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Abstract
Stock volatility is a degree of deviations from expected returns,
and thus, estimates risk, which is crucial for investment decision
making. Volatility forecasting is complex given the stochastic
nature of market microstructure, where we use frenzied data
over various modalities to make temporally dependent fore-
casts. Transcripts of earnings calls of companies are well stud-
ied for risk modeling as they offer unique investment insight
into stock performance. Anecdotal evidence shows company
CEO’s vocal cues could be indicative of the stock performance.
The recently developing body of work on analyzing earnings
calls treat stocks as independent of each other, thus not using
rich relations between stocks. To this end, we introduce the first
neural model that employs cross inter-modal attention for deep
verbal-vocal coherence and accounts for stock interdependence
through multi-layer network embeddings. We show that our
approach outperforms state-of-the-art methods by augmenting
speech features with correlations from text and stock network
modalities. Lastly, we analyse the components and financial
implications of our method through an ablation and case study.

1. Introduction
Volatility is a statistical measure representing the dispersion of
the returns of publicly traded stocks.1 Stock volatility repre-
sents the magnitude of price swings and often models the risk
associated with a stock [1]. Thus, more volatile stocks are con-
sidered riskier and present high risk-reward opportunities [2].
Earnings conference calls that are recurring events where pub-
licly traded companies’ Chief Executive Officers (CEO) prog-
nosticate company performance presents one such high risk-
reward scenario. Comprising of performance disclosure fol-
lowed by a spontaneous question-answer session with finan-
cial analysts, these calls present new unique knowledge that
brings significant stock price movements [3]. Despite the rich
information they provide, earnings calls remain relatively un-
derexplored, particularly from the perspective of acoustics and
speech. Audio features are strongly correlated to the verbal
message said by a CEO and are indicative of the speaker’s emo-
tional and affective state [4, 5]. Vocal cues and their interplay
with text can help better analyze the impact earnings calls may
have on financial markets.

Conventionally risk forecasting has relied on financial data
[6, 7]; however, with unmatched advances in deep learning,
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volatility.asp

there is a growing body of literature analyzing textual content
from earnings calls and financial disclosures [8]. More recently,
the use of audio processing for earnings calls has gained an in-
terest in both financial and speech research [5]. Leveraging the
audio and text data from earnings calls, MDRM [3], and HTML
[9] validate the premise of speech processing for volatility pre-
diction. However, these methods stress more on textual ele-
ments and simplistic fusion techniques for vocal cues. Addi-
tionally, they do not factor in stock interdependence.

In this paper, we build on established knowledge from fi-
nancial research and recent advances in acoustics to present
the first neural model that jointly exploits audio, textual, and
stock correlation network information for volatility estimation.
We employ inter-modal multi-utterance attention mechanisms
to enhance fusion across these modalities across utterances and
context. Through correlation networks created from knowledge
graphs of publicly-traded companies in the S&P 500 index, our
approach outperforms state-of-the-art approaches for volatility
prediction by capturing inter stock relations. Through our ap-
proach, we present the below contributions:
Model: An architecture that exploits audio, text, and graph
modalities by jointly learning associations through attentive
mechanisms from earnings conference calls for financial risk
estimation. Through comparative and ablation studies, we show
the utility of augmenting vocal cues with other feature types.
Practical Applicability: Through a case study, we highlight
the practical impact our method has in the financial domain and
the effect of verbal-vocal interplay for analyzing earnings calls.

