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Abstract
Emotion labels in emotion recognition corpora are highly noisy
and ambiguous, due to the annotators’ subjective perception of
emotions. Such ambiguity may introduce errors in automatic
classification and affect the overall performance. We there-
fore propose a dynamic label correction and sample contribu-
tion weight estimation model. Our model is based on a standard
BLSTM model with attention with two extra parameters. The
first learns a new corrected label distribution and aims to fix the
inaccurate labels in the dataset. The other estimates the contri-
bution of each sample to the training process and aims to ignore
the ambiguous and noisy samples while giving higher weights
to the clear ones. We train our model through an alternating op-
timization method, where in the first epoch we update the neu-
ral network parameters, and in the second we keep them fixed
to update the label correction and sample importance parame-
ters. When training and evaluating our model on the IEMOCAP
dataset, we obtained a weighted accuracy (WA) and unweighted
accuracy (UA) of 65.9% and 61.4%, respectively. This yielded
an absolute improvement of 2.3% and 1.9%, respectively, com-
pared to a BLSTM with attention baseline, trained on the corpus
gold labels.
Index Terms: speech emotion recognition, meta-learning

1. Introduction
Automatic recognition of emotion is important to enable more
natural and engaging communication between humans and ma-
chines. In this work we concentrate on emotion recognition
from speech, which is the task of estimating the emotional con-
tent of a spoken utterance.

In the past, emotion recognition was performed by extract-
ing a set of low-level features from each frame of an audio sam-
ple. These features were then aggregated through various sta-
tistical aggregation functions (mean, standard deviation, mini-
mum, maximum, etc.) to a global utterance-level vector rep-
resentation [1], to be finally fed through a shallow classifier
such as support vector machines (SVMs) [2, 3]. However, in
recent years, the accuracy of speech emotion recognition has
dramatically improved with the introduction of deep neural net-
works (DNNs). Initial DNN-based models [4] were still based
on the same utterance-level feature extraction. However, in sub-
sequent approaches, speech features extracted from each frame
were used as inputs of more complex neural network architec-
tures such as convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs), and the accuracy was further im-
proved [5, 6, 7]. Recent years have seen the application of novel
methods developed from other AI fields, such as self-attention
models [8], connectionist temporal classification (CTC) [9] and
dilated residual network (DRN) [10]. Even higher performance
was achieved by using multi-modal information, such as audio
and image together with speech [11].

While most of the studies concentrated on the development
of more accurate classification models, there were other aspects
of emotion classification regarding the data itself that could help
improve the performance but were mostly ignored. In many
datasets, the emotion labels are annotated based on human an-
notators’ perceptions to emotion. Emotion perception is highly
subjective [12]; therefore, the labels often contain some noise
due to humans’ decision ambiguities. For instance, an annota-
tor may assign the label neutral not when the sample is actually
neutral, but when he/she is unsure about the most appropriate
emotion class. Likewise, he may mistakenly recognize some
loud enthusiastic speech as angry, but actually it is happy. Train-
ing a model on such noisy labels is likely the cause of some per-
formance degradation because the model may become confused
and may not clearly distinguish one emotion from another.

Another important issue is that, in many emotion recogni-
tion datasets, the numbers of utterances for each emotional cat-
egory are imbalanced. Generally, in a classification task using
these category imbalanced datasets, the accuracy of the small
class is decreased [13, 14], which in turn affects the overall ac-
curacy. To overcome these problems, some methods have been
proposed to use soft target approaches to correct the annotation
ambiguities [15] or to augment the dataset with synthetic data to
reduce the effect of the data imbalance [16]. However, the for-
mer method only performs a static label contribution estimation
based on the original annotation data, while the latter method
is complex and the generated data might still be affected by the
original labeling noise. In other domains, such as image recog-
nition, similar issues were tackled by performing a label update,
not a priori but during training, by gradually tuning the estima-
tion [17].

