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Abstract 

Automatic speech recognition (ASR) systems are known to 

perform poorly under whispered speech conditions. One of the 

primary reasons is the lack of large annotated whisper corpora. 

To address this challenge, we propose data augmentation with 

synthetic whisper corpus generated from normal speech using 

Cycle-Consistent Generative Adversarial Network 

(CycleGAN). We train CycleGAN model with a limited corpus 

of parallel whispered and normal speech, aligned using 

Dynamic Time Warping (DTW). The model learns frame-wise 

mapping from feature vectors of normal speech to those of 

whisper. We then augment ASR systems with the generated 

synthetic whisper corpus. In this paper, we validate our 

proposed approach using state-of-the-art end-to-end (E2E) and 

hybrid ASR systems trained on publicly available Librispeech, 

wTIMIT and internally recorded far-field corpora. We achieved 

23% relative reduction in word error rate (WER) compared to 

baseline on whisper test sets. In addition, we also achieved 

WER reductions on Librispeech and far-field test sets. 

Index Terms: ASR, CycleGAN, speech-to-whisper, DTW, 

E2E 

1. Introduction 

Virtual Assistants have become part of our daily life. They help 

in getting work done with intuitive and direct voice commands 

making the tedious touch based interface redundant. Having 

seamless usage requires the assistants, especially speech 

recognition systems they contain, to work in many challenging 

scenarios including when the user whispers. Whisper is 

particularly useful when the user needs to interact with the 

assistant while in a meeting or at a public place, to keep the 

interaction private and subtle. In addition, whisper is useful in 

home environment to avoid disturbing others while conversing 

with assistants.  

Regular Automatic Speech Recognition (ASR) systems built 

on frameworks such as RETURNN [1], EESEN [2], and 

DeepSpeech [3] and trained with normal speech might not 

perform well on whisper due to significant differences between 

acoustic characteristics of normal and whispered speech. 

Normal or phonated speech is generated by the vibration of 

vocal folds and resonance of the vocal cord that releases air in 

short pulses. This vibration is observed as fundamental 

frequency F0 but is absent in the case of whispered speech as 

the vocal folds are held open to allow the air to pass through. 

Additionally, the difference in the sound production mechanism 

leads to shifting of formants towards higher frequencies and 

broadening of formant ranges thereby spreading the spectrum 

content. The important information (i.e. speaker dependent 

information, change of signal characteristics, etc.) 

distinguishing different phones is lost and an ASR system that 

has not seen whispered speech in its training has a lot more 

confusion in distinguishing phones leading to a sharp drop in 

performance. These complexities in general and its similarities 

with acoustic characteristics of noise make whispered speech 

recognition a challenging task.  

 Data augmentation is a proven technique for improving the 

performance of speech recognition, where huge amounts of 

speech is used in general [4, 5, 6, 7]. However due to the dearth 

of whisper data compared to speech corpora, whisper 

recognition remains a challenging task. So, we propose a novel 

synthetic whisper data augmentation technique based on 

CycleGAN [8].  

    Generative Adversarial Network (GAN) [9] is one of the 

widely known frameworks among generative modelling 

approaches. It learns the training data distribution under 

adversarial conditions, to generate target samples having same 

statistics. It comprises of a generator that learns distributions 

and a discriminator that learns to differentiate real samples from 

generated ones. They are particularly used for style or domain 

transfer tasks [8,10,11,12,13,14]. CycleGANs have been 

successful in computer vision tasks such as image-to-image 

translation [8], speech related tasks such as emotion style 

transfer [15], voice transformation on impaired speech [16], and 

voice conversion [17].  
    In the literature, Denoising Autoencoders have been used for 

generating pseudo-whisper [18] and simple DNNs have been 

used for the purpose of generating whispered speech from 

phonated speech [19], but CycleGANs give an edge due to their 

adversarial architecture and stabilization of GAN training due 

to their cycle consistency. Though CycleGANs can be used 

with unpaired data, better performance is achieved with paired 

data and for pairing whisper and normal speech, techniques 

such as Dynamic Time Warping (DTW) can be used. 

    To the best of our knowledge, this is the first attempt to use 

CycleGAN’s data augmentation mechanism for improving 

ASR performance, both on whisper as well as far field speech. 

