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Abstract

Recently, streaming end-to-end automatic speech recognition
(E2E-ASR) has gained more and more attention. Many ef-
forts have been paid to turn the non-streaming attention-based
E2E-ASR system into streaming architecture. In this work,
we propose a novel online E2E-ASR system by using Stream-
ing Chunk-Aware Multihead Attention (SCAMA) and a latency
control memory equipped self-attention network (LC-SAN-M).
LC-SAN-M uses chunk-level input to control the latency of
encoder. As to SCAMA, a jointly trained predictor is used
to control the output of encoder when feeding to decoder,
which enables decoder to generate output in streaming man-
ner. Experimental results on the open 170-hour AISHELL-1
and an industrial-level 20000-hour Mandarin speech recogni-
tion tasks show that our approach can significantly outperform
the MoChA-based baseline system under comparable setup. On
the AISHELL-1 task, our proposed method achieves a character
error rate (CER) of 7.39%, to the best of our knowledge, which
is the best published performance for online ASR.
Index Terms: Automatic Speech Recognition, End-to-End,
SCAMA, online ASR, LC-SAN-M

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) has
gained more and more attention in speech recognition commu-
nity. Different from conventional hybrid ASR systems, E2E
systems fold the acoustic model (AM), language model (LM)
and pronunciation model (PM) into a single sequence to se-
quence model, which dramatically simplifies the training and
decoding pipelines. Currently, there exists three popular end-to-
end approaches, namely connectionist temporal classification
(CTC) [1], recurrent neural network transducer (RNN-T) [2],
and attention based encoder-decoder (AED) [3, 4, 5]. CTC
makes an independence assumption that the label outputs are
conditionally independent of each other. Thereby, it usually
needs to combine with an external language model in order
to achieve good recognition results [6, 7]. Unlike CTC-based
model, RNN-T and attention based encoder-decoder (AED)
models have no independence assumption and can achieve
state-of-the-art performance even without an external language
model.

The most representative attention based model is the so-
called LAS [5], which consists of a pyramidal bidirectional long
short term memory (BLSTM) based encoder and an attention-
equipped LSTM based decoder. The encoder transforms raw
acoustic feature into higher-level representation, and the de-
coder with attention mechanism predicts the next output symbol
based on the previous predictions in an auto-regressive man-
ner. The attention module inside decoder is used to compute

dynamic soft alignments and produce context vectors. As orig-
inally defined, the soft attention needs to attend entire input se-
quences at each output timestep. As a result, soft attention based
E2E model is inapplicable to online speech recognition, since it
has to wait until the input sequence has been processed before
it can generate output.

In previous works, many efforts have been made to convert
full sequence soft attention into local attention, which is suit-
able for online speech recognition. In [8], a Hard Monotonic
Attention is proposed based on the insight that alignment be-
tween input and output sequence elements is monotonous in na-
ture. Along this line, an improved monotonic attention namely
Monotonic Chunkwise Attention (MoChA) is proposed in [9],
which enables the model to perform soft attention over small
chunks of the memory where a hard monotonic attention mech-
anism has chosen to attend. Experimental results have shown
that MoChA [9] and its variants, such as AMoChA [10] and
sMoChA [11], effectively close the gap between monotonic and
soft attention on speech recognition tasks. Meanwhile, works
in [12, 13, 14] employ local attention by computing energy
values only on a local window. Both MoChA-type and local
window based attentions use some preset hyper-parameters to
truncate the input sequence in order to enable online attention,
such as the threshold used to stop scanning memory in MoChA
and the window-size in local window based attentions. These
preset hyper-parameters may make these online attentions not
robust enough for speech recognition in practical applications .
Recently, works on streaming E2E-ASR try to combine atten-
tion with additional alignment information to perform stream-
ing truncation. In [15], the proposed triggered attention (TA)
uses a CTC-based classifier to dynamically control the acti-
vation of an attention-based decoder neural network. In [16],
the proposed Scout Network trained with the word-level force-
alignment is used to streaming detect the word boundary with-
out seeing any future frames.

