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Abstract
As the fundamental research of affective computing, speech
emotion recognition (SER) has gained a lot of attention. Un-
like with common deep learning tasks, SER was restricted by
the scarcity of emotional speech datasets. In this paper, the vec-
tor quantization variational automatic encoder (VQ-VAE) was
introduced and trained by massive unlabeled data in an unsuper-
vised manner. Benefiting from the excellent invariant distribu-
tion encoding capability and discrete embedding space of VQ-
VAE, the pre-trained VQ-VAE could learn latent representation
from labeled data. The extracted latent representation could
serve as the additional source data to make data abundantly
available. While solving data lacking issue, sequence informa-
tion modeling was also taken into account which was consid-
ered useful for SER. The proposed sequence model, temporal
attention convolutional network (TACN) was simple yet good
at learning contextual information from limited data which was
not friendly to complicated structures of recurrent neural net-
work (RNN) based sequence models. To validate the effective-
ness of the latent representation, t-distributed stochastic neigh-
bor embedding (t-SNE) was introduced to analyze the visualiza-
tions. To verify the performance of the proposed TACN, quanti-
tative classification results of all commonly used sequence mod-
els were provided. Our proposed model achieved state-of-the-
art performance on IEMOCAP.
Index Terms: speech emotion recognition, temporal convolu-
tional network, sequence modeling

1. Introduction
Speech signals as the most commonly used communication
method for humans, not only carry lots of content information
but also implicit paralinguistic information about the speakers.
Speech emotion recognition (SER) gives valuable information
that could improve dialog systems in human-computer interac-
tion. Now, SER has become an attractive research field [1].

SER was a challenging and meaningful task. As we know,
the performance of automatic speech recognition (ASR) and
image classification tasks had been better than humans, unlike
with SER tasks which were still not competitive to trained hu-
man listeners. Two main reasons cause this phenomenon. One
was the ever-lacking large and naturalistic databases [2]. Com-
pared to general speech datasets, recording and annotating an
emotion-related dataset was more time-consuming. The num-
bers of speakers, recording conditions and the size of the cor-
pus were also much more limited; the other reason was that
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the extracted emotional features were not efficient and effective
enough. Feature extraction was a critical step to bridge the gap
between speech signals and speaker emotions. Finding effective
emotional feature representation through feature extraction was
a direction that required continuous attention [3, 4].

To solve the data lacking issue, one was to integrate these
existing emotion datasets and set them in similar annotation
space [5]. Due to various factors, the speech signals in dif-
ferent datasets had complex distributions with a high variance
which led to this solution being more uncontrollable. There-
fore, we focused on the other solution, learning intrinsic ex-
pression across these datasets. This strategy usually introduced
autoencoder (AE) [6] and denoising autoencoder (DAE) [7] to
reconstruct the input to learn representations, and had achieved
success in many fields such as image classification [8], speaker
identification [9] and speech conversion [10]. Compared with
AE and DAE emphasized on input reconstruction, variational
autoencoder (VAE) [11] was optimized for latent representation
learning. However, the learning representation processing in
VAE was continuous. As we know, speech signals were inher-
ently discrete, and typically represented as a sequence of sym-
bols. Therefore, VAE was not a natural fit for modeling speech
signals. The Vector Quantised Variational AutoEncoder (VQ-
VAE) [12] was a simple yet powerful model. Discrete represen-
tation learning of VQ-VAE was more conducive to reasoning
and modeling of speech signals. At the same time, the learned
representations in VQ-VAE spaned various dimensions as op-
posed to focusing on local details. This representation learning
method was very appropriate for maintaining emotional infor-
mation which was related to many factors, but not very deci-
sively related to imperceptible details.

