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Abstract
The information from different modalities usually compensates
each other. In this paper, we use the audio and visual data
in VoxCeleb dataset to do person verification. We explored
different information fusion strategies and loss functions for
the audio-visual person verification system at the embedding
level. System performance is evaluated using the public trail
lists on VoxCeleb1 dataset. Our best system using audio-visual
knowledge at the embedding level achieves 0.585%, 0.427%
and 0.735% EER on the three official trial lists of VoxCeleb1,
which are the best reported results on this dataset. Moreover, to
imitate more complex test environment with one modality cor-
rupted or missing, we construct a noisy evaluation set based on
VoxCeleb1 dataset. We use a data augmentation strategy at the
embedding level to help our audio-visual system to distinguish
the noisy and the clean embedding. With such data augmented
strategy, the proposed audio-visual person verification system is
more robust on the noisy evaluation set.
Index Terms: person verification, multi-modal information fu-
sion, embedding, data augmentation

1. Introduction
Multiple biometric characteristics could be used to verify a per-
son’s identity, where speech and face are two typical ones. Ac-
cordingly, face verification and speaker verification are hot re-
search topics in the biometric field. The recent thriving deep
learning technologies greatly boost the performance of both
tasks. Different architectures [1, 2, 3, 4] and different loss func-
tions [5, 6, 7, 8] have been investigated by the researchers in the
past few years, leading to well-performing systems which can
even be commercialized for real-world applications.

Despite the success in single modality applications, multi-
modal learning has attracted more and more attention from
academia and industry. The motivation comes in two folds.

1. The complementary information from different modali-
ties could improve system performance.

2. Models built from multiple modalities tend to be more
robust and fault-tolerant, and the failures in the single
modality could be fixed or suppressed.

Audio and vision are two most commonly used informa-
tion sources, and a lot of related multi-modal learning work
has been carried out [9, 10, 11]. Researchers investigated to
fuse the lip information from video data with the audio fea-
tures to help speech recognition [12, 13] or speech separation
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tasks [14, 15, 16, 17]. In the biometric recognition field, many
researchers found that simply fusing the scores from the face
recognition and speaker recognition systems could obtain im-
pressive results [18, 19, 20, 21, 22]. Authors in [23] tried to
fuse the audio-visual information at the embedding level to im-
prove the online person verification system.

Similar to [23], in this paper, cross-modality integration is
carried out at the embedding level, where the more powerful
segment-level trained speaker embeddings are used. Different
fusion strategies and loss functions are investigated and com-
pared in the multi-modal learning framework.

Moreover, to imitate the real-world scenes, we constructed
a noisy evaluation set with one modality corrupted or miss-
ing. To compensate the performance degradation, a novel
embedding-level noise distribution matching (NDM) data aug-
mentation method [24] is proposed, which greatly improved the
performance under noisy condition.

All the systems are evaluated on the standard Vox-
Celeb1 dataset, and our best multi-modal system achieves
0.585%, 0.427% and 0.735% EER on the three trial lists (Vox-
Celeb1 O, VoxCeleb1 E and VoxCeleb1 H) respectively, which
are the best reported results on this dataset to our knowledge.
Furthermore, the NDM based multi-modal system shows the
ability to select more salient modality information when evalu-
ated on the noisy evaluation set.

2. Methodology
2.1. Embedding Level Multi-Modality Fusion

In this section, we will introduce three approaches to fuse the
face embedding ef and voice embedding ev to one person iden-
tity embedding ep. As shown in Fig.1, ef and ev are first trans-
formed to ẽf ∈ RD and ẽv ∈ RD through transform layers
ftrans f and ftrans v, respectively:

ẽf = ftrans f(ef )

ẽv = ftrans v(ev)
(1)

The transformed ẽf and ẽv lie in a co-embedding space which
are more suitable for the later fusion.

2.1.1. Simple Soft Attention Fusion

In this section, we first introduce a simple soft attention (SSA)
across the modality axis used in [23]. As shown in Fig. 1 (left),
given the face and voice embedding ef and ev , the attention
score â{f,v} ∈ R2 through attention layers fatt (·) is defined as:

â{f,v} = fatt ([ef , ev])
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Figure 1: Three multi-modal fusion strategies at the embedding level

Then the fusion embedding is calculated by the weighted
sum as:

ep =
∑

i∈{f,v}

αiẽi, where αi =
exp (âi)∑

k∈{f,v} exp (âk)
, i ∈ {f, v}

(2)

2.1.2. Compact Bilinear Pooling Fusion

Bilinear pooling fully explores the relationship between two
vectors using outer product operation and has no training pa-
rameters involved. However, the outer product is usually infea-
sible in practice due to its high dimensionality. The work in
[25] introduced a method, called multi-modal compact bilinear
pooling (MCB), to approximate the outer product result and re-
duce the result’s dimension at the same time. It’s worth noting
that there are no training parameters in MCB either. As shown
in Fig. 1 (middle), we directly use the compact bilinear pool-
ing to fuse the ẽf and ẽv to ep. The implementation details
about compact bilinear pooling can be found in [25], which is
originally used for visual question-answering system.