Encoder architecture is another key element to streaming
E2E-ASR. In order to control latency, previous works usu-
ally adopt the unidirectional LSTM [9] or latency control bidi-
rectional LSTM (LC-BLSTM) [10, 11]. More recently, self-
attention based Transformer [17] has become popular in E2E-
ASR [18, 19]. The key improvement is the utilization of self-
attention instead of recurrent mechanism in both encoder and
decoder, which enhances the abilities to capture long-range de-
pendencies with lower computational complexity and more par-
allelizable training. In [20, 21], Transformer is further designed
into structures that are enable to perform online encoding.

In this work, we come up with a novel Streaming Chunk-
Aware Multihead Attention (SCAMA) based online E2E-ASR
system. For the encoder, we extend our previous memory
equipped self-attention (SAN-M) [22] to a latency control ar-
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Figure 1: Illustration of memory equipped self-attention based
encoder-decoder.

chitecture, namely LC-SAN-M. The LC-SAN-M based encoder
uses chunk-level input to control the encoder latency. For
SCAMA, we use a jointly trained predictor to predict the num-
ber of tokens in each chunk and control the activation of an
attention-based decoder. Compared to triggered attention (TA),
the predictor is trained using a cross-entropy loss instead of
CTC loss. More importantly, prediction of token number in
chunk-level inputs can achieve very high accuracy, thus elim-
inating the mismatch between training and testing. We have
evaluated our approach on the public 170-hour AISHELL-1
and an industrial-level 20000-hour Mandarin recognition tasks.
Compared to the original full sequence attention, SCAMA
based online E2E-ASR system suffers from acceptable perfor-
mance degradation and achieves much better performance than
the baseline MoChA-based systems.

2. E2E-ASR with Memory Equipped
Self-attention

In our previous work [22], we have proposed a memory
equipped self-attention (SAN-M) for end-to-end speech recog-
nition in Encoder-Decoder framework. In this section, we will
give a brief review on SAN-M based model. As shown in
Figure 1 a), the encoder consists of N blocks of SAN-M and
feed-forward component, the decoder consists of M blocks of
multihead attention equipped unidirectional deep feed-forward
sequential memory network (DFSMN) [23, 24] layer, and K
blocks of pure unidirectional DFSMN layer. As to SAN-M, it
combines the multihead self-attention [17] in Transformer with
the memory block in FSMN as shown in Figure 1 b). This
combination of context-independent FSMN memory block and
context-dependent self-attention results in powerful local and
long-term dependencies modeling ability. Given an input se-
quence, denoted as X = {x1, · · ·xt, · · ·xT }T , where each
xt ∈ Rd×1 represents the input data at time instance t. The
detailed operations of SAN-M are as follows.

MultiHead(X) = [head1, ..., headh]WO (1)

headi = SelfAtt(Qi,Ki,Vi) = softmax(
QiK

T
i√

dk
)Vi (2)

(Qi,Ki,Vi) = (XWQ
i ,XWK

i ,XWV
i ) (3)

Where the projections are parameter matrices WQ
i ∈

Rdmodel×dq , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv and
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Figure 2: Illustration of SCAMA based online E2E-ASR system.

WO ∈ Rdmodel×hdv . h is the number of heads, and dmodel is
the model dimension. In this work, the multihead attention con-
sists of 4 heads (h = 4). The output of FSMN memory block
can be calculated as follows.

mt = vt +

L`−1∑
i=0

ai � vt−i +

Lr∑
j=1

ci � vt+j (4)

M = [m1,m2, · · · ,mT ]T (5)

Here, vt denotes the t-th time instance in self-attention values.
L` and Lr are the look-back and look-ahead order of FSMN
memory block respectively. � denotes the element-wise multi-
plication of two equally-sized vectors.

Y = MultiHead(X) + M (6)

Y denotes the output of the SAN-M. The other operations Feed-
Forward, Norm & Add and Multi-head Attention are the same
to original Transformer [17] and the unidirectional FSMN is the
same to original FSMN [23].

3. Online E2E-ASR
The overall architecture of the proposed online end-to-end
speech recognition system is shown in Figure 2. Compared to
the original SAN-M based E2E model, there are two changes
to make the system streamable. As to the encoder, we extend
SAN-M to a latency control version, namely LC-SAN-M. As
to the attention module, we come up with a novel Streaming
Chunk-Aware Multihead Attention.