In recent years, deep neural network (DNN) based meth-
ods were proposed to overcome the pre-defined limitations of
traditional methods [13, 14, 15, 16]. These deep learning-
based models, e.g. DNN [17], convolutional neural networks
(CNN) [18, 19] achieved competitive results. But the methods
ignored the sequence information modeling (contextual infor-
mation) which was essential to identify the emotional states.
In most deep learning models, sequence modeling was synony-
mous with recurrent networks. Although the works of recurrent
neural network (RNN) [20] and bidirectional long short term
memory (BLSTM) [21] took into account the problems of se-
quence modeling, these RNN-based models had complicated
structures, slow training speed and could not be fully trained
when data was insufficient. The temporal convolutional net-
work (TCN) [22] was based on CNN, and the combination of
causal convolutions and dilated convolutions in TCN provided
the ability to model the sequence. But this model lacked the
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consideration of the position importance in sequence.
To address these two issues, data lacking and sequence

modeling, an improved SER model is proposed as shown in Fig-
ure 1, which mainly consists of the latent representation learn-
ing module and SER considering sequence information mod-
ule. At first, VQ-VAE was trained on massive unlabeled data to
learn pre-trained embedding space. The labeled data was feed to
the traditional CNN network and pre-trained VQ-VAE respec-
tively. The labeled data fine-tuned the VQ-VAE, and the repre-
sentations in the first layer of the decoder were extracted as the
latent representations. The latent representations were the ad-
ditional source of information that concatenated with deep rep-
resentation learned by CNN to get the fusion representations.
We improved the TCN with attention mechanisms and proposed
temporal attention convolutional networks (TACN). The fusion
representations were feed to TACN to achieve the classification
results.

The major contributions of this paper were summarized as
1) An unsupervised VQ-VAE was pre-trained in an unsuper-
vised manner to extract the latent representations of labeled
data. 2) A TACN was proposed to model the sequence infor-
mation for SER.

2. Sequence Modeling integrating Latent
Representation

The proposed model as shown in Figure 1 mainly consisted of
two modules which were latent representation learning module
and sequence modeling SER module. The Latent representation
Rl was learned by the first module. The Deep representation Rd

was learned by CNN. These two kinds of representation were
fused as Fusion representation Rf whcih is followed by a fully
connected layer. The output was fed to the proposed TACN to
learn the sequence information and which was also set to be the
classifier to predict the emotional states.
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Figure 1: TACN integrating latent representation.

2.1. Latent representation learning

The extracted Latent representation as the additional source for
SER, an unsupervised model VQ-VAE was introduced. With
the good performance of the embedding space in trained VQ-
VAE, more rich and robust emotion-related informations were
contained directly or indirectly. The pre-training data consisted

of EmoV-DB [23] and LibriSpeech which were built for the
purpose of emotional speech synthesis and ASR. The VQ-VAE
trained by unlabeled data could obtain a good prior latent em-
bedding space and a powerful encoder-decoder structure. The
core part of VQ-VAE was VQ embedding as shown in Figure 2.
The embedding space had modeled the internal distribution of
unlabeled data in pre-trained VQ-VAE. The Di was the input of
the decoder which is calculated as shown in Eq. (1).

Di(x) = ek where k = argminj‖EO − ej‖2 (1)

where the high dimension representation Eo represented
the output of the encoder. The processing of extracting Di was
a dictionary learning algorithm. The discrete embedding space
was the dictionary, the vector quantization was the query. The
query was calculated by a nearest neighbour look-up using the
shared embedding space to determine the subscript k. The cor-
responding embedding vector ek replaced the vector in vector
quantisation map. Finally, Eo was rebuilt to Di by the pre-
trained VQ embedding processing. The red line in Figure 2 rep-
resented the gradient during the backward from decoder unal-
tered to the encoder. Through this pre-trained VQ-VAE model,
the various latent information and internal relations in the la-
beled data would be compressed into Di which was followed
by a Flatten layer to get Latent representation Rl
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Figure 2: Vector quantisation embedding.

2.2. Temporal attention convolutional network

Broadly speaking, sequence modeling was that given an input
sequence [x0, x1, x2...xT−2, xT−1, xT ], and wanted to predict
the corresponding outputs [y0, y1, y2...yT−2, yT−1, yT ]. The
key constraint was to predict the output yt for some time t
only could use those inputs that had been previously observed:
[x0, ..., xt]. The future inputs [xt + 1, ..., xT ] could not be used
in the prediction of yt. The sequence mapping was shown in Eq.
(2) and the f was the modeling function.

y0, ..., yT = f (x0, ..., xT ) (2)

The prediction for later steps in traditional RNN-based
methods must wait for their predecessors to complete. The
RNN-based methods could not be calculated in parallel. Some
RNN-based models, such as LSTM and gated recurrent unit
(GRU) used ’gate’ to model the sequence, whose structures
were complicated and hard to be fully trained in small size data.

