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Abstract
The series of speaker recognition evaluations (SREs) organized
by the National Institute of Standards and Technology (NIST)
is widely accepted as the de facto benchmark for speaker recog-
nition technology. This paper describes the NEC-TT speaker
verification system developed for the recent SRE’19 CTS Chal-
lenge. Our system is based on an x-vector embedding front-end
followed by a thin scoring back-end. We trained a very-deep
neural network for x-vector extraction by incorporating resid-
ual connections, squeeze-and-excitation networks, and angular-
margin softmax at the output layer. We enhanced the back-end
with a tandem approach leveraging the benefit of supervised and
unsupervised domain adaptation. We obtained over 30% rela-
tive reduction in error rate with each of these enhancements at
the front-end and back-end, respectively.
Index Terms: speaker recognition, benchmark evaluation

1. Introduction
Benchmark evaluations and challenges have been the major
driving force advancing speaker recognition technology [1, 2,
3, 4, 5]. Among these, the series of speaker recognition eval-
uations (SREs) conducted by NIST are the most prominent
and influential. From the first SRE in 1996 [6] to the recent
editions [7, 8, 9], how speaker comparison is carried out has
changed substantially. Modern approaches first represent the
enrollment and test utterances as fixed-length vectors – the so-
called speaker embedding. These embeddings are then com-
pared using a simple inner product, or more commonly scored
using a probabilistic linear discriminant analysis (PLDA) back-
end. This paper presents the key advancements in this approach
and benchmarks its performance with the latest NIST SRE’19.

The SRE’19 marks the latest event in the series of SRE con-
ducted by NIST. The benchmark evaluation comprises two parts
– CTS Challenge and Multimedia Challenge. In the CTS Chal-
lenge, the train set consists of English utterances while the test
set consists of Tunisian Arabic utterances, which poses a sub-
stantial mismatch with the train set. For the Multimedia Chal-
lenge, the major challenge is the multi-speaker test scenario, for
which an additional diarization module has to be used to deter-
mine the target speaker (if any) from a given test segment. This
is coupled with a face recognition from video task. Concerning
the speaker recognition task, the core technology used in both
challenges share similar components - feature extraction, VAD,
x-vector extraction, score normalization and calibration. This
paper presents the technical details of the datasets, sub-system
development, and analysis of the NEC-TT submission to the
SRE’19 CTS Challenge.

The aim of this paper is twofold. Firstly, we present tech-
niques that we have found effective for SRE’19. In this regard,
we found that residual connection is a key ingredient to train

very-deep neural network for extracting speaker embedding.
We also present a better solution to handle domain mismatch.
Secondly, we share our insights and findings on what works for
speaker recognition in general and possible future directions.

2. Train, Dev and Augmentation sets
The SRE’19 evaluation set consists of narrowband conversa-
tional telephone speech (CTS) drawn from the call-my-net 2
(CMN2) corpus. The design of CMN2 corpus follows the pro-
tocol reported in [10]. In particular, the CMN2 corpus consists
of recordings spoken in Tunisian Arabic, which were collected
over the traditional public switched telephone network (PSTN)
and the more recent voice over IP (VOIP). Different from that of
the SRE’19-Eval set, the training set comprises mainly English
utterances and were collected over landline and mobile PSTN
networks. These differences in terms of languages (Tunisian
Arabic vs. English) and channel (VoIP vs. PSTN) causes a con-
siderable mismatch between the trained model and test data. As
we shall illustrate further in this paper, our results show that
such domain mismatch could be dealt with by adding small
amount of in-domain data to the training set, and also by adapt-
ing the PLDA scoring back-end.

Table 1 shows the list of corpora that we used for SRE’19
CTS Challenge. Most part of the training set listed in Table
1 were provided by NIST and LDC. It encompasses the Fisher,
Switchboard and SRE’ 04, 05, 06, 08, 10, 12, 16 datasets, which
have been used extensively in previous SREs. We also used
audio-from-video (AfV) data after down-sampling them to 8
kHz. This includes VoxCeleb-1 and VoxCeleb-2 corpora [4]
and an in-house dataset collected from YouTube by ourselves.
The in-house dataset has a considerable size of 3, 672 speakers,
383, 575 utterances, and a total duration of 977 hours.