Inspired by the achievements in image recognition [17], we
propose a method to automatically tune the contribution of each
data sample during training. We do this by alternately updat-
ing the parameters of a DNN emotion classification model, and
then use the neural network prediction to correct the relative
contribution and the target labels of each sample, to reduce the
overall loss. The main purpose is to correct or ignore altogether
the ambiguously labeled utterances, while giving higher impor-
tance to the clear and unambiguous ones. The results obtained
in the interactive emotional dyadic motion capture (IEMOCAP)
dataset [18] show that our proposed method is effective in re-
moving the annotation noise. It achieves an improvement of
2.5% for weighted accuracy, and of 2.7% for unweighted ac-
curacy compared to a state-of-the-art BLSTM model trained on
the original labels only [7].

2. Methodology
Given an input audio sample xn = [xn,1,xn,2, · · ·,xn,T ],
where n is the utterance index, xn,t is the frame-based fea-
ture vector, and T is the total number of frames, we want
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to estimate the probabilities of each emotion category yn =
[yn,1, yn,2, · · ·, yn,C ], where C is the number of discrete emo-
tion classes. We use a BLSTM model with attention [7] to per-
form the classification.

To improve the classification performance and reduce the
ambiguities of the human-annotated labels during training, for
each training speech sample we also learn two parameters: ln =
[ln,1, ln,2, · · ·, ln,C ], and wn. ln represents a new estimate of
each sample emotion class, aiming to correct the ambiguities
and inaccuracies during the training process, while through wn

we learn the contribution weight for each training utterance.

2.1. Emotion classification model

Fig. 1 shows the structure of our main BLSTM emotion recogni-
tion model, which closely follows the state-of-the-art by [7]. At
first, we input the feature sequence xn through a bi-directional
LSTM (BLSTM), which yields hn = [hn,1,hn,2, · · ·,hn,T ]
as the output. We then weigh the contribution of each frame
through an attention layer, where its weights αn,t are calculated
as follows:

αn,t =
exp(hn,tu

⊤)∑T
τ=1 exp(hn,τu⊤)

. (1)

In the equation above, u = [u1, u2, · · ·, uC ] are the learned
attention parameters. The obtained attention weights αn,t are
used to calculate the weighted average over time of the BLSTM
output vectors, to get a fixed-length utterance-level vector rep-
resentation h′

n. We get the output emotion probabilities yn by
applying a softmax layer to h′:

h′
n =

T∑
t=1

αn,thn,t, (2)

yn,c =
exp(h′

n,c)∑C
c=1 exp(h

′
n,c)

. (3)

2.2. Update of target labels and contribution weights

Normally, an emotion classification system such as the one ex-
plained in the previous section, is trained from the gold stan-
dard labels yn, with all the training samples having the same
contribution weight during training. This is however not ideal
for emotion recognition since the human-annotated labels may
be ambiguous or not precise. For instance, a sample can have
been marked as “neutral” just because the annotators were un-
sure about the most appropriate emotion label, not because it
was actually neutral.

We therefore correct these inaccuracies and ambiguities
by learning two extra parameters. The first one is ln =
[ln,1, ln,2, ···, ln,C ] ∈ {0, 1}, which is inspired by [17]. We ini-
tialize it with the one-hot gold standard emotion label. Through
the learning process, this parameter is supposed to learn, for
each training sample, the correct emotion distribution, even-
tually overriding the one previously assigned by the annota-
tors. The second parameter, wn, is the per-sample contribu-
tion weight. We initialize wn by applying the same method
proposed in [7], by taking the proportion of samples in each
emotion category. In [7], wn was proposed to address the class
imbalance and prevent the recall degradation due to it, and wn

was kept fixed throughout the training. We instead update it
during training, as we assume that the model would learn to
give higher weights to clear samples, and lower weights to am-
biguous samples that presumably would only add noise to the
classifier.

Figure 1: Structure of BLSTM model with attention.

Figure 2: Overview of proposed training framework.

