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Abstract
Audio-visual speaker recognition is one of the tasks in the re-
cent 2019 NIST speaker recognition evaluation (SRE). Studies
in neuroscience and computer science all point to the fact that
vision and auditory neural signals interact in the cognitive pro-
cess. This motivated us to study a cross-modal network, namely
voice-face discriminative network (VFNet) that establishes the
general relation between human voice and face. Experiments
show that VFNet provides additional speaker discriminative in-
formation. With VFNet, we achieve 16.54% equal error rate
relative reduction over the score level fusion audio-visual base-
line on evaluation set of 2019 NIST SRE.

Index Terms: Audio-visual speaker recognition evaluation,
cross-modal verification, multimedia, SRE 2019

1. Introduction
Speaker recognition has enabled many real-world applica-
tions [1–4]. These systems are expected to perform effectively
under adverse conditions. The NIST speaker recognition eval-
uation (SRE)s are organized to benchmark systems in different
such scenarios [5]. Various robust systems are developed in the
past that perform effectively and provides state-of-the-art [6,7].
Unlike previous SREs, the 2019 NIST SRE investigated a new
direction on audio-visual (AV) SRE [8]. The evaluation task
deals with verifying the claimed identity of a person for a given
pair of enrollment and test videos. In other words, it advocates
the use of audio-visual cues for improved speaker recognition
in real-world scenarios.

The significance of processing multimedia in other fields
has increased in the recent years [9]. The latest audio-visual
SRE can be viewed as one such outcome following this trend.
Some of the other tasks considering multimedia instead of sin-
gle modality using speech are automatic speech recognition
(ASR) [10], speech separation [11] and speech diarization [12].
The studies in these works exploited the association of audio
and visual cues adequately. For instance, in audio-visual ASR,
lip language recognition is used to support ASR systems; in
audio-visual speech separation, the movement of mouth can as-
sist detecting who is speaking when.

While coming to audio-visual SRE, the simplest way to per-
form multimedia based speaker recognition is to have separate
systems for audio and visual inputs, then combine the results
of speaker and face recognition systems [8, 13]. We note sepa-
rating audio-visual SRE into two sub-tasks is a straight forward
approach to simplify the problem. However, the two subsys-
tems are disjoint and one does not consider the knowledge from
other. It is further worth emphasizing that the motivation to
process multimedia for SRE is not only to add another visual
system but also to explore the relationship between the audio
and video. Therefore, disregarding the association between dif-
ferent modalities may result in the loss of some information.

The studies in neuroscience show that humans associate the
voice and the face of a person in the memory [14]. While listen-
ing to a voice of an individual, one can select the right static face
corresponding to the same person between two static faces at a
higher than chance level and vice versa [15–18]. In computer
science, there has been study on cross-modal biometric match-
ing [19]. Further, various works use pair-wise loss-based meth-
ods to improve the cross-modal system performance [20, 21].
The learned associations between audio and visual cues are
general identity features (such as gender, age and ethnicity)
and appearance features (such as big nose, chubby and double
chin) [22, 23]. The existing works utilize both joint and dis-
joint general information between two modalities to train the
cross-modal verification network to determine if the given face
and speech segment belongs to the same identity for verification
tasks [24–26]. We believe that the general cross-modal discrim-
inative features provide additional information in audio-visual
speaker recognition.

In this work, we propose a cross-modal discriminative net-
work, that is called voice-face network (VFNet), to learn the
association between voice and face. VFNet is trained using
speaker and face embeddings collectively that are extracted
from separate systems. We consider x-vector and InsightFace
based systems for extracting the speaker and face embeddings,
respectively [27, 28]. Further, these two systems are used for
SRE using audio as well as visual input based single systems,
followed by their fusion for a baseline audio-visual system. The
output of VFNet is used to represent the general association be-
tween voice and face. The speaker recognition studies are con-
ducted on 2019 NIST SRE corpus. The contributions of this
paper include the novel idea of cross-modal discriminative net-
work, and its use in audio-visual speaker recognition study.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed VFNet based cross-modal verification sys-
tem. In Section 3, we present the audio-visual speaker recog-
nition with cross-modal verification. Section 4 and Section 5
reports the experiments and their results, respectively. Finally,
Section 6 concludes the work.