Also listed in Table 1 are audio and noise datasets used for
data augmentation. These include MUSAN [11], PRISM [12],
and a collection of room impulse responses (RIR) prepared for
the REVERB Challenge [13].

3. NEC-TT Speaker Verification System
Fig. 1 shows the functional blocks in NEC-TT 2019 speaker
verification system. In the following, we highlight those com-
ponents that had contributed to good performance in SRE’19
CTS Challenge.

3.1. Pre-processing
We use a DNN-based voice activity detection (VAD) algorithm
to discard non-speech frames. The DNN receives a sequence
of 40-dimensional mel frequency cepstral coefficients (MFCCs)
extracted from each frame of 25 ms (with 10-ms shift), and pro-
duces frame-wise posterior probabilities of voice, noise, and si-
lence classes. The DNN was trained with the Fisher corpus.
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Figure 1: NEC-TT 2019 speaker verification system comprises a pipeline of functional blocks that converts an input test utterance to
x-vector embedding (i.e., the front-end) and scoring with a heavy-tailed PLDA (HT-PLDA) back-end.

Table 1: List of speech corpora and audio datasets designated
as train, development, and data augmentation sets for SRE’19
CTS Challenge.

Usage Dataset

Train (out-of-domain) SRE’04-05-06-08-10-12-16
Swb-2 Phase I, II, III
Swb-Cell Part 1, 2
Fisher 1, 2
VoxCeleb 1, 2

Train (in-house) NEC-TT in-house AfV corpus
Train (in-domain) SRE’18-Eval

SRE’18-CMN2-Unlabeled
Dev (in-domain) SRE’18-Dev
Data Augmentation MUSAN, PRISM

Reverb Challenge RIR

See [14] for details.

3.2. X-vector extraction

Our variant of x-vector extractor [15] consists of forty-three
TDNN layers [16] with residual connections [17] and squeeze-
and-excitation (SE) blocks [18, 19]. The detail structures is
shown in Table 2. The pooling layer uses a two-head attentive
statistics pooling [20] in the same way as in [21, 22]. Additive
margin softmax loss [23] was used for optimizing the network.
The 512-dimension bottleneck features from utt1 layer was
used as the x-vector embedding.

Data augmentation was used to increase the amount of
training data and improve robustness. This include adding noise
(e.g., babble, music), imposing channel noise (codec) and con-
volutive variation (e.g., room reverberation) to the original au-
dio recordings, as follows:

• Adding noise, music, and mixed speech drawn from the
MUSAN [11] and PRISM [12] database at various SNR;

• Adding reverberation by using simulated room impulse
responses (RIR) [24], and real RIR drawn from the RE-
VERB challenge database [13]; and

• Encoding speech segments with an AMR codec at 6.7
and 4.75 kbps.

With the above strategy, we increase the amount of training data
by three folds.

3.3. Scoring back-end

Heavy-tailed PLDA (HT-PLDA) [25, 26] was used as the scor-
ing back-end. In HT-PLDA, the observations r follows a t-
distribution:

P (r|z) = T (r|Fz,W , ν), (1)

where z is the latent variable, F is the factor loading matrix,
W is a positive definite precision matrix, and ν is known as
the degrees of freedom. Our previous report [21] shows that
heavy-tailed PLDA performs better than the Gaussian PLDA.

Table 2: Structure of our x-vector extractor with forty-three
layers. The notation {k, d, o} indicates the configuration of a
TDNN, i.e., 1D convolution layer with kernel size k, dilation
rate d, output dimension o, and [·] denotes a residual block.

Layer Structure

frame1 {5, 1, 512}
frame2 {1, 1, 512}

frame3:12

[
{3, 2, 512}
{1, 1, 512}

]
× 5

frame13:22

[
{3, 3, 512}
{1, 1, 512}

]
× 5

frame23:32

[
{3, 4, 512}
{1, 1, 512}

]
× 5

frame33:42

[
{3, 5, 512}
{1, 1, 512}

]
× 5

frame43 {1, 1, 1500}
pool Two-head attentive statistics
utt1 512
utt2 512
output Additive margin softmax

3.4. Score normalization and calibration

Scores from all the sub-systems were subject to score normal-
ization before calibration and fusion. To this end, we use sym-
metric normalization (s-norm) with an adaptive cohort selection
scheme [27]. Cohorts were selected from the SRE’18 CMN2
Unlabelled set, which matches well the development, and there-
fore the evaluation set. To a certain extent, score normalization
using the in-domain cohort set performs a score-level domain
adaptation.