2.1.3. Gated Multi-Modal Fusion

In this section, we use a gate to control the information flow
from face and voice modality, which is inspired by the flow con-
trol in recurrent architectures like GRU or LSTM, and we call
it gated multi-modal fusion (GATE). The work in [26] presents
the similar idea to fusion the information from image and text
modality. As shown in Fig. 1 (right), given the face and voice
embedding ef and ev , a gate vector z ∈ RD can be calculated:

z = σ(fatt ([ef , ev]))

And then, we use the gate vector z to fuse ẽf and ẽv to ep,
and � denotes the element-wise product:

ep = z� tanh(ẽf ) + (1− z)� tanh(ẽv) (3)

2.2. Loss Function

In this section, we would introduce the loss functions we used
to optimize proposed multi-modality fusion systems.

2.2.1. Contrastive Loss With Aggressive Sampling Strategy

The original contrastive loss is defined as:

Lcon =
1

N

∑
i,yi=1

Di +
1

M

∑
k,yk=0

max(0,m−Dk) (4)

where D is the distance between a pair, N and M are the num-
bers of positive and negative pairs in a batch. y = 1 and y = 0
denote the positive and negative pair respectively, and m is the
margin. In our experiment, we use cosine similarity to measure
the distance of embedding pairs.

The tuned margin m in original contrastive loss makes the
loss focus more on “hard” negatives. However, the “hard” pos-
itives are not considered. Here, we introduce a more aggressive
sampling strategy, and similar idea is also used in [27]. During
training, after the forward-propagation of the neural network,
we only use a subset of γM “hardest” negatives and γN “hard-
est” positives (γ ∈ (0, 1]) to calculate the loss. Contrastive loss
with new sampling strategy can be defined as:

Lcon =
1

γN

∑
i,yi=1

max(0, Di −Dp low)

+
1

γM

∑
k,yk=0

max(0, Dn high −Dk)
(5)

where Dp low denotes the smallest distance in all “hardest” pos-
itives and Dn high denotes the largest distance in all “hardest”
negatives.

2.2.2. Additive Angular Margin Loss

In addition, we also tried the popular angular margin loss [6] in
our experiment. For an input with person identity label ys, the
loss is defined as:

Ls = − log
es·cos(θys+m)

es·cos(θys+m) +
∑n
j=1,j 6=ys e

s·(cos θj)
(6)

where m is the additive margin and s is scale parameter which
can help the model converge faster. In our experiment, s is set
to 32 and m is set to 0.6 in the fusion system.

2.3. Embedding Level Augmentation for Noisy Evaluation

2.3.1. Noisy Evaluation Set Construct

Information from different modalities is not always available or
salient enough to do the verification task. In real applications,
one modality is often corrupted or missing because of some in-
evitable external factors, such as the ambient light, the motion
of people or the background noise. To address such conditions,
we construct a noisy evaluation set based on VoxCeleb1 evalu-
ation set.
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For the image data, we use vertical and horizontal motion
blur to imitate the motion of person and use the Gaussian blur
to imitate other noises. For the audio data, three kinds of noises
in Musan [28] are combined with the original data to generate
the corrupted audio samples. We also consider the completely
missing case of one modality by directly setting the correspond-
ing extracted embedding to zero values. The detailed pipeline
to construct this dataset is shown in Algorithm 1.

Algorithm 1: Noisy Evaluation Set Construct
1 Initialize noisy probability pnoise = 0.3. Here, we use
{1, 2, 3} to denotes 3 different noises which can be added to
both modalities and use 4 to denote missing modality.

2 for recordingi ∈ VoxCeleb1 do
3 Randomly sample a value η ∈ (0, 1)
4 if η < pnoise then
5 Randomly select a noisy type value k ∈ {1, 2, 3, 4}.
6 Randomly select a modality type in {face, voice};
7 if k == 4 then
8 Set the seleted modality’s embedding to zero

vector;
9 Extract another modality’s embedding using

recordingi;
10 else
11 Add noise with noise type k to the seleted

modality in recordingi to get noisy recordingi;
12 ef = FaceSystem(noise recordingi);
13 ev = VoiceSystem(noise recordingi);

14 else
15 ef = FaceSystem(recordingi);
16 ev = VoiceSystem(recordingi);

2.3.2. Embedding Level Augmentation

To build a system which is more robust to the corrupted audio-
visual data, an additional embedding-level augmentation strat-
egy is proposed in this work. In our previous work, we use
deep generative models such as generative adversarial network
(GAN) [29] or variational autoencoder (VAE) [30] to mimic the
distribution of noisy speaker embeddings. Here, instead, a sim-
ple statistics based distribution matching algorithm is used.