1.1. Related Work and Limitations of Current Approaches

There has been an abundant study for volatility prediction using
historical financial data [10, 11], and numerical data beyond fi-
nance [12]. While recent work focuses on using different forms
of data, there exist limitations and underexplored avenues to en-
hance current methods which we describe as follows:
Lack of utilizing speech features: Newer studies based on the
Efficient Market Hypothesis [13] highlight the success of mul-
timodal data in finance [14], as they capture a broader set of
affecting data. Recent work uses textual data such as social me-
dia posts, news reports, etc. [15, 16], but do not analyze speech,
thus not leveraging the interplay across text and audio.
Poor generalizability to high-risk macro events: The major-
ity of existing approaches do not focus on highly volatile and
macro activities such as earnings calls, where the market mi-
crostructure is highly uncertain [17]. Thus, making prediction
tasks tough and risk-oriented [18].
Not all modalities play an equal role: Newer studies [3] il-
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lustrate the gains obtained by using vocal cues from the CEO’s
earnings conference calls for volatility prediction. Proposing
MDRM, a late fusion model using GloVe [19] embeddings for
text and hand-crafted audio features with BiLSTMs, they fuse
text and speech, improving performance. Although the inclu-
sion of both modalities enhances performance, not all modali-
ties contribute equally. Noise in one modality can be detrimen-
tal in such multimodal frameworks. To address this, we focus
on inter-modal attention across modalities and utterances.
Assuming inter-stock movement independence: HTML [9]
is a transformer-based model that uses BERT [20] for textual
modeling, and the same hand-crafted features as MDRM in
an early fusion formulation. MDRM, HTML, and other non-
speech based approaches assume no inter-dependence between
stocks and do not exploit rich correlations across stocks. Meth-
ods employing graphs to use inter-stock relations also show the
potency of exploiting such relations [21].

2. Context and Problem Formulation
Measuring stock volatility: Following [9, 3], for a given stock,
with a close price of pi on trading day i, we use Equation 1 to
calculate the average volatility over n days following the earn-
ings call.

v[0,n] = ln

(√∑n
i=1(ri − r̄)2

n

)
(1)

where, the return price ri is defined as pi
pi−1

− 1.
Formulation: Given an earnings call c, comprising of an audio
component A, and the corresponding aligned text component
T , we aim to learn a function f(c{T,A}) → v[0,n]. Following
[3, 9], we experiment with n ∈ {3, 7, 15, 30} days to analyze
the performance over both short and long term periods.

3. Method
3.1. Modeling Vocal Cues: Audio Feature Extraction

Motivation: Driven by extensive studies [4, 5] on the correla-
tion of the psychological state of a speaker with different acous-
tic features, we extend the feature sets of previous works [3, 9].
These features include 11 point Amplitude Perturbation Quo-
tient (APQ 11) Shimmer and DDA Shimmer, which are linked
to stress and anxiety [22, 23]. The ratio of voiced to unvoiced
frames in audio is obtained, which is indicative of the pace at
which a person speaks and reflects inconsistencies between ver-
bal and vocal cues [24, 25]. We extracted a total of 26 features
from each audio utterance using Praat [26].
Formulation: Following [3] we employ the Iterative Forced
Alignment (IFA) algorithm to segment and align each utterance
of the transcript with the audio utterance. We represent the seg-
mented audio clips as (a1, a2, ..., an) where ai ∈ Rn, n being
the number of clips of an earnings call, with each clip being
represented by 26 acoustic features. We utilize a BiLSTM layer
that encodes these features as shown by Equation 4.

−−→
A

(f)
t = BiLSTM (f)(at, A

(f)
t−1) (2)

←−−
A

(b)
t = BiLSTM (b)(at, A

(b)
t+1) (3)

At = [
−−→
A

(f)
t ,
←−−−
A

(b)
T−t] (4)

3.2. Modeling Verbal Cues: Sentence Encoding

Motivation: To leverage contextual attributes of the earnings
calls, we extract textual features from sentences in the tran-
scripts. We use Siamese BERT networks [27] as a sentence en-
coder, that builds on BERT [20] to perform semantic similarity
assessment. Siamese BERT2 fine-tunes sentence embeddings
that help to capture context across the transcript better.
Formulation: We represent the sentences of each clip in an
earnings call as (t1, t2, ..., tn) where ti ∈ Rn, n being the num-
ber of sentences. We encode these as:

si = SiameseBERT (ti) (5)

In order to fine-tune BERT, the Siamese BERT networks op-
timize on the triplet loss objective, so as to produce sentence
embeddings that are semantically meaningful. These resultant
intermediate representations si are encoded through a BiLSTM
layer, and we obtain a text encoding Tt, similar to Equation 4.