3.1. LC-SAN-M

For original memory equipped self-attention (SAN-M) based
encoder in [22], the full sequence attention mechanism
makes it unsuitable for online ASR. In order to control
the encoder latency, we extend the SAN-M to LC-SAN-
M. The input sequence X is divided into chunk-level ac-
cording to a preset chunk size c, denoted as X =
{[x1, · · · , xc], [xc+1, · · · , x2c], · · · , [xnc+1 · · ·xT ]}T . The
chunk-size c is related to the encoder latency. In this work,
we will evaluate various chunk-sizes with value being 5, 10 and
15. Notationally, Xk = {[xkc+1, · · · , x(k+1)c]}T denotes the
samples in k-th chunk. For each time instance in k-th chunk,
it can only access samples in the current chunk and previous
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chunks. Thereby, the output of LC-SAN-M for Xk can be cal-
culated using the following formulations.

(Qi(k),Ki(k),Vi(k)) = (XkW
Q
i ,XkW

K
i ,XkW

V
i ) (7)

K̄i(k) = [K̄i(k − 1);Ki(k)] (8)

V̄i(k) = [V̄i(k − 1);Vi(k)] (9)

headi(k) = SelfAtt(Qi(k), K̄i(k), V̄i(k)) (10)

MultiHead(Xk) = [head1(k), ..., headh(k)]WO (11)

Furthermore, Eq. (4) is modified to the following unidirectional
FSMN memory block.

mt = vt +

L−1∑
i=0

ai � vt−i, t ∈ [kc+ 1, · · · , (k + 1)c] (12)

Mk = [mkc+1, · · · ,m(k+1)c]
T (13)

Here, L is the total filter orders of FSMN memory block. Fi-
nally, we can get the output of LC-SAN-M for Xk as follow.

Yk = MultiHead(Xk) + Mk (14)

3.2. SCAMA

As shown in Figure 2, we stack a predictor on the top of en-
coder, which is trained to predict the number of tokens in each
chunk. The chunked outputs of encoder are spliced and then fed
into the predictor. Notationally, let’s denote the spliced output
of k-th chunk as hs

k. Then the predictor generate the probability
pk as :

pk = softmax(max(hs
kW

1 + b1, 0)W2 + b2) (15)

The predictor is trained using the cross-entropy loss:

Lpred = −
∑
k

tklog(pk) (16)

And the overall system is jointly optimized using the following
loss function:

L = Le2e + αLpred (17)

Here, tk denotes the one-hot vector of the ground truth token
number in k-th chunk and α is 0.2. Le2e is the original CE-loss
to train the encoder-decoder. We use a well-trained CTC-based
ASR system [25] to generate the frame-level alignments and
then convert them into the chunk-level labels. We first count
the maximum number of tokens contained in the chunk from
training set. Thereby, training of predictor is formulated as a
multi-class classification problem. During training, the ground
truth token number is used to guide the encoder output fed into
the decoder. If the `-th token of decoder is in m-th chunk, then
only c1 to cm chunks are fed into the attention module to gen-
erate the context vector for decoder. During inference, the class
with the maximum probability is chose as the output for predic-
tor, which is used to guide how many steps the decoder should
attend to the current input chunk.

3.3. Decoding Strategy

For encoder-decoder based E2E-ASR, the inference is termi-
nated when an end-of-sentence (<eos>) token is predicted. For
streaming E2E-ASR, one of the issues is that the decoder may
predict the<eos> token too early or too late [26]. In our works,
we also find that the decoder may generate the <eos> token
too early, especially when the chunk size is small. We propose

Table 1: Performance of various E2E models on AISHELL-1.
(FSA denotes the full sequence attention.)

EXP Encoder Decoder Attention CER(%)
1 SAN-M(10) DFSMN(3) FSA 6.46
2 LC-SAN-M(10) DFSMN(3) FSA 6.92
3 SCAMA 7.39
4 LC-SAN-M(10) LSTM(3) FSA 8.78
5 MoChA 9.01

Table 2: Comparison of systems on AISHELL-1 task. “Y” de-
notes “Yes” and “N” denotes “No”.