We randomly selected 100,000 recordings from the train-
ing set (1,092,009 recordings) and generated different types of
corrupted data. Then, for each noise type, we assume the differ-
ence between the noisy embeddings and original embeddings
could be described by a Gaussian distribution. After estimating
the parameters of the noise distribution, we sample noise from
the distribution and directly add it to the original embedding
to generate a noisy embedding. We term this embedding-level
augmentation method as noise distribution matching (NDM).
Compared directly adding noises to the whole training set and
extract augmented embeddings, NDM only uses a small por-
tion of the training data and directly augments the embeddings,
which saves both time and disk. Besides, we still use the zero
vector to imitate the case of modality missing.

3. Experimental Setups
3.1. Dataset

In our experiments, we use visual and audio data from Vox-
Celeb1 & 2 datasets [31, 32]. For training, we use the DEV
part of VoxCeleb2 dataset, which includes 5,994 speakers and
1,092,009 utterances. VoxCeleb1 is used as the evaluation set.

Three official trial lists1 Vox1-O, Vox1-E and Vox1-H are used
for evaluation. It is noted that the visual data from official Vox-
Celeb1 dataset is incomplete, and we downloaded the missing
visual data from youtube and make it public2.

3.2. Experimental Setups

3.2.1. Single-Modality Systems

For audio data, 40-dimensional Fbank features are extracted
using Kaldi toolkit [33], with silent frames removed using an
energy-based voice activity detector. Then we do the CMN on
the Fbank features with sliding-window size 300. For video
data, we extract 1 frame per second. Then, we use MTCNN
[34] to detect the face landmarks and use a similarity transfor-
mation to map the face region to the same shape (3x112x96).
Finally, we normalize pixel value of each image to [0, 1] and
subtract 0.5 to map the value range to [−0.5, 0.5].

During training, the Fbank features from one utterance is
split to chunks with chunk-size from 200 to 400. During test-
ing, we extract one voice embedding for each recording, and
multiple face embeddings from one recording are averaged to
obtain one single face representation.

In our experiments, the 50-layer SE-ResNet described in
[35] is used for the face system and the 34-layer ResNet de-
scribed in [36] is used for the voice system. Embeddings of
both systems are set to dimension 512. AAM loss with a mar-
gin m = 0.2 are used to optimize both systems.

3.2.2. Multi-Modality System

Face and voice embeddings are extracted from the single-
modality systems for all the recordings in the training set. Then,
all the embeddings are L2-normalized to construct the new
training set for the audio-visual multi-modality system.

For the SSA fusion systems, the transform layers are two
fully connected layers both with 512 units, and the attention
layer is a fully connected layer with 2 units. For compact bilin-
ear fusion and gated multi-model fusion, the transform layers
are both a fully connect layer with 512 units. The attention lay-
ers in gated multi-model fusion system are two fully connected
with 32 and 512 units respectively. For all the adjacent fully
connected layers above, we insert another batchnorm and relu
layer in the middle.

4. Results And Analysis
4.1. Evaluation on Embedding Level Multi-Modal Fusion

To fuse the information from the face and voice modalities, dif-
ferent fusion strategies, different loss functions are explored and
compared in our embedding-level fusion systems. The results
and analysis will be presented in this section.

The results of single-modality system are shown at the top
in Table. 1. We find that the face and the voice single-modality
systems are basically comparable. As shown in the third line of
the table, the result of simple score average between these two
single-modality systems largely exceeds both single-modality
systems, which shows the strong complementary power be-
tween audio and visual modalities.

1http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/vox2.html

2https://github.com/czy97/
VoxCeleb1-missing-cropped-face-images
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4.1.1. Loss Functions Comparison

Firstly, the SSA fusion strategy with the supervision of con-
strastive loss is investigated, which is also the best system in
[23]. However, as shown in middle part of Table 1, in our ex-
periments, the original contrastive loss based system doesn’t
converge to a good optimal, and the fusion system even ob-
tained a much worse performance than the single-modality sys-
tems. To enhance the constrastive loss, the revised version with
more aggressive sampling strategy introduced in Section 2.2.1
is adopted, exhibiting a much better result (SSA+Con-new). To
give a more intuitive exhibition of the new strategy’s effective-
ness, the distribution of the distance between the positive and
negative pairs is shown in Figure. 2. It shows that the new con-
trastive loss can enlarge the difference between the positive and
negative distance. Furthermore, instead of the constrastive loss,
we also used the classification based AAM-Softmax loss for the
multi-modal system optimization, which substantially outper-
forms the constrastive loss. AAM-softmax and new contrastive
loss would be mainly used for the following experiments.

