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Abstract

We investigate a monotonic multihead attention (MMA) by ex-
tending hard monotonic attention to Transformer-based auto-
matic speech recognition (ASR) for online streaming applica-
tions. For streaming inference, all monotonic attention (MA)
heads should learn proper alignments because the next token
is not generated until all heads detect the corresponding token
boundaries. However, we found not all MA heads learn align-
ments with a naı̈ve implementation. To encourage every head to
learn alignments properly, we propose HeadDrop regularization
by masking out a part of heads stochastically during training.
Furthermore, we propose to prune redundant heads to improve
consensus among heads for boundary detection and prevent de-
layed token generation caused by such heads. Chunkwise atten-
tion on each MA head is extended to the multihead counterpart.
Finally, we propose head-synchronous beam search decoding to
guarantee stable streaming inference.
Index Terms: Transformer, streaming end-to-end ASR, mono-
tonic multihead attention, beam search decoding

1. Introduction
Recent progress of end-to-end (E2E) automatic speech recog-
nition (ASR) models bridges the gap from the state-of-the-art
hybrid systems [1]. To make E2E models applicable to si-
multaneous interpretations in lecture and meeting domains, on-
line streaming processing is necessary. For E2E models, con-
nectionist temporal classification (CTC) [2] and recurrent neu-
ral network transducer (RNN-T) [3] have been dominant ap-
proaches and reached a level of real applications [4, 5]. Mean-
while, attention-based encoder-decoder (AED) models [6, 7]
have demonstrated the powerful modeling capability in offline
tasks [8–10] and a number of streaming models have been in-
vestigated for RNN-based models [11–17].

Recently, the Transformer architecture [18], based on self-
attention and multihead attention, has shown to outperform
the RNN counterparts in various domains [19, 20], and several
streaming models have been proposed such as triggered atten-
tion [21], continuous-integrate-and-fire (CIF) [22], hard mono-
tonic attention (HMA) [23, 24], and other variants [25]. Trig-
gered attention truncates encoder outputs by using CTC spikes
and performs an attention mechanism over all past frames. CIF
learns acoustic boundaries explicitly and extracts context vec-
tors from the segmented region. Therefore, these models have
adaptive segmentation policies relying on acoustic cues only.

On the other hand, HMA detects token boundaries on the
decoder side by using lexical information as well. Thus, it
is more flexible for modeling non-monotonic alignments and
has been investigated in simultaneous machine translation (MT)
[26]. Recently, HMA was extended to the Transformer architec-
ture, named monotonic multihead attention (MMA), by replac-
ing each encoder-decoder attention head in the decoder with a
monotonic attention (MA) head [27]. Unlike a single MA head
used in RNN-based models, each MA head can extract source

contexts with different pace and learn complex alignments be-
tween input and output sequences. Concurrently, similar meth-
ods have been investigated for Transformer-based streaming
ASR [23, 24]. Miao et al. [24] simplified the MMA frame-
work by equipping a single MA head with each decoder layer
to truncate encoder outputs as in triggered attention and perform
attention over all past frames. Tsunoo et al. [23] also investi-
gated the MMA framework but resorted to using all past frames
to obtain a decent performance. However, looking back to the
beginning of input frames lessens the advantage of linear-time
decoding with HMA as the input length gets longer.

In this work, we investigate the MMA framework using re-
stricted input context for the streaming ASR task. To perform
streaming recognition with the MMA framework, it is neces-
sary for every MA head to learn alignments properly. This is
because the next token is not generated until all heads detect the
corresponding token boundaries. If some heads fail to detect the
boundaries until seeing the encoder output of the final frame, the
next token generation is delayed accordingly. However, with a
naı̈ve implementation, we found that proper monotonic align-
ments are learnt in dominant MA heads only. To prevent this,
we propose HeadDrop, in which a part of heads are entirely
masked out at random as a regularization during training to en-
courage the rest non-masked heads to learn alignments prop-
erly. Moreover, we propose to prune redundant MA heads in
lower decoder layers to further improve consensus among heads
on token boundary detection. Chunkwise attention [17] on top
of each MA head is further extended to the multihead counter-
part to extract useful representations and compensate the lim-
ited context size. Finally, we propose head-synchronous beam
search decoding to guarantee streamable inference.