In section 2, we introduce CycleGAN architecture and present 

how we use it to generate synthetic whisper data from a large 

speech corpus using WORLD vocoder [21] for speech synthesis. 

In section 3, we present RWTH’s RETURNN end-to-end (E2E) 

ASR [1] and a Hybrid ASR system [22], and analyze the quality 

of the generated synthetic whisper data by training them with 

different combinations of synthetic whisper, natural whisper, 

and normal speech. In section 4, we report the results and show 

that augmenting using synthetic data boosts the performance of 

baseline models. We also show that in normal test cases, the 
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performance is maintained or improved considerably when 

augmented with synthetic whisper data. 

2. Proposed Method 

2.1. Cycle-Consistent Generative Adversarial Network 

CycleGAN [8] consists of two generators 𝐺𝑠2𝑤 , 𝐺𝑤2𝑠 and two 

discriminators 𝐷𝑠 , 𝐷𝑤 . 𝐺𝑠2𝑤  maps speech (𝑋) to whisper (𝑌) 

while 𝐺𝑤2𝑠  maps whisper to speech. 𝐺𝑠2𝑤: 𝑋 → 𝑌  and 

𝐺𝑤2𝑠: 𝑌 → 𝑋, both these functions are bijections and inverses 

of each other. 𝑋̂  =  𝐺𝑤2𝑠(𝑌) , 𝑌̂  =  𝐺𝑠2𝑤(𝑋) are the generated 

speech and whisper samples respectively, as shown in Figure 1. 

𝑋" =  𝐺𝑤2𝑠(𝑌̂), 𝑌" =  𝐺𝑠2𝑤(𝑋̂) are the reconstructed speech 

and whisper samples converted from their target domain. After 

passing through each of these generators once, they tend to form 

their original feature vector, hence ensuring cycle consistency. 

The discriminators try to differentiate between real and fake 

samples in their respective domain. 

    The loss function has three components: The adversarial 

loss(ℒ𝑔𝑎𝑛), shown in (1), tends to bring the real and converted 

sample i.e. 𝑋  and 𝑋̂  or 𝑌  and 𝑌̂  close as possible using the 

mean squared error. The cycle-consistency loss(ℒ𝑐𝑦𝑐), shown in 

(2), ensures that 𝑋 or 𝑌 tends to retain its original feature vector 

after passing through the two generators, using L1 loss. The 

identity loss( ℒ𝑖𝑑 ), shown in (3), ensures that 𝑋  or 𝑌  when 

belongs to target domain is not transformed, using L1 loss. 

 
ℒ𝑔𝑎𝑛(𝐺𝑠2𝑤, 𝐷𝑤 , 𝑋, 𝑌) =  𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑌)[(𝐷𝑤(𝑦))2] 

                                        +  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑋)[(1 − 𝐷𝑤(𝐺𝑠2𝑤(𝑥))2] (1) 

 

ℒ𝑐𝑦𝑐(𝐺𝑠2𝑤, 𝐺𝑤2𝑠, 𝑋, 𝑌) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑋)[∥ 𝐺𝑤2𝑠(𝐺𝑠2𝑤(𝑥)) − 𝑥 ∥1]   

                                          + 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑌)[∥ 𝐺𝑠2𝑤(𝐺𝑤2𝑠(𝑦)) − 𝑦 ∥1]   (2) 

 
ℒ𝑖𝑑(𝐺𝑠2𝑤, 𝐺𝑤2𝑠, 𝑋, 𝑌) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑋)[∥ 𝐺𝑤2𝑠(𝑥) − 𝑥 ∥1] 

                                        + 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑌)[∥ 𝐺𝑠2𝑤(𝑦) − 𝑦 ∥1]    (3) 

 

The model weights are learnt as the generators and 

discriminators compete by applying the minimax defined as 

 

𝐺𝑠2𝑤
∗, 𝐺𝑤2𝑠

∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐺  𝑚𝑎𝑥𝐷 ℒ(𝐺𝑠2𝑤 , 𝐺𝑤2𝑠, 𝐷𝑤 , 𝐷𝑠)   (4) 

 

where, 
ℒ(𝐺𝑠2𝑤 , 𝐺𝑤2𝑠, 𝐷𝑤 , 𝐷𝑠) = ℒ𝑔𝑎𝑛(𝐺𝑠2𝑤 , 𝐷𝑤 , 𝑋, 𝑌) + ℒ𝑔𝑎𝑛(𝐺𝑤2𝑠, 𝐷𝑠, 𝑋, 𝑌) 