To update those parameters, and apply them in the classi-
fication process, we designed the framework shown in Fig. 2.
The overall model loss function is defined as L(θ, ln, wn|xn):

L(θ, ln, wn|xn) = −
∑C

c=1 sn,c log yn,c

wn
, (4)

where sn is the mapping of ln by softmax function to make it a
probability distribution over emotions:

sn,c =
exp ln,c∑C

γ=1 exp ln,γ

. (5)

It is worth noticing that in the cross entropy function, we do
not use the gold standard labels but only use the new learned
emotion representation ln.

The model parameters θ, ln and wn are updated through
an alternating optimization process, shown in Algorithm 1. Al-
ternately, we first update θ, keeping ln and wn fixed, through
one epoch. In the second step, we update ln and wn, keeping
the BLSTM network weights fixed, through another one epoch.
To avoid the algorithm converging on very high values of wn

when minimizing the loss function, we scale the value of wn

after each update to maintain the following constraint:∑N
n=1 wn

N
= 1. (6)

Algorithm 1 Alternating optimization algorithm

for i← 1 to num epochs do
update θ(i+1) using L(i) and w(i)

update L(i+1) and w(i+1) using θ(i+1)

end for

3. Experiments
3.1. Corpus

To evaluate the performance of the proposed learning method,
we use the IEMOCAP dataset [18], one of the most commonly
used benchmark datasets in emotion recognition tasks. The
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corpus is organized into 5 sessions, in each of which two ac-
tors performed a conversation. The total number of speakers
in the corpus is 10. We only considered the samples belong-
ing to the four emotion categories of happiness, sadness, neu-
tral and anger, to keep the analysis consistent with previous
works [6, 7, 8, 9, 10, 11, 15, 16]. The number of utterances
in each emotional class of each speaker is shown in Table 1.
We performed a leave-one-speaker-out 10-fold cross-validation
using a leave-one-out strategy [10]. We applied early-stopping
criteria in all conditions to minimize the loss of the validation
set [15].

3.2. Experimental setup

We extracted 32-dimensional acoustic features from the raw au-
dio samples using the openSMILE toolkit [19]: 12-dimensional
mel-frequency cepstral coefficients (MFCCs), loudness, funda-
mental frequency (F0), voicing probability, zero-crossing rate,
and their first order derivatives. The frame length and frame
shift were set to 25 ms and 10 ms, respectively. All features
were normalized by mean and standard deviation calculated
over all of the utterance features in the training set.

The emotion classification model was composed of a fully-
connected layer with rectified linear unit (ReLU), a BLSTM
layer and a fully-connected layer. The numbers of hidden units
were 512, 128 and 4, respectively. We applied dropout to all
the layers; the dropout rate was 0.5. We used Adam [20] as an
optimization algorithm.

We evaluated our model using two common evaluation
measures in the previous works: weighted accuracy (WA) and
unweighted accuracy (UA). We also calculated per-class preci-
sion, recall and F1-score, to get a performance estimate over
each individual emotion class.

We compare our model (BLSTM + ATT + L + w) against
the following baselines:

• BLSTM + ATT: our reimplementation of the attention
based BLSTM model as proposed in [7].

• BLSTM + ATT + Oversampling/Undersampling:
same as the above, but applying oversampling or un-
dersampling instead of w to address the class imbalance
problem. In this baseline, utterances are randomyly re-
sampled in each epoch.

• BLSTM + ATT + L: the full model and training algo-
rithm, but only updating L, while keeping w fixed.

• BLSTM + ATT + w: the full model and training algo-
rithm, but only updating w, while keeping L equal to the
gold standard labels.

• BLSTM + ATT + L + w pretrained: similar to the full
model, but the neural network was first pretrained using
the gold standard labels.

• Soft-target: the soft label method proposed in [15].

• Cycle-GAN: the data augmentation method proposed
in [16].