Experimental evaluations on Librispeech corpus show that
our proposed methods effectively encourage MA heads to learn
alignments properly, which leads to improvement of ASR per-
formance. Our optimal model enables stable streaming infer-
ence on other corpora as well without architecture modification.

2. Transformer ASR architecture
In this section, we detail the Transformer base architecture used
in this paper. Our Transformer architecture consists of stacked
E encoder layers followed by C front-end CNN blocks, and
D decoder layers [19]. A CNN block has two CNN layers
with a 3× 3 filter followed by a ReLU activation with a chan-
nel size 32. The frame rate is reduced by a factor of 2C by
a max-pooling layer with a stride of 2× 2 after every block.
Each encoder layer is composed of a self-attention (SAN)
sub-layer followed by a position-wise feed-forward network
(FFN) sub-layer, wrapped by residual connections and layer
normalization [28]. A key component of SAN sub-layers is a
multihead attention (MHA) mechanism, in which key, value,
and query matrices are split into H potions with a dimension
dk = dmodel/H after linear transformations and each head per-
forms a scaled-dot attention mechanism: Attention(Q,K,V ) =
softmax(QKT/

√
dk)V , where K, Q, and V represent key,
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query, and value matrices on each head, respectively. The out-
puts from all heads are concatenated along the feature dimen-
sion followed by a linear transformation. A FFN sub-layer is
composed of two linear layers with the inner dimension dff , in-
terleaved with a ReLU activation between them.

In each decoder layer, unlike the encoder layer, additional
encoder-decoder attention sub-layer is inserted between SAN
and FFN sub-layers, and causal masking is performed to prevent
the decoder from seeing the future tokens. We adopt three 1D-
convolutional layers for positional embeddings [29]. The entire
network is optimized by minimizing the negative log-likelihood
and CTC loss with an interpolation weight λctc = 0.3 [19].

3. Monotonic multihead attention (MMA)
In this section, we review hard monotonic attention (HMA)
[16], monotonic chunkwise attention (MoChA) [17], and mono-
tonic multihead attention (MMA) [27] as an extension of them.

3.1. Hard monotonic attention (HMA)
HMA was originally proposed for online linear-time decoding
with RNN-based AED models. At output step i, the decoder
scans encoder outputs from left to right and stops at an index
j = ti (token boundary) to attend the corresponding single en-
coder output hj . The decoder has options to stop at the current
index or move forward to the next index. The next boundary is
determined by resuming scanning from the previous boundary.
As hard attention is not differentiable, the expected alignments
αi,j are calculated by marginalizing over all possible paths dur-
ing training as follows:

αi,j = pi,j

(
(1− pi,j−1)

αi,j−1

pi,j−1
+αi−1,j

)
(1)

pi,j = Sigmoid(MonotonicEnergy(hj , si)) (2)

where pi,j is a selection probability and a monotonic energy
function MonotonicEnergy(·) takes the i-th decoder state si and
j-th encoder output hj as inputs. Whenever pi,j ≥ 0.5 is satis-
fied at test time, αi,j is activated (i.e., set to 1.0).

3.2. Monotonic chunkwise attention (MoChA)
To relax strict input-output alignment by using the surrounding
contexts, MoChA introduces additional soft attention mecha-
nism on top of HMA. Given the boundary j, chunkwise atten-
tion is performed over a fixed window of width w from there:

βi,j =

j+w−1∑
k=j

(
αi,kexp(ui,j)/

k∑
l=k−w+1

exp(ui,l)

)
(3)

where ui,j is a chunk energy parameterized similar to the mono-
tonic energy in Eq. (2) using separate parameters. αi,j in Eq.
(3) is a continuous value during training, but is a binary value
according to pi,j at test time.