At the end of the pipeline is the score calibration, whereby
scores are scaled and shifted with a linear function. The pa-
rameters are trained by optimizing the log-likelihood ratio cost
(Cllr). We refer the readers to [28] for further discussion on Cllr
and its implementation. Score calibration was performed using
the Dev (in-domain) set.

4. Key Advances
We enhanced NEC-TT SRE’19 speaker verification system at
two fronts, namely, (i) a deeper x-vector extractor with residual
connections, squeeze-and-excitation (SE) blocks, and angular
softmax, and (ii) tandem approach to domain adaptation.

4.1. Very-deep x-vector extractor

A typical x-vector extractor consists of three functional blocks,
namely, (i) a frame processor (frame) consisting of multiple
layers of TDNN, (ii) a statistical pooling layer (pool), and (iii)
utterance classification (utt). The x-vector embedding is ex-
tracted from the first classification layer before the activation
function) [15].

Table 2 shows the neural network architecture of our x-
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Figure 2: (a) A residual block comprises a TDNN layer, a fully-
connected (FC) layer, and a residual connection. (b) Squeeze-
and-excitation (SE) block attached to output of a residual block.
The shaded box indicates activation function (ReLU and Sig-
moid in this case), and BN denotes batch normalization.

Table 3: Performance comparison of x-vector extractor with in-
creasing depth.

SRE’18-Dev SRE’19-Eval

EER (%) Min Cost EER (%) Min Cost

Five layers 4.03 0.281 3.95 0.369
Forty-three layers 3.40 0.229 2.68 0.255

vector extractor. The frame processor was extended from five
layers, which are typical in most implementations [15, 21], to
forty three TDNN layers. The increased depth is made possible
by the use of residual connection [17]. As shown in Fig. 2(a),
each residual block consists of a TDNN followed by a fully
connected (FC) layer. A residual connection passes the input
to the TDNN directly to the output of the fully connected layer.
This connection allows gradients to flow through the residual
block directly, and annihilates the vanishing gradient problem
in training very-deep neural networks. In Table 2, FC layers are
implemented as TDNNs with kernel size k = 1, dilation factor
d = 1, with o = 512 output channels. We used four residual
blocks, each repeated five times, with different dilation factors.

Table 3 shows a comparison of x-vector extractors with in-
creasing depth. We kept the pooling and classification layers
the same for the comparison. By increasing the number of lay-
ers from 5 to 43, we obtain significant reduction in EER and
Min Cost across the two test sets. On SRE’18-Dev set, the re-
duction amounts to 15.6% and 18.5% in EER and Min Cost,
respectively. On SRE’19-Eval set, we obtained over 30% of
improvement in EER and Min Cost.

4.2. Angular softmax

One key feature that leads to the effectiveness of x-vector is the
discriminative cross-entropy loss that optimizes the inter-class
separation via the output softmax layer. Angular softmax [23]
was proposed with the intention to promote intra-class com-
pactness while attaining inter-class separation. In this work, we
used the variant referred to as the additive margin softmax [23],

which is defined as follows:

S(yi) =
es·cos(θyi )−m

es·cos(θyi )−m +
C∑

j=1;j 6=yi
es·cos(θj)

(2)

Here, θyi is the angle between the input vector (to the softmax
layer) and the weight vector of class yi among the C target
classes. The parameters s and m control the size of the an-
gular margin introduced to the classification loss. We refer the
readers to [23, 29] for further details.