2338



Considering the importance of sequence modeling in SER and
scarcity of emotional speech, TCN was introduced as the se-
quence modeling method.

TCN mainly consisted of two parts, a 1D fully-
convolutional network (FCN) architecture and causal dilated
convolutions. The FCN made each hidden layer in TCN have
the same length as the input layer. The causal dilated convo-
lution was an exquisite design that let the convolutional layers
have the ability of sequence modeling. Based on TCN, the po-
sition importance of hidden layer data was considered and pro-
posed the TACN model as shown in Figure 3.

Attention

Attention Attention

Attention

Attention

Figure 3: Temporal attention convolutional network.

To achieve the constraint mentioned before, future informa-
tion could not leak to the past. The first basic design was causal
convolution as shown in the red box in Figure 3. In this con-
volution, an output at time t was convolved only with elements
from time t and earlier in the previous layer.

In theory, causal convolution could model a long effective
input through an extremely deep network or very large filters.
But when applying the causal convolution in sequence tasks, it
costed too much time and memory, neither of the mentioned two
methods was particularly feasible. The dilated convolution was
shown in the blue box in Figure 3 which solved those mentioned
issues.

The dilated convolution operation F on element s of the
sequence was defined as:

F (s) = (X∗df) (s) =

k−1∑
i=0

f (i) ·Xs−d·i (3)

where the X was the input sequence, f was the filter, d was the
dilation factor, s− d · i represented the direction of the past.
When d = 1, a dilated convolution reduced to a regular con-
volution. The d was fixed in the same hidden layer and a mul-
tiple difference between adjacent layers. Usually we increased
d exponentially with the depth of the network, and d = 2n, n
was the n-th hidden layer. With the help of the increase of the
dilation factor, the receptive field grew exponentially. But the
accompanying problem was ignored. The distance between the
convolution elements in the sequence was farther away. Treat-
ing these dilated elements equally did not meet the needs of
adaptation.

In the sequence model tasks, adding a weight to each input
element was a common operation[24, 25, 26] Given a sequence
Sn, which was in the n-th hidden layer.

Sn = [x̂t−k·d, · · ·x̂t−d, x̂t] where d = 2n (4)

where k was the filter size, and x̂ were the elements in the hid-
den layer that had the same importance degrees. We improved
this situation through a multi-head self-attention method [27].

Att (Q,K, V ) = softmax

(
QKT

√
DK

)
V (5)

In Eq. (5), the input matrix consists of Q,K, V which repre-
sented queries, keys, and values respectively and the dimension
of keys was DK . Instead of performing a single calculation of
Q,K, V , it was beneficial to linearly project the queries, keys,
and values, h times with different learned linear projections.
The h results were concatenated and once projected, resulting
in the final output Mh (Q,K, V ) as shown in Eq. (6).

Mh (Q,K, V ) = W (Att1 + ...+Atth) (6)

when Q == K == V == Sn, this attention method was
called multi-head self-attention. The Sn was calculated h times
without sharing parameters and the h results were projected to
Ŝn as shown in Eq. (7).

Ŝn = Mh (Sn) (7)

In this paper, the number of hidden layers n was 8, the filter
size k was 3, the head number h was 8.

3. Experiments and Analysis
3.1. Experimental setup

Interactive Emotional Dyadic Motion Capture database (IEMO-
CAP) [28] is used in the experiments. The audio data samples
at 16HKz with 5,531 utterances which consists of four emotion
categories: Neutrality (29%), Anger (20%), Sadness (20%), and
Happiness (31%). In this paper, we use the same preprocessing
method, segment length, and parameters of CNN with Satt et
al. [21]. The time of each segment is 265-ms and the input
spectrogram has the following time× frequency : 32× 129.
We chose cross-entropy as the loss function, Adadelta as the
optimizer, and ReLU as the activation. The batch size is set as
128. The data is randomly split to 80% training set and 20%
testing set and still represents to the same proportions in the
training/testing sets as in the whole corpus.