3.3. Cross-Modal Gated Attention Fusion

Vocal cues play a dual role in examining the validity of
speech and understanding the context of spoken sentences. To
leverage the interplay of verbal and vocal cues, we apply a
Cross-Modal Gated Attention Fusion mechanism that attends
over the contextual utterances. The mechanism computes
correlations among text and audio modalities of the target
utterance and its contextual neighbors. Such associations help
to identify and select the most relevant modality over each
contextual utterance window. Inspired by [28], we utilize
the gated attention mechanism shown in Figure 1 to generate
modality-specific attentive representations.

Formulation: The attention mechanism [29] captures cross-
modal information from audio and text encoding by comput-
ing the correlation matrices for the audio and text modalities
Ct, Ca ∈ Rn×n as shown by Equation 6. Further, the atten-
tion weights over the correlation matrices are computed using
the softmax activation to get contextual inter-modal matrices
Wt,Wa that capture the contextual dependencies in the utter-
ances (Equation 7). Subsequently, we compute the modalitiy-
wise attentive representations Gt, Ga. Finally, a multiplicative
gating mechanism is introduced to attend the important com-
ponents of text and audio sequences to get the final attentive
feature embeddings Ft, Fa which are concatenated as:

Ct = ATT , Ca = TAT (6)
Wa = softmax(Ca), Wt = softmax(Ct) (7)

Ga = Wa · T , Gt = Wt ·A (8)
Fa = Ga �A, Ft = Gt � T (9)

where · represents the dot product and � represents the el-
ement wise multiplication.

3.4. Augmenting Speech with Network correlations

Existing methods typically treat stocks as independent of each
other and ignore their interdependence. However, the rich
inter-dependencies between stocks (companies) contain valu-
able clues for financial modeling tasks [21, 30]. Learning repre-
sentations over stock relations can improve volatility forecast-
ing. Following [21], we perform graph-based learning by using
two relation networks shown in Table 1, described as follows:

2Implementation used: https://github.com/UKPLab/
sentence-transformers
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Figure 1: Schematic diagram for model architecture.

Table 1: Stock-Sector and Wiki-Company graph statistics

Graph |V | |E| Degreeavg
Stock-Sector 277 426 3.07

Wiki-Company 277 5, 476 39.54

Stock-Sector Relations: Stocks belonging to the same sec-
tor are similarly influenced by the prospects of that industry.
Hence, we extract the company taxonomy structure of NAS-
DAQ and NYSE. The sector-industry graph GSS = (V,ESS)
where V is the set of all stocks in S&P 500 in 2017 and e ∈ ESS

if two stocks v1, v2 ∈ VSS are part of the same industry.
Wiki-Company based Relations: Connections between com-
panies and their relational entities are mined from WikiData3

knowledge base. We extract first and second-order relations,
mentioned in the Appendix of [21]. The Wiki-Company graph
GWC = (V,EWC) is built on the same set of vertices as that of
Stock-Sector graph with edges present between two companies
(objects) if the same entity (subject) acts as a relation bridge
(predicate) between them.
Multi-node2vec: We represent the two stock relation networks
as a multi-layer graph. We use Multi node2vec algorithm4 [31]
that fuses multiple unordered graphs as multilayer networks to
learn representations for these networks. The network G2

N thus
formed is homogeneous in vertices (N = 277 for both graphs)
but heterogeneous in edges. The graph realization problem boils
down to a joint likelihood maximization algorithm as given by
Equation 10 for any node uwhere v = Ne(u) is its node neigh-
bours and fw is the feature representation of any node w.

