifically, we use the graph struc-
ture in [22] with 2M2 distinct relation types.

Firstly, to verify the effectiveness of utterance-level feature
encoding (in Figure 1), we compare the performance of S1 and
S2. Experimental results in Table 3 show that S1 is superior to
S2 with a large margin. Compared with S2, our method learns
long-term temporal dependence via self-attention mechanism.
This structure is able to improve recognition performance.

Secondly, to verify the importance of relation reduction
process, we compare the performance of S1 and S3. As shown
in Table 3, we find our method is superior to S3 in all cases. The
MELD dataset contains multi-party conversations and the aver-
age conversation length is 10 utterances. We find that many con-
versations have more than M = 5 participants, which means
that many speakers only utter a small number of utterance in a
conversation. Without the relation reduction process, we need
to model at least 2M2 = 50 distinct relation types in a conver-
sation, causing that each relation type cannot be fully learned
[22]. Through our relation reduction process, we only need to
model three relation types, which alleviates the challenges for
speaker-sensitive modeling. Therefore, our relation reduction
process improves the performance of emotion recognition.

3.6. Comparison to State-of-the-art Approaches

To verify the effectiveness of the proposed method, we further
compare our method with other currently advanced approaches.
Experimental results of different methods are listed in Table 4.

Compared with our proposed method, these approaches
[5, 10, 22] also utilized acoustic and lexical features for con-
versational emotion recognition. Poria et al. [10] captured the
context from surroundings via the bi-directional LSTM layer.
However, this method suffered from incapability of capturing
the speaker-sensitive dependence. To model this dependence,
Majumder et al. [5] employed three GRUs to track individual
speaker states, emotion states and global contexts during con-
versations. Ghosal et al. [22] modeled the context-sensitive and

Table 4: Classification Performance (WA%) of different state-
of-the-art approaches to emotion detection on the MELD
dataset. Note: Bold front denotes the best performance.

Model Audio Text Multi-modality
BC-LSTM [10] 39.1 58.2 59.3

DialogueRNN [5] 41.8 59.8 60.5
DialogueGCN [22] 48.3 59.1 59.6

Ours 48.8 61.5 61.8

speaker-sensitive dependence via graph neural networks.

Experimental results in Table 4 demonstrate the effective-
ness of our method. Compared with previous graph-based ap-
proaches [22], our graph-base method shows an absolute im-
provement of 0.5%, 2.4% and 2.2% for acoustic results, lexical
results and bimodal results, respectively. These results verify
the effectiveness of our relation reduction process. Meanwhile,
our method shows an absolute improvement of 0.5%, 1.7% and
1.3% over state-of-the-art strategies for acoustic results, lexical
results and bimodal results, respectively. These results serve as
strong evidence that our proposed method can yield a promising
performance for conversational emotion recognition.

4. Conclusions

In this paper, we propose a multimodal multi-party framework
for conversational emotion recognition. Our method utilizes
graph neural networks to model context-sensitive and speaker-
sensitive dependences in the conversation. Ablation studies ver-
ify the effectiveness of our proposed relation reduction process
and utterance-level feature encoding process. Experimental re-
sults on the MELD dataset demonstrate the effectiveness of our
proposed framework. As for lexical and bimodal results, our
method shows absolute 1.3%∼1.7% performance improvement
over the state-of-the-art strategies.
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