3.3. Results

The final results are shown in Table 2. For the Soft-target and
Cycle-GAN baselines, we show the reported results from the
original papers, since in the former case we were unable to repli-
cate the same results, and the latter used a different method-
ology. Our proposed model performed the best in terms of
WA, and the second best in terms of UA, achieving 65.9% and
61.4%, respectively. This yields an absolute improvement of

Table 1: Number of utterances in each emotion class and
speaker.

Speaker Happiness Sadness Neutral Anger
Ses01F 69 78 171 147
Ses01M 66 116 213 82
Ses02F 70 113 135 67
Ses02M 47 84 227 70
Ses03F 80 172 130 92
Ses03M 55 133 190 148
Ses04F 31 62 76 205
Ses04M 34 81 182 122
Ses05F 77 132 221 78
Ses05M 66 113 163 92

Total 595 1084 1708 1103

Figure 3: Percentages of labels updated for each emotion cate-
gory in BLSTM + ATT + L + w. Most of the updates affect the
happiness class, which is often changed to sadness or neutral.

+2.3% and +1.9%, respectively, over the BLSTM + ATT base-
line. It is also worth noticing that the originally reported WA
and UA in [7] are 63.5% and 58.8%, respectively. These val-
ues are not significantly different from the ones obtained by
our reimplementation. The soft-target baseline achieved a 2.3%
higher UA than our proposed method. However, they only used
one-fold cross validation instead of ten-fold, and they did not
report the performance for the individual emotion classes [15];
therefore, the results are not fully comparable.

In terms of per-class performance, our model achieves an
F1-score of 35.7%, 67.1%, 63.3% and 75.9% for the happi-
ness, sadness, neutral and anger classes, respectively, with ab-
solute improvements of +0.5%, +2.1%, +2.4% and +1.9%, re-
spectively. The lower improvement in the F1-score of happi-
ness is compensated by a significant improvement in precision
of +14.6%.

3.4. Discussion

By looking at the results in Table 2, it clearly emerges how our
proposed model achieves a much better performance than just
applying some simple imbalance corrections such as data un-
dersampling or oversampling. In terms of performance, the in-
troduction of per-sample importance weighting w had a slightly
higher effect than emotion correction parameter L presumably
because it is less sensitive to errors. w had the main effect of
improving the precision in happiness, and of improving the pre-
cision in anger, while the main contribution of L was to im-
prove the recall for neutral samples. Pretraining the model with
the original labels did not seem to work better than starting by
immediately updating L and w, presumably due to a greater
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Table 2: Results, percentage, over each method. P: precision, R: recall, F1: F1-score, WA: weighted accuracy, UA: unweighted
accuracy. *: reported values in the original papers.

Happiness Sadness Neutral Anger
Method P R F1 P R F1 P R F1 P R F1 WA UA
BLSTM + ATT [7] 38.8 35.3 35.2 64.5 68.2 65.0 65.1 58.3 60.9 73.0 76.1 74.0 63.6 59.5
BLSTM + ATT + Oversampling 42.6 36.0 36.5 62.8 62.2 61.4 63.7 59.6 60.1 74.3 78.6 75.5 63.5 59.1
BLSTM + ATT + Undersampling 35.4 34.7 34.4 64.5 63.1 62.9 64.9 61.2 62.4 73.3 74.4 72.7 63.2 58.4
Soft-target [15] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 62.6* 63.7*
Cycle-GAN [16] N/A 54* N/A N/A 69* N/A N/A 51* N/A N/A 69* N/A N/A 60.4*
BLSTM + ATT + L 44.9 24.1 28.4 62.8 70.2 65.3 63.0 66.4 63.9 75.9 75.9 75.1 64.7 59.2
BLSTM + ATT + w 45.4 30.5 34.7 61.9 71.7 65.3 63.8 63.7 63.1 78.3 77.2 77.2 65.2 60.8
BLSTM + ATT + L + w pretrained 51.0 22.6 29.4 62.7 68.8 65.1 58.9 65.4 61.6 75.6 74.9 74.7 64.4 57.9
BLSTM + ATT + L + w 53.4 30.2 35.7 62.8 74.1 67.1 64.1 63.7 63.3 75.7 77.6 75.9 65.9 61.4

Table 3: Mean values of the contribution weights wn before
and after training in BLSTM + ATT + L + w. A lower value
means higher importance to the loss function. The model as-
signs a much lower importance to the happiness label, which
is presumably the most ambiguous also given the lower overall
performance.