2. Cross-modal Verification
This section describes the proposed VFNet for cross-modal ver-
ification. Figure 1 shows the architecture of VFNet that consid-
ers two inputs: a voice waveform and a human face. The output
of the network is a confidence score to describe whether the
voice and the face come from the same person. We now discuss
the detailed pipeline of VFNet.

First, the speaker and the face embeddings are extracted by
x-vector and InsightFace models, respectively [27,28]. As both
these embeddings represent information from different modal-
ity, they are fed to a 256-D fully connected layer (FC1) with
the rectified linear unit (ReLU) activation, then followed by an-
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Figure 1: Architecture of the proposed cross-modal discrimina-
tion network, VFNet, that relates the voice and face of a person.

other 128-D fully connected layer (FC2) without the ReLU.
These layers are introduced to lead the speaker and face em-
beddings for learning the cross-modal identity information from
each other. Further, they help to project the embeddings from
both modalities into a new domain, where their relation can be
established.

For a given pair of speaker embedding ev and a face em-
bedding ef , their transformed embeddings Tv(ev) and Tf (ef )
are derived from VFNet, followed by the cosine similarity
scoring S(Tv(ev), Tf (ef )) between them. We also have 1 −
S(Tv(ev), Tf (ef )) to represent the negative voice-face pair. By
using softmax function based on these two scores, the output of
VFNet is obtained as

p1 =
eS(Tv(ev),Tf (ef ))

eS(Tv(ev),Tf (ef )) + e1−S(Tv(ev),Tf (ef ))
(1)

p2 =
e1−S(Tv(ev),Tf (ef ))

eS(Tv(ev),Tf (ef )) + e1−S(Tv(ev),Tf (ef ))
(2)

where final output p1 is the score to describe the probability that
the voice and the face belong to the same person, p2 being the
score depicting the probability that the voice and the face do not
belong to the same person. Finally, we feed our predictions p
and the ground truth verification labels p̂ to optimize the cross-
entropy loss Lp̂(p) as follows

Lp̂(p) = −
∑
i

p̂i log(pi) (3)

3. Audio-visual Speaker Recognition with
Cross-modal Verification

In audio-visual SRE, an enrollment video provides the target
individual’s biometric information (voice and face) and the as-
signment asks the model to automatically determine whether
the target person is present in a given test video [8].

Figure 2 shows the proposed audio-visual speaker recog-
nition framework with VFNet on the left panel, and the base-
line, a voice-face score level fusion system, on the right panel.
The given voice segments of the target speakers from the enroll-
ment utterances and the entire test utterances are considered for
extracting the speaker embeddings using x-vector system [27].
Similarly, the InsightFace system extracts the face embeddings
for given faces of the target speakers from the enrollment videos
and all detected faces from the test videos [28].

On the left panel, the VFNet system provides an associa-
tion score between the target speaker voice in the enrollment
and the detected faces from the test video. Matching pairs be-
tween voice and face will give rise to high association, while
mismatches, such as age, gender, and ethnicity discrepancy, will
do otherwise.

On the right panel, the audio and visual systems run in
parallel to verify the claimed identity by computing match be-
tween the enrollment and the test embeddings. We note that the
speaker recognition system considers probabilistic linear dis-
criminant (PLDA) based likelihood scores, whereas the face
recognition system computes cosine similarity scores. We con-
sider the baseline system as a score level fusion between the two
parallel systems.

We propose to fuse the VFNet score and the baseline audio-
visual system as shown in Figure 2 for a final decision. The
score level fusion is performed using logistic regression for var-
ious systems discussed in this work. We report performance of
the VFNet, baseline systems, and the overall system separately
in the experiments.

4. Experiments
In this section, the details of the audio and visual systems de-
veloped in this work are mentioned. The database, embedding
extraction and audio-visual speaker recognition systems are de-
scribed in the following subsections.

4.1. Database

We consider the original videos corresponding to VoxCeleb2
corpus to derive a set with voices and faces for cross-modal
verification [29]. For each video, the entire audio is extracted
to represent the voice of the speaker. On the contrary, we per-
form a face detection on each video and then consider the most
prominent faces representing an individual. For cross-modal
discriminative training, the positive trials are faces and voices
come from the same identity, whereas the negative trials are ob-
tained by shuffling the faces and voices belonging to different
persons. A summary of VoxCeleb2 corpus used for cross-modal
verification is shown in Table 1. VFNet learns the general asso-
ciation between voice and face from VoxCeleb2.