Model E2E LM Online CER(%)
LAS[27] Y Y N 8.71

CTC&attention[28] Y Y N 6.70
TDNN-LFMMI[29] N Y Y 7.62

Transformer-MoChA[20] Y Y Y 9.7
LC-SAN-M-SCAMA Y N Y 7.39

a trick during beam search based decoding to handle this prob-
lem. During inference, if the decoder generate an <eos> token
with the input is not the last chunk, we will use the previous to-
ken and historical information to predict the next token instead
of <eos>. As to the last chunk, if the predicted token number
is N , the total decoding steps will be 1 to N + 2. The inference
is terminated when the decoder generated an <eos> token or
decoded for N + 2 steps in the last chunk.

4. Experiments
We have evaluated our proposed SCAMA based online E2E-
ASR on two Mandarin speech recognition tasks, namely the
AISHELL-1 task released in [29] and a 20000-hour Mandarin
task. For AISHELL-1 task, we use the 150-hour training set for
model training and use the 10-hour development set for early-
stopping. Finally, the character error rate (CER%) is reported in
the 7176-sentence (about 5 hours) test set. For the 20000-hour
Mandarin task, the same as in [25], which consists of about
20000 hours data that collected from multi-domain, including
news, sport, tourism, game, literature, education et al. It is di-
vided into training set and development set according to the ra-
tio of 95% to 5%. A far-field set consists of about 15 hours data
and a common set consists of about 30 hours data are used to
evaluated the performance.

Acoustic feature used for all experiments are 80-
dimensional log-mel filter-bank (FBK) energies computed on
25ms window with 10ms shift. We stack the consecutive frames
within a context window of 7 (3+1+3) to produce the 560-
dimensional features and then down-sample the inputs frame
rate to 60ms. Acoustic modeling units are the Chinese char-
acters, which are 4233 and 9000 for AISHELL-1 and 20000-
hour tasks respectively. We use the Tensorflow [30] to train the
model in a distributed manner. Label smoothing and dropout
regularization with value being 0.1 are added to prevent over-
fitting. SpecAugment [31] is also used in all experiments.

4.1. AISHELL-1 Task

In Table 1, we have evaluated the performance of various E2E-
ASR system on AISHELL-1 task. For the baseline models, we
trained the SAN-M based E2E-ASR system [22]. As shown in
Figure 1, we set N = 10, M = 3 and K = 0, which means
the encoder consists of 10 SAN-M blocks and the decoder con-
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Table 3: Performance of various E2E models on 20000 hours task .

Model Type CTC Non-streaming E2E Streaming E2E
Model ID CTC1 CTC2 E2E1 E2E2 E2E3 E2E4 E2E5 E2E6 E2E7 E2E8
Encoder DFSMN(10) DFSMN(20) SAN-M(40) LC-SAN-M(40)
Decoder - - DFSMN(12) DFSMN(12) LSTM(4) DFSMN(12)
Attention - - FSA FSA FSA FSA MoChA SCAMA

Encoder Latency 600ms 1.2s Full 600ms 900ms 600ms 600ms 300ms 600ms 900ms
Total Latency 600ms 1.2s Full Full Full Full 600ms 300ms 600ms 900ms
Parameter(M) 25 45 42 42 42 60 60 43 43 43

Common Set (CER%) 11.6 9.9 9.0 9.9 9.4 10.1 11.5 11.4 10.4 9.8
Far-Field Set (CER%) 20.3 17.7 13.7 15.1 14.9 15.8 18.1 17.0 16.0 15.2

sists of three full sequence attention (FSA) equipped DFSMN
layers. The linear and nonlinear layer size is 512 and 2048 in
both encoder and decoder respectively. This model achieve a
CER of 6.46%. We then replace the SAN-M based encoder
with the LC-SAN-M based encoder to investigate the influence
of encoder latency to the performance. The chunk-size of LC-
SAN-M is 10. Comparison of exp1 and exp2 in Table 1 shown
that it suffers from about 7% relative performance degradation.
Furthermore, we replace the full sequence attention (FSA) with
the proposed SCAMA. As shown in exp3 of Table 1, it suf-
fers from 6.8% relative performance degradation. In order to
evaluate the influence of decoder architecture and compare with
the MoChA, we have conducted exp4 and exp5. Both decoder
consists of three LSTM layer with 512 units. Experimental re-
sults show that replace the full sequence attention with MoChA
based online attention suffers from small performance degrada-
tion in this task. However, the performance of LSTM-decoder
based systems are far behind the DFSMN-decoder based sys-
tems. In Table 2, we have compared our proposed system with
the other published systems on this task. Our proposed LC-
SAN-M with SCAMA based online E2E-ASR system achieve
a CER of 7.39% without using any external LM. To our best
knowledge, this is the state-of-the-art performance for online
ASR system in this task.