(a) Original Contrastive Loss (b) New Contrastive Loss

Figure 2: Distance distribution of the positive / negative pairs

4.1.2. Fusion Strategies Comparison

Different fusion strategies introduced in Section 2.1 are com-
pared in this section, while the AAM-softmax loss or new con-
trastive loss provides the supervision signal. Results are shown
in the middle part of Table. 1. From the results, all three fu-
sion strategies achieve remarkable improvement compared with
the single-modality systems, and the gated multi-modal fusion
architecture performs the best. However, the simple score aver-
aging still performs the best, which is not consistent with the
findings in [23]. The possible reason is that we have much
stronger single-modality systems in this work: using the same
trial list of VoxCeleb2 test, we achieve 4.08% and 3.43% EER
for face and voice, respectively, while the corresponding num-
ber in [23] is 14.5% and 8.03% 3. This big difference can also
attribute to the different experimental setups, and we adopted
segment-level optimization in our systems, while the authors in
[23] used frame-level embedding extractors to enable the online
verification.

In addition, when we jointly use the AAM loss and the new
contrastive loss, a further improvement is obtained and the per-
formance on Vox1-E and Vox1-H trails exceed the score average
result. The results are shown in the penultimate line of Table.
1. Surprisingly, we find the fusion system using proposed mod-
els complements the simple score average system. When we
further average the score of the GATE+AAM+Con-new fusion
system with the averaged score from single-modality systems,
the best system performance is obtained. To the best of our

3We would like to thank Suwon Shon for providing the customized
trial list of VoxCeleb2 test

knowledge, this is also the best published result for person ver-
ification on the VoxCeleb1 evaluation dataset.

Table 1: Results comparison using different fusion strategies
and losses. Con-orig: original contrastive loss. Con-new: pro-
posed contrastive loss using more aggressive sampling strategy.
The m in Con-orig is set to 0.5 and γ in Con-new is set to 0.05

Modal Fusion Loss Test Trial (EER %)
Vox1-O Vox1-E Vox1-H

Face — AAM 2.260 1.542 2.374
Voice — AAM 2.308 2.234 3.782

1© ScoreAvg - 0.505 0.432 0.782

SSA
Con-orig 5.303 4.880 10.30
Con-new 1.766 1.192 2.452

Voice AAM 0.670 0.584 1.009
+ MCB Con-new 0.925 0.869 1.661

Face AAM 0.803 0.604 0.997

GATE Con-new 1.026 1.031 2.199
AAM 0.670 0.469 0.801

2© GATE AAM+Con-new 0.585 0.427 0.735
1© + 2© ScoreAvg — 0.499 0.379 0.683

4.2. Evaluation on Corrupted and Missing Modality

To test the fusion system on the more complex real condition
with one modality corrupted or missing, results are evaluated
using the noisy evaluation set illustrated in section 2.3.1, and
the results are shown in Table. 2. From the results, we find that
simple score average operation can still significantly improve
the performance, and the proposed multi-modality fusion sys-
tem trained with augmented embedding data achieves the best
result for this condition. Besides, the audio-visual fusion sys-
tem trained only on clean embeddings does not have the ability
to distinguish noisy embedding from clean embedding well and
achieves slightly poor results. Noted that the results in brackets
show that the proposed fusion system trained with augmented
embeddings can still perform well on clean evaluation set.

Table 2: Results (EER %) comparison on noisy evaluation
set. We use the GATE+AMM+Con-new fusion system here.
Train Clean: Fusion system trained on clean embedding.
Train Noise: Fusion system trained with augmented noisy em-
bedding. The result in brackets is tested on clean evaluation
set.

Trial Voice Face ScoreAvg GATE+AMM+Con-new
Train Clean Train Noise

Vox1-O 11.58 9.855 3.962 6.446 (0.585) 2.500 (0.659)
Vox1-E 10.77 9.995 3.146 5.928 (0.427) 2.128 (0.513)
Vox1-H 12.68 11.48 4.777 7.355 (0.735) 3.251 (0.929)

5. Conclusions
In this paper, we explored different multi-modality fusion
strategies and loss functions for person verification system, and
it can effectively combine the audio and visual information at
the embedding level. Based on the strong single-modal sys-
tem, our best system achieves 0.585%, 0.427% and 0.735%
EER on the three official trial lists of VoxCeleb1, which is, to
our knowledge, the best published results on this dataset. Be-
sides, we also introduce an embedding level data augmentation
method, which helps the audio-visual multi-modal person veri-
fication system perform well when some modality is corrupted
or missing.
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