We consider 2019 NIST SRE audio-visual corpus as the
speaker recognition application [8]. The evaluation set has
provided manually marked diarization labels for voice and
keyframe indices along with target speaker’s face bounding
boxes in the enrollment videos. However, no such information
is provided for the test segments. A summary of this corpus is
also shown in Table 1. We note that to maximize the usage of
cross-modal information in this corpus, we extract the speaker
and face embeddings of the target person from the enrollment
segments of development set, then combine them with that of
VoxCeleb2 to retrain the VFNet.
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Figure 2: Block diagram of proposed audio-visual (AV) speaker recognition framework with VFNet, where VFNet provides voice-face
cross-modal verification information that strengthens the baseline audio-visual speaker recognition decision.

Table 1: Summary of VoxCeleb2 and 2019 SRE audio-visual
(AV) corpora.

VoxCeleb2 Train Test

# identity 5, 994 108
# faces 1, 088, 047 36, 166
# voices 1, 092, 009 36, 237

# cross-modal trials 2, 176, 094 72, 332

2019 SRE (AV) Development Evaluation

# enroll segments 52 149
# test segments 108 452
# target trials 108 452

# non-target trials 5, 508 66, 896

4.2. Embedding Extraction

We use an x-vector based system to extract the speaker embed-
dings [27]. The speech utterances are processed with an energy
based voice activity detection to remove the non-silence regions
and 30-dimensional mel frequency cepstral coefficient (MFCC)
features are extracted. In addition, a short-time cepstral mean
normalization is applied over a 3-second sliding window. The
x-vector extractor is trained using VoxCeleb1-2 corpora and the
detailed settings of x-vector network architecture can be found
in [30].

For extracting the face embeddings, we first use the ResNet-
50 RetinaFace model trained using WIDER FACE database [31]
for detecting the faces [32] followed by multi-task cascaded
convolutional network (MTCNN) [33] to align them. We then
use InsightFace to obtain highly discriminative features for face
recognition by using the additive angular margin loss [28]. In
addition, it consists of ResNet-100 extractor model trained on
cleaned MS1MV2 database [34] to extract the face embeddings.

The dimension of both speaker and face embeddings are

kept as 512 in our studies. The speaker and face embeddings
for VFNet to perform cross-modal verification follow the same
pipeline discussed above.

4.3. Audio-visual Speaker Recognition

Although the dimensions of speaker and face embeddings are
the same, the back-end scoring for respective individual sys-
tem is different. We use linear discriminant analysis (LDA) on
speaker embeddings for channel/session compensation and re-
duce the dimension of x-vectors to 150. Finally, PLDA is used
as a classifier to get the final speaker recognition score. On the
other hand, cosine similarity between face embeddings from en-
rollment video and that from the detected faces in the test video
are computed. Finally, the average of top 20% scores of the
number of face embeddings in the test video are taken to derive
the final face recognition score.

We now focus on the back-end of audio-visual SRE with
VFNet. The VFNet back-end computes the likelihood score be-
tween the speaker embedding of the target speaker and all the
face embeddings of detected faces in the test video as given by
Equation (1). Finally, the average of top 20% scores is taken,
which is then combined with the scores generated from audio
and visual systems by logistic regression. It is to be noted that
cross-modal verification can also be done by considering the all
the given faces in the enrollment video and the detected multiple
speaker voices in the test audio. However, it requires an addi-
tional speaker diarization module to detect the voice belonging
to different speakers in the test audio. Therefore, we follow the
former approach for audio-visual SRE with VFNet.

We use Bosaris toolkit [35] to calibrate and fuse the scores
of different systems. The performance of systems are reported
in terms of equal error rate (EER), minimum detection cost
function (minDCF) and actual detection cost function (actDCF)
following the protocol of 2019 NIST SRE [8].
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Table 2: Comparative study between the proposed VFNet and
other systems in cross-modal verification.