3.3. Monotonic multihead attention (MMA)
To keep the expressive power of Transformer with the multihead
attention mechanism while enabling online linear-time decod-
ing, MMA was proposed as an extension of HMA [27]. Each
encoder-decoder attention head in the decoder is replaced with
a monotonic attention (MA) head in Eq. (1) by defining the
monotonic energy function in Eq. (2) as follows:

MonotonicEnergy(hj , si) =
Wssi(Whhj)

T

√
dk

+ r (4)

where Ws and Wh are parameter matrices, and r is a learnable
offset parameter (initialized with −2 in this work). Unlike a
case of a single MA head in Section 3.1, each MA head can
attend to input speech with different pace because its decision
process regarding timing to activate αi,j does not influence each
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Figure 1: System overview. Residual connections and layer nor-
malization are omitted.

other at each output step. The side effect is that all heads must
be activated to generate a token. Otherwise, some MA heads
continue to scan encoder outputs until the last time index, which
leads to significant increase of latency during inference.

Furthermore, unlike previous works [23, 27] having a sin-
gle chunkwise attention (CA) head on each MA head, we ex-
tend it to the multi-head version havingHca heads per MA head
to extract useful representations with multiple views from each
boundary (chunkwise multihead attention). Assuming each de-
coder layer has Hma MA heads, the total number of CA heads
is Hma ·Hca at the layer. However, we found that sharing pa-
rameters of CA heads among MA heads in the same layer is
effective in our pilot experiments and adopt this strategy in all
experiments. The chunk energy ui,j for each CA head is de-
signed as in Eq. (4) without r.

4. Enhancing monotonic alignments
In the Transformer models, there exist many attention heads and
residual connections, so it is unclear that all heads contributes
to the final predictions. Michel et al. [30] reported that most
heads can be pruned at test time without significant performance
degradation in standard MT and BERT [31] architectures. They
also revealed that important heads are determined in early train-
ing stage. Concurrently, Voita et al. [32] also reported the sim-
ilar observations by automatically pruning a part of heads with
L0 penalty [33]. In our preliminary experiments, we also ob-
served that not all MA heads learn alignments properly in the
MMA-based ASR models and monotonic alignments are learnt
only by dominant heads in upper decoder layers. Since αi,j in
Eq. (1) are not normalized over inputs so as to sum up to one
during training, context vectors from heads which do not learn
alignments are more likely to become zero vectors at test time.
This is a severe problem because (1) it leads to mismatch be-
tween training and testing conditions, and (2) the subsequent
tokens cannot be generated until all heads are activated. To al-
leviate this problem, we propose the following methods.
4.1. HeadDrop
We first propose a regularization method to encourage each MA
head to equally contribute to the target task. During training,
we stochastically zero out all elements in each MA head (i.e.,
αi,j = 0,1 ≤ j∀ ≤ |h|) with a fixed probability phd to force
the other heads to learn alignments. The decision of dropping
each head is independent of other heads regardless of the depth
of the decoder. The output of a MMA function is normal-
ized by dividing it by H+

ma/Hma, where H+
ma is the number

of non-masked MA heads. We name this HeadDrop, inspired
by dropout [34] and DropConnect [35].
4.2. Pruning monotonic attention heads in lower layers
Although HeadDrop is effective for improving the contribution
of each MA head, we found that some MA heads in the lower
decoder layers still do not learn alignments properly. Therefore,
we propose to prune such redundant heads because they are
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harmful for streaming decoding. We remove the MMA function
in the first Dlm decoder layers from the bottom (0 ≤ Dlm ≤
D− 1) during both training and test time (see Figure 1). These
layers have SAN and FFN sub-layers only and serve as a pseudo
language model (LM). The total number of effective MA heads
Htotal

ma is (D−Dlm) ·Hma. This method is also based on find-
ings in [32] that the lower layers of the Transformer decoder are
mostly responsible for language modeling. Another advantage
of pruning redundant heads is that inference speed is improved,
which is effective for streaming ASR.

5. Head-synchronous beam search decoding
During beam search in the MMA framework, failure of bound-
ary detection in some MA heads in some beam candidates at an
output step easily prevents the decoder from continuing stream-
ing inference. This is because other candidates must wait for the
hypothesis pruning until all heads in all candidates are activated
at each output step. To continue streaming inference, we pro-
pose head-synchronous beam search decoding (Algorithm 1).
The idea is to force non-activated heads to activate after a small
fixed delay. If a head at the l-th layer cannot detect a boundary
for εwait frames after the leftmost boundary detected by other
heads in the same layer, the boundary of such a head is set to the
rightmost boundary tltail among already detected boundaries at
the current output step (line 14). Therefore, latency between the
fastest (rightmost) and slowest (leftmost) boundary positions in
the same layer is less than εwait frames. We note that the deci-
sions of boundary detection at the l-th layer are dependent on
outputs from the (l− 1)-th layer, and at least one head must
be activated at each layer to generate a token. For the efficient
implementation, we search boundaries of all heads in a layer in
parallel, thus the loop in line 7 can be ignored. Moreover, we
perform batch processing over multiple hypotheses in the beam
and cache previous decoder states for efficiency. Note that head
synchronization is not performed during training to maintain
the divergence of boundary positions. Thus, synchronization
can have the ensemble effect for boundary detection.