                                         + 𝜆𝑐𝑦𝑐 ∗ ℒ𝑐𝑦𝑐(𝐺𝑠2𝑤 , 𝐺𝑤2𝑠, 𝑋, 𝑌) 

                                         + 𝜆𝑖𝑑 ∗ ℒ𝑖𝑑(𝐺𝑠2𝑤 , 𝐺𝑤2𝑠, 𝑋, 𝑌)   (5) 

 

using the back propagation algorithm. The generators try to fool 

the discriminators, and the discriminators try to identify the 

fake samples and in this adversarial setup all these networks 

become proficient at their respective tasks. 

 

2.2. DTW 

Dynamic Time Warping (DTW) is used to align feature vectors 

of corresponding normal and whisper audios in the parallel data 

used for training the CycleGAN model. DTW is a signal 

alignment algorithm, which matches two temporal sequences 

with a monotonically increasing optimal warping path 

satisfying boundary conditions. Let, 𝑋 and 𝑌 be N-dimensional 

frame wise sequence of speech and whisper feature vectors, 

respectively as shown below. 

 
𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 
𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑛 

                                            𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁] 

       𝑦𝑗 = [𝑦𝑗1, 𝑦𝑗2, … , 𝑦𝑗𝑁]  (6) 

 

where, 𝑛 and 𝑚 are the number of frames or feature vectors in 

speech and whisper. An optimal path 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝐾  is 

computed with the condition 𝑚𝑎𝑥(𝑛, 𝑚) ≤ 𝐾 ≤ 𝑛 + 𝑚 , 

where 𝑤𝑘 = (𝑖, 𝑗), 𝑤𝑘+1 = (𝑖′, 𝑗′) such that 𝑖 ≤ 𝑖′ ≤ 𝑖 + 1,  𝑗 ≤
𝑗′ ≤ 𝑗 + 1 . 𝑖  and 𝑗  are monotonically increasing indices in 

speech and whisper frames respectively. The warp path as 

shown in Figure 2 is such that the following Euclidean distance 

is minimized. 

 

𝐷𝑖𝑠𝑡(𝑊) = ∑ 𝐷𝑖𝑠𝑡(𝑤𝑘𝑖, 𝑤𝑘𝑗)𝑘=𝐾
𝑘=1    (7) 

3. Experimental Setup 

3.1. ASR systems 

To make sure that the proposed approach has wider 

applicability and is ASR agnostic, we evaluate it with both E2E 

ASR and Hybrid ASR systems as described below 

 

E2E ASR: We choose RWTH Aachen's open source state of 

the art RETURNN [1] toolkit, which is based on E2E encoder-

attention-decoder architecture. Log-filterbank energy (LFBE) 

features are used. We use the trained RETURNN models 

without pre-trained LSTM language model, presented in [23], 

in recognition step. 

 

Hybrid ASR: It comprises a separate acoustic and an n-gram 

language model. We use Kaldi [24] for GMM-HMM training 

and tensorflow for training an LSTM acoustic model consisting 

of 4 hidden layers with sizes 1100, 990, 880 and 770. We follow 

standard Kaldi recipe for WSJ corpus to train LDA-MLLT 

GMM-HMM. We use this model to generate senone alignment 

Figure 1: CycleGAN consisting of mapping functions 

Gs2w , Gw2s and discriminators Ds , Dw , respectively. 

Figure 2: DTW optimal mapping between speech and 

whisper frames(shown for only 1 dimension for better 

visualization). 
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for training the acoustic model used as baseline.  The 39-dim 

features used in the experiments include the 13-dim static Mel-

frequency cepstral coefficient (MFCC) (with C0 replaced with 

energy) and its first and second derivatives. The features were 

pre-processed with the cepstral mean normalization (CMN) 

algorithm. Decoding is done using a 3-gram LM, which is 

further rescored using a 6-gram language model having 

vocabulary size of one million words. The training procedure 

of the ASR system is similar to the one described in [22]. 