Mean values of contribution weights wn

Happiness Sadness Neutral Anger
Initial wn 0.53 0.97 1.52 0.98

Learned wn 1.32 0.92 1.08 0.84

Table 4: Mean values of the contribution weights wn before
and after training in BLSTM + ATT + L + w in the balanced
dataset evaluation. In this evaluation, the mean values of w
were less changed than those of the imbalanced dataset evalua-
tion.

Mean values of contribution weights wn

Happiness Sadness Neutral Anger
Initial wn 1.00 1.00 1.00 1.00

Learned wn 1.02 0.98 1.06 0.94

learning bias over incorrect and ambiguous gold labels.
It is interesting to notice how these two parameters affect

the various emotion classes after training. Table 3 shows the
change of w, a lower value means a greater weight of the loss
function in eq. 4. The weight given to happiness samples, ini-
tially the less numerous class, was greatly reduced during train-
ing. By looking at the final precision and recall for this class,
this seems to be a consequence of the very high ambiguity of
the happiness annotations; the classifiers had great difficulty in
clearly distinguishing happiness from other classes.

Likewise, we observed a similar behavior regarding the
L parameter. Figure 3 shows the amount of label updates as
learned by L during training. Only in around half of the cases
was the label happiness kept; it was often changed into sad-
ness or neutral. Besides happiness, in around 10% of the cases,
anger was updated to neutral; neutral was updated to sadness.
These latter changes are likely due to the aforementioned sub-
jectivity of the emotion, and of the boundaries between them,
which are leading to ambiguous choices.

To investigate the effect of updating L and w in more de-
tail, we evaluated BLSTM + ATT + L + w and BLSTM + ATT
using the balanced dataset. In this dataset, the numbers of utter-
ances in each emotion class is the same for each speaker. These
utterances are extracted from the IEMOCAP dataset. As a re-
sult, w was updated as shown in Table 4, and L was updated
as shown in Figure 4. In this evaluation, w was less changed
through model training than in that of the imbalance dataset
evaluation, and the characteristics of the L transition are similar

Figure 4: Percentages of labels update for each emotion cate-
gory in BLSTM + ATT + L + w in the balanced dataset eval-
uation. The characteristics of the L transition are similar to
those of the imbalanced dataset evaluation.

to those of the imbalance dataset evaluation, especially regard-
ing happiness, anger and neutral. This result supports the mo-
tivation of label correction by L and handling imbalance by w.
Besides, BLSTM + ATT + L + w scored 61.5% and 59.4% for
WA and UA, respectively, while BLSTM + ATT scored 60.1%
and 56.9% for WA and UA, respectively. The contribution of
updating L and w to improve WA and UA is also confirmed in
this evaluation.

4. Conclusions
We have proposed a novel meta-learning approach, built on
top of a traditional BLSTM with attention classifier, to address
the issue of labeling inaccuracy and ambiguity in speech emo-
tion recognition. Our proposed method is effective for dynam-
ically updating each sample label during training, and learning
an estimate of each sample contribution to reduce the relative
weight of ambiguous utterances. We obtained an overall per-
formance of 65.9% and 61.4%, for weighted and unweighted
accuracy, respectively, on the IEMOCAP dataset, giving an ab-
solute improvement of 2.5% and 2.7%, respectively over the
same BLSTM model trained on the original gold labels. We
also showed how our proposed framework clearly managed to
reduce the importance of the most ambiguous label (happi-
ness), and fix the initial label annotation to the most appropriate
classes for each sample, thus improving the classification per-
formance.
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