The effects of angular softmax could be seen by comparing
front1, with front2 and front3 in Table 4. Compared to
the front1 baseline using the plain vanilla softmax, front3
gives a relative improvement of 19.7% and 7.5% in Min Cost
on SRE’18-Dev and SRE’19-Eval sets, respecitvely, while the
impacts on EER is marginal. Though effective, our results show
that angular softmax is relatively sensitive to the values of pa-
rameters s and m. This can be seen by comparing the perfor-
mance of front2 and front3 with different values used for
these parameters.

4.3. Squeeze and excitation

The goal of the squeeze-and-excitation (SE) [19] is to find a set
of weights (within zero and one) to be assigned to each output
dimension (or channel) of the TDNN layer. SE is realized with a
small neural network attached to the output of the TDNN layers.
Figure 2(b) shows a SE block attached to a residual block. The
output of the FC layer is pooled across time (i.e., squeeze) to
obtain a mean vector and its standard deviation. These are used
to estimate a set of weights to apply on (i.e., excite) individual
output dimensions of the residual block. The objective is to add
content-awareness by weighting these dimensions depending on
the input sequence.

We experimented with two configurations. In the first,
five SE blocks were attached to residual-blocks {4, 8, ..., 20}.
In the second, ten SE blocks were used on residual-blocks
{2, 4, ..., 20}. Comparing the performance of front3, with
front4 and front5 in Table 4, there is no apparent benefit
by adding SE networks. We even observe considerable degra-
dation on Min Cost, though the impacts on EER is negligible.

4.4. Domain adaptation

Parameter tuning and optimization of the x-vector extractor
were carried out using the Train (out-of-domain) set
listed in Table 1. The training set is different from that of the
SRE’19-Eval set in terms of languages (Tunisian Arabic vs. En-
glish) and channel (VoIP vs. PSTN). As such, mismatch be-
tween the model and the test data is expected.

Domain adaptation was performed on the PLDA using the
SRE’18 data, which has the same domain as the SRE’19-Eval
set. In this regard, we use a tandem approach [30] lever-
aging the benefit of supervised [31] and unsupervised [32]
PLDA adaptation. Our strategy is as follows. First, the
Train (out-of-domain) set was used to produce an out-
of-domain PLDA. Unsupervised domain adaptation was then
applied with CORAL+ [32] using the in-domain SRE’18 set
to produce a pseudo in-domain PLDA (note that speaker la-
bels were not used in the adaptation). On the other hand, we
trained an in-domain PLDA using the SRE’18 dataset. The final
PLDA is obtained as a linear interpolation between the pseudo
in-domain PLDA and the in-domain PLDA (i.e., covariance ma-
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Table 4: Comparison of seven different configurations of x-vector extractor. The train set consists of out of domain (OOD), in-domain
(InD), and in-house subsets as shown in Table 1.

Front-end Train set A-Softmax SE SRE’18-Dev SRE’19-Eval

OOD InD In-house s m #blocks EER (%) Min Cost EER (%) Min Cost

front1 X - - - 3.40 0.229 2.68 0.255
front2 X 32 0.20 - 3.65 0.214 2.66 0.259
front3 X 40 0.15 - 3.52 0.184 2.48 0.236
front4 X 40 0.15 5 3.41 0.212 2.42 0.245
front5 X 40 0.15 10 3.21 0.209 2.50 0.248
front6 X X 40 0.15 - 2.99 0.152 2.31 0.217
front7 X X 40 0.15 - 3.50 0.209 2.50 0.237

Fusion 3.16 0.160 2.17 0.208

Table 5: Comparison of supervised, unsupervised, and tandem
approaches to domain adaptation of PLDA.

SRE’18-Dev SRE’19-Eval

EER (%) Min Cost EER (%) Min Cost

OOD PLDA 4.38 0.284 3.58 0.298
Unsupervised [32] 3.69 0.203 3.01 0.258
Supervised [31] 3.57 0.215 2.63 0.248
Tandem (this study) 3.52 0.184 2.48 0.236

trices interpolation). We used an equal weight of 0.5 in the in-
terpolation.