4.2. 20000-hour Task

In this task, we have compared three types of E2E-ASR sys-
tems: CTC, non-streaming E2E and streaming E2E. For CTC-
based systems, as in [25], we have trained two DFSMN-CTC-
sMBR systems with 10 and 20 DFSMN-layers, denoted as
CTC1 and CTC2 in Table 3 respectively. CTC-based models
are decoded with an external 5-gram language model. For non-
streaming E2E-ASR systems, we have trained four models, de-
noted as E2E1 to E2E4 in Table 3. For E2E1 system, we set the
N = 40, M = 6 and K = 6, which means the decoder con-
sists of 12 DFSMN-layers with the bottom 6 layers equipped
with full sequence multihead attention. The linear and nonlinear
layer size is 256 and 1024 respectively. For E2E2 to E2E4, we
replace the sequence-level SAN-M based encoder with the LC-
SAN-M based encoder. The encoder chunk-size is 10 for E2E2
and E2E4 and is 15 for E2E3. Since we down-sample the input
with 6, the corresponding encoder latency is 600ms and 900ms
respectively. For E2E4, we further replace the decoder with
LSTM, which consists of 4 LSTM layers with 768 units. For
streaming E2E-ASR system, we have evaluated MoChA based
model (E2E5) and SCAMA based models with chunk size be-
ing 5, 10 and 15 (E2E6 to E2E8). It takes about 3 days to train a
SCAMA model when using 32 NVIDIA TESLA V100 GPUs,
which is 3 times faster than the MoChA system.

In Table 3, we have summarized the performance of various
systems on 20000-hour task. For non-streaming E2E-ASR sys-

实验结果分析
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a) Full Sequence Attention b) SCAMA

Figure 3: Illustration of FSA and SCAMA. x-axis refer to acous-
tic frames and y-axis refer to characters.

tems, when the encoder’s future contextual information is lim-
ited, performance will degrade. Compared E2E2 with E2E4,
the DFSMN-decoder based system achieve better performance
than the LSTM-decoder based system and is smaller in model
size. For E2E4 and E2E5, when the full sequence attention is
replaced with online MoChA attention, performance will suffer
from significant loss. This experimental phenomena is different
to the AISHELL-1 task in Sec. 4.1. According to our exper-
imental analysis, this is due to MoChA use a preset threshold
to stop scanning memory during inference and is not robust to
noisy speech. Comparison of SCAMA based systems (E2E6 to
E2E8) with the non-streaming systems (E2E1 to E2E3) shows
that SCAMA based online attention suffer from acceptable per-
formance degradation. Figure 3 is the visualization of atten-
tion in the last layer of E2E1 and E2E7. The general trend of
full sequence multihead attention is monotonous. However, it
seems that attention between the encoder and decoder not only
plays the role of alignment but also conducts context model-
ing. Thereby, restrict attention to local window or completely
monotonous will suffer from performance degradation. As to
SCAMA based systems, the performance degradation is less
than MoChA based system since it only limits the future in-
formation.

5. Conclusions
In this paper, we have proposed a novel online end-to-end
speech recognition system. Specially, we have come up with
a Streaming Chunk-Aware Multihead Attention (SCAMA) and
a latency control memory equipped self-attention (LC-SAN-M)
based online E2E-ASR system. Compared to full sequence
attention, the performance degradation of SCAMA is accept-
able. On AISHELL-1 task, our proposed online E2E-ASR sys-
tem achieves a CER of 7.39% without using any external LM.
On a 20000-hour Mandarin task, SCAMA based online E2E-
ASR system can significantly outperform the CTC and MoChA
based systems with the same latency.
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