L =
∑
u∈N

∑
v∈Ne(u)

[fT
v fu − log(

∑
w∈N

exp(fT
w fu)] (10)

3https://www.mediawiki.org/wiki/Wikibase/
DataModel/JSON

4Implementation used: https://github.com/jdwilson4/
multi-node2vec

For each unique node n ∈ N , the algorithm performs a neigh-
bourhood search across both layers, for which it uses an inter-
layer walk parameter r, in addition to the regular return param-
eter p, and in-out parameter q used in [32]. For every pair of
corresponding nodes in the two layers, a default edge is created
to account for cross-layer relations.

3.5. Multimodal Fusion

The output from the cross-modal attention fusion of audio en-
coding At and text encoding Tt is passed through another BiL-
STM, and its contextual output Ht is concatenated with graph
embeddings (G2

N ), which is then passed through a fully con-
nected layer φ. The resultant output ˆzreg of the proposed model
is used for regressing volatility values as illustrated by Equation
11, and optimized over Mean Squared Error (MSE).

ˆzreg = φ(WT [concat(Ht, G
2
N )]) (11)

4. Dataset
We used the S&P 500 2017 Earnings Conference Calls dataset
[3] for all experiments. The dataset consists of 562 earnings
call audio recordings and their transcripts for 274 companies in
the S&P 500 index5. Each call is segmented into a sequence of
audio clips aligned with their corresponding text sentences, as
spoken by the CEO during the call, summing up 88,829 aligned
sentences. We temporally divide the data into train, validation
and, test sets in a ratio of 70 : 10 : 20, respectively, in chrono-
logical order to ensure future data, is not used for forecasting.
We extract stock prices for each company using Yahoo Finance6

from 1 January 2017 till 31 December 2017.

5We were unable to map price data for 11 data points, which were
subsequently dropped.

6https://finance.yahoo.com/
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Table 2: n-day volatility prediction errors for models

Model MSEavg MSE3 MSE7 MSE15 MSE30

Vpast 1.12 2.99 0.83 0.42 0.23
LSTM [34] 0.75 1.97 0.46 0.32 0.24
HAN(GloVe) [35] 0.60 1.43 0.46 0.31 0.20
MDRM (Audio) [3] 0.60 1.41 0.44 0.32 0.22
MDRM [3] 0.58 1.37 0.42 0.30 0.22
HTML (Text) [9] 0.46 1.18 0.37 0.15 0.13
HTML [9] 0.40 0.85 0.35 0.25 0.16
Ours 0.35 0.73 0.33 0.22 0.12

5. Experimental Settings
Training Setup: We explored the following hyperparam-
eters: number of hidden layers, size of hidden layers of
BiLSTM and Dense, dropout δ ∈ [0, 0.8], learning rate
λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}, batch size b ∈
{8, 16, 32, 64} and epochs (< 100). Adam [33] was employed
for optimizing the MSE of the proposed model. All three BiL-
STM’s used after text, audio, and cross-modal gated attention
fusion were set to have 100 hidden units each. The number of
neurons in the time distributed dense layer following the audio
and text BiLSTM’s is 100, while the number of neurons in the
penultimate dense layer is 50. SiameseBERT outputs a 768-
dimensional embedding for each sentence where 768 is the size
of the hidden layer dimension in the BERT architecture. The
maximum number of audio clips in any call is 520. Hence, all
audio and textual input features lesser than maximum length are
padded. The node neighborhood search procedure of the multi-
node2vec algorithm depends on three hyper-parameters- p, q,
and r - that dictate the exploration of the random walk away
from the source node and the tendency to traverse layers. We
use the default values of p = 1, q = 0.50, and r = 0.25 to tra-
verse breadth-wise, depth-wise, and across the layers with ap-
propriate probabilities, thus capturing all possible correlations.
Baselines and Evaluation metrics: We compare our approach
with previously studied conventional methods and recent state-
of-the-art approaches against the MSE between the true and pre-
dicted log volatility. Following [3], we use Vpast: a measure
of past volatility, which could be indicative of future volatility.
We also compare against LSTM [34]-based approaches that use
historical price data, and Hierarchical Attention Networks [35]
that are commonly used for analyzing earnings calls transcripts.
We compare against the previously discussed deep multimodal
architectures: MDRM [3] and HTML [9], which are the cur-
rent state-of-the-art. We also consider their unimodal variants
MDRM (Audio) and HTML (Text).