3.2. Experiment results and analysis

To verify the effectiveness of the proposed model, we set up
three groups of comparative experiments to confirm the validity
of Latent representation, evaluate the performance of proposed
TACN, and evaluate the performance of the proposed whole
model.

3.2.1. Validation of the extracted latent representation

To observe the changes brought by Latent representation, t-
distributed stochastic neighbor embedding (t-SNE) [29] was in-
troduced to visualize the difference between the Deep represen-
tation Rd and Fusion representation Rf . The visualization was
shown in Figure 4.

The green points (Anger) performed well in both plots. The
blue points (Sadness) in Figure 4(b) performed better, the dis-
tance of points were closer to each other. The red points (Neu-
tral) were the same situation with blue points, the distance in
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Figure 4: The t-SNE visualization of Deep and Fusion represen-
tation.

Figure 4 (b) was shorter. The purple points represented Happi-
ness, the points distributed cross everywhere in both plots, the
same situation was also reported [30]. Relatively speaking, the
addition of Latent representation in Figure 4 (b) let these four
emotion points have more distinct distributions.

3.2.2. Validation of the proposed TACN

As shown in Table 1, the proposed model TACN outperformed
all the commonly used RNN-based sequence models and TCN.
Compared with RNN-based models, the proposed model TACN
had absolute increases of more than 4.34% and 4.88% on Deep
and Fusion representation. The performance of TACN was also
better than TCN and had absolute increases of 2.08% and 2.71%
on Deep and Fusion representation.

Table 1: The results of comparative experiments

Deep Fusion

RNN-based

SimpRNN [20] 57.41 59.76
GRU 59.58 61.21

BGRU 62.12 64.20
LSTM 59.13 61.57

BLSTM [21] 61.75 64.56

CNN-based
TCN 64.38 66.73

TACN 66.46 69.44

3.2.3. Validation of the proposed model

To quantitatively analyze the proposed whole model, we pro-
vided the results of the ablation studies, whose evaluation cri-
teria were F1 score (F1), weighted accuracy (WA), and un-
weighted accuracy (UA) as shown in Table 2. Also, the four
confusion matrices of the experiments were shown in Figure 5.

Table 2: The results of ablation studies

Model F1(%) WA(%) UA(%)
Deep TCN 64.68 66.38 63.80

Fusion TCN 67.00 66.73 67.48
Deep TACN 66.98 66.46 67.18

Fusion TACN (our) 69.75 69.44 70.16

Observing Table 2 and Figure 5, three phenomena could
be got. The first one was in Deep TCN, massive four emo-
tions were rudely identified as Neutrality that led to the worst
F1 score. The second one was in Fusion TCN and Deep TACN,

all four emotions performed more stable and more normal, in-
dicating the effectiveness of the Latent representation addition
and the proposed TACN respectively. The third phenomenon
was that the proposed model Fusion TACN outperformed all
three models and performed best in three emotions. It was rec-
ognized that the classification of Happy emotion in IEMOCAP
was difficult [31, 32], due to not only the dataset annotation
problems but also other relevant factors that need more research
in the future.
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Figure 5: The confusion matrices.

4. Conclusions
In this paper, a natural fit for the speech latent representation
learning model, VQ-VAE, was introduced in an unsupervised
manner. The latent representation involved invariant distribu-
tion which was different from deep representation learned by
the supervised network. The visualization analysis and quanti-
tative experiments proved its effectiveness. Sequence modeling
was often overlooked in SER, in this paper a CNN-based archi-
tecture of TACN was proposed. The proposed TACN not only
achieved better performance than commonly used RNN-based
models but also overcame the shortages of TCN which was un-
stable in emotion recognition. Detailed experimental results and
confusion matrices also verified that the proposed model was
outstanding. The proposed model achieved the performance of
66.46% and 69.44% on Deep and Fusion representation. Com-
pared with RNN-based models and TCN, our model had ab-
solute increments of more than 4.88% and 2.71%. With the
high sensitivity to all the emotions and stable performance, our
model shows great potential to solve the cross-corpus SER tasks
and multimodel emotion recognition tasks.
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