6. Experimental evaluations
6.1. Experimental setup
We used the 960-hour Librispeech dataset [36] for experimental
evaluations. We extracted 80-channel log-mel filterbank coef-
ficients computed with a 25-ms window size shifted every 10
ms using Kaldi [37]. We used a 10k vocabulary based on the
Byte Pair Encoding (BPE) algorithm [38]. For the Transformer
model configurations, we used (dmodel, dff , H , Hma, Hca, w,
C, E, D) = (256, 2048, 4, 4, 1, 4, 3, 12, 6) for the baseline
MMA models. Adam [39] optimizer was used for training with
Noam learning rate schedule [18]. Warmup steps and a learn-
ing rate constant were set to 25000 and 5.0, respectively. We
averaged model parameters at the last 10 epochs for evaluation.
Both dropout and label smoothing [40] were used with a proba-
bility 0.1. We set phd to 0.5. We used a 4-layer LSTM LM with
1024 memory cells for decoding with a beam width of 10. We
used decoding hyperparameters (α, β) = (0.5, 2.0).1

6.2. Evaluation measure of boundary detection
To assess consensus among heads for token boundary detection,
we propose metrics to evaluate (1) how well each MA head
learns alignments (boundary coverage) and (2) how often the
model satisfies the streamable condition (streamability). This
is because even if better word error rate (WER) is obtained, the
model cannot continue streaming inference if some heads do not
learn alignments well, whose evaluation is missing in [23, 24].

1Code: https://github.com/hirofumi0810/neural_sp.

Algorithm 1 Head-synchronous beam search decoding
Input: h: encoder outputs, εwait: wait time threshold,B: beam width
Output: Ωend: top-k hypotheses

1: Initialize: tl,h0 ← 1, Ω← {}, Ωend ← {}, Lmax ← 200
2: for i← 1 to Lmax do
3: Ωnew ← {}
4: for k ← 1 to |Ω| do . Batchfy
5: for l←Dlm+1 toD do
6: tltail ← 1
7: for h← 1 toHma in parallel do
8: pl,hi,j = Sigmoid(MonotonicEnergy(hj , s

l−1
i−1))

9: for j← tl,hi−1 to |h| do
10: if pl,hi,j ≥ 0.5 then
11: tl,hi ← j; tltail ← max(tltail, j); break;
12: else
13: if j ≥ tltail + εwait then
14: tl,hi ← tltail . Forced activation
15: break
16: end if
17: end if
18: end for
19: end for
20: end for
21: Append topK(logPmma +α logPlm + βi) to Ωnew

22: end for
23: Ω, Ωend ← Prune(Ωnew, Ωend)
24: if i = Lmax or |Ωend| = B then break; end if
25: end for
26: return Ωend

6.2.1. Boundary coverage
During beam search, we count the total number of boundaries (j
such that α:,j = 1) up to the i-th output step averaged over all
MA heads,Qn,k

i , for every candidate ỹn,k in the n-th utterance:

Qn,k
i =

1

Htotal
ma

Htotal
ma∑
h=1

i∑
i′=1

|h|∑
j=1

αh
i′,j

The boundary coverageRcov is defined as the ratio ofQn,1

|ỹn,1| to
the corresponding hypothesis length |ỹn,1| of the best candidate
and averaged overN utterances in the evaluation set as follows:

Rcov [%] =
1

N

N∑
n=1

Qn,1

|ỹn,1|

|ỹn,1| × 100

6.2.2. Streamability
The streamability Rstr is defined as the ratio of utterances sat-
isfying a condition where Qn,k

i = |ỹn,k| over all candidates up
to the |ỹn,1|-th output step (i.e, until generation of the best hy-
pothesis is completed) as follows:

Rstr [%] =
1

N

N∑
n=1

δn× 100

δn =

{
1 (Qn,k

i = |ỹn,k|, 1 ≤ i∀ ≤ |ỹn,1|,1 ≤ k∀ ≤ |Ωn
i |)

0 (otherwise)

where δn is the delta function and Ωn
i is a hypothesis set at i-

th output step of the n-th utterance. δn = 0 indicates that the
model failed streaming recognition somewhere in the n-th ut-
terance, i.e., continued scanning the encoder outputs until the
last frame. However, we note that it does not mean the model
leverages additional context.
6.3. Offline ASR results
HeadDrop and pruning MA heads in lower layers improve
WER and streamability Table 1 shows the results for offline
MMA models on the Librispeech dev-clean/other sets. ”Of-
fline” means the encoder is the offline architecture. Bound-
ary coverage and stremability were averaged over two sets. A
naı̈ve implementation A1 showed a very poor performance. By
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Table 1: Results of offline MMA models on the dev sets with
standard beam search decoding. HD: HeadDrop.

ID Dlm Hma Htotal
ma HD dev-clean / dev-other

%WER Rcov Rstr

A1 0

4

24

-

8.6 / 16.5 67.40 0.0
A2 1 20 7.3 / 16.3 79.02 0.0
A3 2 16 4.7 / 12.6 86.07 0.0
A4 3 12 4.5 / 12.8 83.87 0.0
A5 4 8 3.6 / 10.8 93.80 0.9
B1 0

4

24

X

3.7 / 11.4 60.59 0.0
B2 1 20 4.0 / 11.9 73.73 0.0
B3 2 16 3.9 / 10.8 98.85 3.7
B4 3 12 4.1 / 11.0 99.36 6.4
B5 4 8 4.1 / 11.3 99.50 15.8
C1

0
1 6 - 4.9 / 11.7 99.38 15.7

C2 1 6 X 3.7 / 10.4 99.86 35.9
C3 2 12 X 3.5 / 10.7 72.08 0.0

Table 2: Results of offline MMA models on the dev sets with
head-synchronous beam search decoding and HeadDrop.

ID Dlm Hma w Hca
dev-clean / dev-other

%WER Rcov Rstr

B3 2
4 4 1

3.9 / 10.7 99.74 21.6
B4 3 3.9 / 10.6 99.76 25.1
B5 4 3.8 / 11.1 99.84 40.5
D1 2

4 16 1
3.3 / 9.9 99.78 37.4

D2 3 3.7 / 10.8 99.83 36.5
D3 4 3.5 / 10.4 99.93 60.4
E1 2

4 16

2
3.3 / 10.2 99.78 40.6

E2 3 3.6 / 10.3 99.87 51.2
E3 4 3.5 / 10.7 99.92 50.0
E4 2

4
3.3 / 9.8 99.91 77.9

E5 3 3.4 / 9.9 99.91 84.5
E6 4 3.6 / 10.4 99.92 63.2
F1 0 1 16 4 3.5 / 10.5 96.23 40.6

pruning MA heads in lower layers with increasing Dlm, WER
was significantly reduced, but the boundary coverage was not
so high (A5). The proposed HeadDrop also significantly im-
proved WER, and with the increase of Dlm, the boundary cov-
erage was drastically improved to almost 100% (B3-B5). We
can conclude that MA heads in lower layers are not necessarily
important. This is probably because (1) the modalities between
input and output sequences are different in the ASR task and
(2) hidden states in lower decoder layers tend to represent the
previous tokens, thus are not suitable for alignment.
Head-synchronous beam search decoding improves WER
and streamability Next, the results with head-synchronous
beam search decoding are shown in Table 2. εwait is set to 8 in
all models. Head-synchronous decoding improved both bound-
ary coverage and streamability. We found that if a head cannot
detect the boundary around the corresponding actual acoustic
boundary, it tends to stop around the next acoustic boundary
twice to compensate the failure when using a standard beam
search. Head-synchronous decoding alleviated this mismatch
of boundary positions and led to small WER improvement.
Chunkwise multihead attention is effective Furthermore,
we increased the window size w and number of heads Hca