3.2. Datasets 

Librispeech. [25] We use this data set for training baseline 

ASR systems and as the source for generating synthetic whisper 

data set. It contains 960 hours of speech sampled at 16 kHz. The 

training portion of the corpus has three subsets, approximately 

with sizes 100, 360, and 500 hours. The entire 960 hours data is 

used for training RETURNN ASR while train-clean-100 and 

train-clean-360 are used for generating synthetic whisper data. 

wTIMIT. [26] It consists of 450 phonetically balanced 

utterances in both normal and whispered speech with two 

accents: Singaporean-English and North American with 24 and 

28 speakers, respectively [26]. It is recorded at 44.1kHz and is 

gender balanced. It consists of around 26 hours of parallel 

normal and whispered data. 

Internally Recorded Trainset (TR1). It consists of 450 

utterances both in normal and whispered speech internally 

recorded by 200 speakers under clean conditions. It is recorded 

at 44.1kHz and is gender balanced. It consists of 180 hours of 

parallel normal and whispered near-field data. 

Internally Recorded Testset (TS1). It contains a total of 2500 

internally recorded utterances of 20 speakers in both normal and 

whispered speech under normal office environment sampled at 

16kHz. We further add different noise profiles to them using 

Kaldi wav-reverberate [28] mechanism taking the total to 

10000 utterances. 

Internally Recorded Far-field Testset (TS2). It contains 5200 

normal speech utterances recorded by 20 speakers at 1m and 

3m distances under clean conditions. The audio files are 

recorded with sampling rate of 16kHz and the dataset is gender 

balanced. Additional test cases are generated by mixing 

background noises such as babble, kitchen and TV using Kaldi 

wav-reverberate mechanism taking the total number of test 

cases to 20800. 

All internal data sets are recorded in North American Accent. 

3.3. WORLD Vocoder  

To obtain audio from whisper feature vectors synthesized with 

CycleGAN, we use WORLD [21] vocoder, shown in Figure 4. 

It consists of three analysis algorithms for determining 

fundamental frequency F0, spectral envelope, and aperiodic 

parameters and a synthesis algorithm to generate speech signal 

using these three parameters. F0 is calculated by an estimation 

algorithm named Distributed Inline-filter Operation (DIO) [27]. 

The spectral envelope consists of 24-dimensional smoothed 

spectrogram features, estimated by algorithm called 

CheapTrick [28]. Aperiodic parameter is extracted using 

algorithm called PLATINUM [29]. Since whisper does not 

contain pitch, F0 is made zero and aperiodic parameter is taken 

as 513-dimensional unit vector as the source of whisper is 

aperiodic due to lack of periodic airflow. Whisper signal is 

generated using these parameters using a synthesizer [21] 

module. 

3.4. CycleGAN Setup and Training 

The generators and discriminators are implemented as standard 

feed-forward DNNs each having three hidden layers with 512 

neurons each and Rectified Linear Units (ReLUs) as activation 

function. The model is trained for 300 epochs with learning rate 

set to 0.0001 and weight decay to 1e-5. For training we use 

Adam optimization [30] and a batch size of 1000 implemented 

in PyTorch version 1.2.0. 

    The relative weights of identity and cycle-consistency loss, 

𝜆𝑖𝑑  and 𝜆𝑐𝑦𝑐 , are set to 5 and 10 respectively. CycleGAN is 

trained using WORLD’s [21] 24-dimensional smoothed 

melspectrogram features extracted from 30 hours of TR1. We 

use the trained model to convert the smoothed mel-spectrogram 

features extracted from 460 hours of Librispeech consisting of 

train-clean-100 and train-clean-360 datasets into synthetic 

whisper features. F0 is taken to be zero and aperiodic parameter 

is taken to be 513-dimensional unit vector for all frames of 

synthetic whisper and synthesizer is used to generate the 

whisper signals forming the synthetic whispered dataset (TR2). 

Spectrogram of a sample normal speech signal and its converted 

synthetic whisper speech signal is shown in Figure 3. 

3.5. ASR Experiments 

E2E RETURNN ASR model (b0) is trained with 960 hours of 

Librispeech data using 40-dimensional LFBE features and 

taken as baseline model for E2E ASR experiments. Next, we 

train an augmented synthetic whisper model (s1) with training 

data of baseline model b0 combined with 460 hours of synthetic 

whispered data generated from Librispeech dataset (TR2). 

Figure 3: Spectrogram  of normal speech(i) and 

synthetic whisper generated using CycleGAN(ii). 