Table 5 shows the comparison of supervised [31], unsuper-
vised [32], and our tandem approaches to domain adaptation
of PLDA. The x-vectors were extracted using front3 (see
Table 4). As expected, supervised adaptation gives a better
results than the unsupervised counterpart since speaker labels
were used in the former. Nevertheless, the performance gap is
rather small. The tandem approach leverages the strength of
both techniques. Compared to the OOD PLDA, the improve-
ment amounts to 19.6% reduction in EER and 35.2% reduction
in Min Cost on SRE’18-Dev set, while 30.7% reduction in EER
and 20.8% reduction in Min Cost were obtained on SRE’19-
Eval set.

5. Sub-systems and Fusion
NEC-TT primary submission to SRE’19 CTS Challenge was
a fusion system consisting of seven sub-systems. All sub-
systems used the x-vector PLDA pipeline as shown in Fig. 1.
We trained seven x-vector front-ends with different configura-
tions as shown in Table 4. As described earlier in Section 4.2,
front1 used softmax, while front2 and front3 used ad-
ditive margin softmax. Based on front3, SE blocks, as de-
scribed in Secion 4.3, were inserted to produce front4 and
front5. Based on front3, front6 used additional in-
domain SRE’18-Eval set, while front7 used additional in-
house AfV dataset. An adapted HT-PLDA back-end was used
to produce seven sub-systems.

The x-vector extractors front1 to front5 were trained
using the out-of-domain train set. We investigated the effective-
ness of adding in-domain and our in-house AfV data to the train
set. Besides the total speech duration, what we aim to achieve
is the expansion of the x-vector output layer with an increased
number of speakers in the train set.

We added SRE’18-Eval set (200 speakers) to the out-of-
domain train set (≈ 14, 200 speakers) and used them to train
front6 in Table 4. Similarly, front7 was trained with our
in-house AfV data (≈ 3, 600 speaker) together with the out-

of-domain train set. Comparing front6 to front3 in Ta-
ble 4, we observe a consistent improvement on SRE’18-Dev
and SRE’19-Eval sets. On SRE’19-Eval set, the improvement
amounts to 6.9% and 8.1% in EER and Min Cost, respectively.
Notice that the improvement is attained on-top of the domain
adaptation applied on the PLDA. This result is surprising given
the smaller size of the in-domain data compared to the out-of-
domain train set. Adding our in-house AfV data increases sig-
nificantly the size of the train set to ≈ 17, 800 speakers. How-
ever, comparing front7 to front3 in Table 4, we did not ob-
serve any benefit of using this set of data. One insight that we
could derive here is that adding a small amount of in-domain
training data helps the x-vector extractor to perform better on
the test set.

The scores from the seven sub-systems were fused to form
NEC-TT primary submission. The weights were manually se-
lected based on their performance on the SRE’19 online leader-
board. The fusion results are shown in the last row of Table 4.
Compared to the single best (front6), the fusion gives an im-
provement of 6.1% and 4.1% in EER and Min Cost, respec-
tively, on SRE’19-Eval set. The fusion system performs better
than all sub-systems except front6 on SRE’18-Dev set. This
is likely due to over-fitting of front6 on the development set.
Considering the computational complexity of each front-end,
the performance gain is marginal.

6. Conclusions
We have presented the NEC-TT 2019 speaker verification sys-
tem, and reported its performance on the recent NIST SRE’19
CTS Challenge. We showed that significant improvement could
be attained by increasing the depth of the x-vector extractor
from 5 to 43 layers with the use of residual connections. The
performance improvement amounts to 30% in EER and Min
Cost on the SRE’19-Eval set. We also found that x-vector ex-
tractor trained with angular softmax gives lower Min Cost but
not on the EER, while the use of squeeze-and-excitation (SE)
network does not affect much the performance. We confirmed
that domain mismatch could be dealt with effectively by adapt-
ing the PLDA back-end, and by adding in-domain data in train-
ing the x-vector extractor. The former led to 30.7% and 20.8%
relative improvement in EER and Min Cost, respectively, on
SRE’19-Eval set. The latter led to 6.9% and 8.1% in EER
and Min Cost, respectively. We expect that further improve-
ment could be obtained with better techniques in adapting the
x-vector extractor to handle domain mismatch. Finally, we
found that the perks of fusing multiple x-vector sub-systems
is slimmer compared to our previous experience with shallow-
structure sub-systems. These are points for future work.
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