6. Results & Analysis
6.1. Drawing Insights from Quantitative Comparisons

In Table 2, we report quantitative comparisons against the base-
lines discussed above. Sudden drift in volatility following an
earnings call makes short term volatility estimation more impor-
tant and chaotic [36]. It is evident from the results that our ap-
proach gives a significant gain for these complex tasks (τ = 3, 7
days). Based on Post Earnings Announcement Drift (PEAD)
[36], similar to works [9, 3], we observe diminishing gains in
comparison to simple baselines as time elapses from the calls.
Through the ablation study shown in Figure 2a, we find the per-
formance gains by augmentation of verbal cues and correlation
networks with speech. The best results achieved by fusing all
three modalities can be attributed to the fusion of speech and
text via attention mechanism, and network embeddings. Thus

0 0.2 0.4 0.6

All

Audio + Graph

Audio + Text

Text + Graph

Audio

0.35

0.4

0.41

0.41

0.6

Average MSE

(a) Ablation Analysis

-3 -2 -1 0 1 2 3
0.14

0.16

0.18
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dda apq11

(b) DG: Shimmer Analysis

Figure 2: Qualitative insights: Ablation and Case study

diverse contributing factors across modalities boost prediction.

6.2. Case Study: Impact of Vocal Cues and Stock Networks

We conduct a case study to analyze the significance of the mul-
timodal components of our approach. Our analysis is based on
the Q3-2017 earnings call for DG (Dollar General), an Ameri-
can retail chain. The stock’s price became highly volatile for a
few days following the earnings call. We study the audio fea-
tures of the call through the CEO’s vocal cues and the text tran-
script and correlation graphs of the company. Figure 2b shows
the disparity between CEO’s vocal and verbal cues around the
utterance ”It is also important to note that we’re lapping signif-
icant working capital improvements from 2016. We continue to
be pleased with our solid cash flow generation.” Here, the col-
ors represent token-level attention. While the language seems
positive, we see a sudden spike in the shimmer features in the
CEO’s voice while speaking this sentence, showing disagree-
ment across verbal and vocal cues. As per acoustic research
[22], an elevated shimmer pattern can be an indicator of under-
lying stress in human speech. After the call, it was noted that the
company’s gross margin slipped by 0.4% due to the increased
transportation costs due to hurricane Irma in 2017.

On analyzing relation graphs, we observe that DG has edge
connections with WMT (Walmart) and TGT (Target Corp.),
both of which are retail variety stores, like DG. Analysts had
estimated a negative impact of about $2.8 Billion on the retail
sector due to the hurricane Irma. This examination is also re-
flected in the high volatilities recorded for WMT and TGT dur-
ing the same quarter. A unimodal model may miss these subtle
disparities between text and audio.

7. Conclusion
Volatility, measured as a deviation in returns, is a reliable in-
dicator of market risk linked with a stock. Owing to its sig-
nificance across finance, and beyond, volatility forecasting has
seen applications through neural architectures. A rich source of
company information is earnings calls, which provide high risk-
reward opportunities given their uniqueness. Although evidence
shows that enriching models with speech and inter-stock corre-
lations can improve volatility forecasting, this area is underex-
plored. To address this, we propose the first neural architecture
that jointly exploits coherence over speech, text, and inter-stock
correlations. Through experiments on S&P 500 index data, we
show the merit of cross-modal gated attention fusion and graph-
based learning. We analyze an earnings call of Dollar General,
a US retail chain, for qualitative insight.
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