 

Figure 4: Structure of World Vocoder consisting of three 

algorithms DIO, CheapTrick and PLATINUM to estimate three 

parameters and a synthesizer to generate waveform. 
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Model s2 is trained on training data of model s1 with additional 

wTIMIT (normal and whisper) and internally recorded whisper 

(TR1) train set.  

    We train another baseline model, which is Hybrid ASR (b1), 

as described in section 3.1. The next model (s3) is trained with 

training data of model (b1) added with synthetic whispered data 

(TR2).  The model (s4) is trained with training data of (s3) 

combined with wTIMIT (normal and whisper) and internally 

recorded whisper (TR1) train set. The results of all the models 

with testing on Librispeech  and wTIMIT are presented in Table 

1. The performance of Hybrid ASR model and its derivatives 

with internally recorded near-field (TS1) and far-field (TS2) 

test sets are shown in Table 2. The block diagram of the 

experiments is shown in Figure 5. 

 

 Table 1: WER (%) comparison of end-to-end 

(b0,s1,s2) and hybrid(b1,s3,s4) models 

Model LibriSpeech wTIMIT 

Test 

Id Sys dev- 

cln 

dev-
oth 

test-
cln 

test-
oth 

norm whsp 

b0 Baseline 6.5 16.9 6.2 18.0 12.9 37.1 

s1 +Wsyn 6.5 17.1 6.3 18.1 12.1 32.1 

s2   +Wnat 6.1 15.9 5.9 16.9 9.5 29.4 

b1 Baseline 6.8 16.3 7.1 16.2 19.2 44.3 

s3 +Wsyn 6.8 16.3 7.3 16.4 18.3 40.9 

s4   +Wnat 6.9 16.4 7.3 16.4 18.2 35.0 

4. Results 

Table 1 presents the results obtained for test sets of LibriSpeech 

and wTIMIT. The models s1 (E2E) and s3 (Hybrid), trained 

with synthetic whisper (TR2) in addition to their respective 

baseline models, show relative WER reductions of 13.5% and 

7.6%, respectively, on wTIMIT whisper test set, while on 

normal test sets, both show minimal increase for LibriSpeech 

and slight decrease for wTIMIT. Table 2 presents the results 

obtained for test sets (TS1) and (TS2). The model s3 (Hybrid) 

shows relative WER reduction of 23%, 20% and 16% on clean 

whisper, noisy whisper and normal speech test cases of the test 

set (TS1) respectively. It achieves relative WER reduction of 

26% and 15% respectively on 5 meter and 3 meter test cases of 

far field normal speech test set (TS2). The improvements on 

(TS1) and (TS2) test sets are significant considering the fact 

that they have more number of utterances and speakers, have 

wider noise profile added, and match the application 

environment.  

    The models s2 (E2E) and s4 (Hybrid) are trained with an 

additional corpus of wTIMIT (normal and whisper) and 

recorded whisper data (TR1), respectively. As shown in Table 

1, they both have further reduced whisper WER by 8% and 14% 

respectively in wTIMIT whisper without degrading 

performance for normal speech. We can infer that there is more 

scope for improvement with CycleGAN based model that can 

be explored. 

     

Table 2: WER(%) comparison of Hybrid models on 

near-field(TS1) and far-field(TS2) testsets 

Model   Near-field Far-field 

Id whsp 

(clean) 

whsp 

(noisy) 

norm 

(clean) 

norm 

(noisy) 

1m 3m 

b1 27.9 30.9 7.2 7.4 6.6 10.9 

s3 21.5 24.8 6.2 6.1 5.6 8.0 

s4 18.6 21.9 5.4 6.1 5.6 7.7 

5.  Conclusions and Future Work 

We have proposed a novel data augmentation method using 

CycleGAN for whispered speech recognition. We achieved 

noticeable WER reduction on whispered test set while 

maintaining its performance with near-field speech and 

improved performance with far-field speech. Similar gains in 

performance is observed irrespective of the features (MFCC or 

LFBE) used. The proposed approach is promising in expanding 

the reach of whisper recognition, particularly for low resource 

languages under limited or sparse data conditions. The 

experiments with natural recorded whisper show that the 

CycleGAN approach has still scope for improvement, which we 

will be pursuing as part of our future work. We also observe 

that the CycleGAN model may have less language dependency 

and we plan to build unified models. We plan to release 

CycleGAN models as open source in the near future. 
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