Model EER (%) AUC (%) Database

DIMNet [25] 24.56 NA VoxCeleb, VGGFace
SSNet [26] 29.5 78.8 VoxCeleb
Pins [24] 29.6 78.5 VoxCeleb
VFNet 22.52 85.4 VoxCeleb2

Table 3: Comparative study between the proposed VFNet and
other systems in cross-modal matching. V-F and F-V refer to
cases that consider reference modality as voice and face, re-
spectively.

Model Accuracy (%) DatabaseV-F F-V

SSNet [26] 78 NA VoxCeleb
Horiguchi’s [20] 78.1 77.8 VoxCeleb, MS-Celeb-1M

Kim’s [22] 78.2 78.6 VoxCeleb
SVHF [19] 81.0 79.5 VoxCeleb, VGGFace
Pins [24] 84 NA VoxCeleb

DIMNet [25] 84.12 84.03 VoxCeleb, VGGFace
VFMR [21] 84.48 NA VoxCeleb2, VGGFace2

VFNet 85.39 86.12 VoxCeleb2

5. Results and Analysis
5.1. Cross-modal Verification Studies

We evaluate the performance of proposed VFNet on VoxCeleb2
corpus for cross-modal verification studies and compare with
some of the existing systems. The performance comparison is
shown in Table 2, where EER and area under the ROC curve
(AUC) are considered as the performance metrics.

We observe that VFNet performs effectively for cross-
modal verification. Further, it is to be noted that we do not
claim from this study that VFNet outperforms other systems as
the results are evaluated on different corpora. We rather try to
show that VFNet alone is comparable to the existing systems for
cross-modal verification. For brevity, we do not go through the
details of various systems [24–26] considered for cross-modal
verification.

Further, to measure VFNet performance more comprehen-
sively, we extend the studies for cross-modal matching task. For
a given human voice and two static faces, this task aims to find
the more inclined face to the voice, and vice versa. We note
that this task also relates to 2019 NIST audio-visual SRE as
there are multiple speakers present in the test videos that have
to be matched with the target speaker in the enrollment video.
For this cross-modal matching study, we add one more shared
weights sub-branch to the original VFNet model for the selec-
tion requirements. The performance of VFNet thus obtained
and its comparison to some of the other systems for cross-modal
matching task in terms of accuracy is shown in Table 3. We
observe that the effectiveness of VFNet holds good for cross-
modal matching task as well and the performance is comparable
to other systems.

5.2. Audio-visual SRE with VFNet Studies

We now study audio-visual speaker recognition with VFNet.
To show the effect of VFNet, we first fuse the single modality

Table 4: Performance comparison of various systems on 2019
NIST SRE audio-visual corpus.

Development Set

System EER (%) minDCF actDCF

Speaker Recognition 08.62 0.367 0.399
with VFNet 09.82 0.365 0.393

Face Recognition 04.52 0.349 0.371
with VFNet 03.85 0.324 0.355

Audio-visual SRE 03.70 0.141 0.166
with VFNet 03.20 0.141 0.141

Evaluation Set

Speaker Recognition 06.36 0.326 0.339
with VFNet 05.79 0.317 0.320

Face Recognition 01.77 0.074 0.098
with VFNet 01.66 0.073 0.094

Audio-visual SRE 01.33 0.050 0.068
with VFNet 01.11 0.049 0.062

speaker, face recognition systems with VFNet. Table 4 reports
the performance comparison of various systems and with and
without VFNet.

Examining the effect on single modality systems, we find
that the contribution of VFNet is more evident for speaker
recognition system on the evaluation set. Further, the VFNet
is also able to enhance the audio-visual baseline system per-
formance that suggests usefulness of associating audio and vi-
sual cues by cross-modal verification for audio-visual SRE. We
obtain relative improvements of 16.54%, 2.00% and 8.83% in
terms of EER, minDCF and actDCF, respectively.

6. Conclusions
In this work, we propose a novel framework for audio-visual
speaker recognition with cross-modal discrimination network.
The VFNet based cross-modal discrimination network finds the
relation between a given pair of human voice and face to gen-
erate a confidence score if they correspond to the same person.
While VFNet can perform comparable to the existing state-of-
the-art cross-modal verification systems, the proposed frame-
work of audio-visual speaker recognition with VFNet outper-
forms the baseline audio-visual system. This highlights the
importance of cross-modal verification, in other words, the re-
lation between audio and visual cues for audio-visual speaker
recognition.
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