in chunkwise attention, both of which further improved WER.
With Dlm = 4, E3 and E6 did not obtain benefits from larger
Hca. Increasing w to longer than 16 was not effective.
Multiple MA heads in each layer are necessary We also
examined the effect of the number of MA heads Hma in each
layer (C1-C3 in Table 1). C1 with only one MA head per layer
showed a high boundary coverage and was further improved
with HeadDrop (C2). C3 with two heads per layer degraded
streamability very much. Although C2 showed better perfor-
mances than B*, it did not obtain much gains from larger w and
Hma (F1 in Table 2). This confirms that having multiple MA
heads in upper layers is more effective than simply reducing the
number of MA heads per layer. In other words, the place of MA

Table 3: Results of streaming MMA models on the Librispeech,
TEDLIUM2, and AISHELL-1 test sets

Model
%WER %CER

Librispeech TED
LIUM2

AISH
ELL-1clean other

O
ffl

in
e Transformer (ours) 3.3 9.1 10.1 6.4

+ data augmentation 2.8 7.0 - -
++ large model 2.5 6.1 - -
MMA (E5) 3.4 9.9 10.5 6.5

St
re

am
in

g

Triggered attention [41] 2.8 7.2 - -
CIF [22] 3.3 9.7 - -
MoChA [42] 4.0 9.5 11.3 -
MMA (w =∞) [23] - - - 9.7
MMA (narrow chunk) 3.5 11.1 11.0 7.5
MMA (wide chunk) 3.3 10.5 10.2 6.6
+ data augmentation 3.0 8.5 - -
++ large model 2.7 7.1 - -

heads is more important than the total number of them.
Here, what does the rest 15.5% for streamability in E5 ac-

count for? We found that the last few tokens corresponding to
the tail part of input frames were predicted after head point-
ers on upper layers reached the last encoder output. For these
15.5% utterances, E5 was able to continue streaming decod-
ing until 76.9% of the input frames on average. Since the tail
part is mostly silence, this does not affect streaming recogni-
tion. In our manual analysis, we observed that MA heads in the
same layer move forward with the similar pace, and the pace
gets faster in upper layers.2 This is because decoder states are
dependent on the output from the lower layer. Considering the
balance between WER and streamability performance, we will
use the E5 setting for streaming experiments in the next section.
6.4. Streaming ASR results
Finally, we present the results of streaming MMA models for
the Librispeech test sets in Table 3. We also included results
on TEDLIUM2 [43] and AISHELL-1 [44] to confirm whether
the optimal configuration tuned on Librispeech can work in
other corpora as well. We adopted the chunk hopping mech-
anism [45] for the online encoder. Following [22, 24], we set
the left/current (hop)/right chunk sizes to 960/640/320 (narrow
chunk) and 640/1280/640 (wide chunk) [ms]. We used speed
perturbation [46] and SpecAugment [47] for data augmentation,
but speed perturbation was applied by default for TEDLIUM2
and AISHELL-1. For large models, we used (dmodel, dff , H)
= (768, 3072, 8) and other hyperparameters were kept. Head-
synchronous decoding was used for all MMA models. We used
CTC scores during inference only for standard Transformer
models. Our streaming MMA models achieved comparable re-
sults to the state-of-the-art Transformer-based streaming ASR
model [41] without looking back to the first input frame. More-
over, our model outperformed the MMA model with w =∞
[23] by a large margin. Increasing the model size was also ef-
fective. The streamabilities of the streaming MMA models on
TEDLIUM2 and AISHELL-1 with the wide chunk were 80.0%,
and 81.5%, respectively. This confirms that the E5 setting gen-
eralizes to other corpora without architecture modification.

7. Conclusion
We tackled the alignment issue in monotonic multihead atten-
tion (MMA) for online streaming ASR with HeadDrop regu-
larization and head pruning in lower decoder layers. We also
stabilized streamable inference by head-synchronous decoding.
Our future work includes investigation of adaptive policies for
head pruning and regularization methods to make the most of
the MA heads instead of discarding them. Minimum latency
training as done in MoChA [48] is another interesting direction.

2Examples available at https://github.com/hirofumi0810.
github.io/demo/enhancing_mma_asr.
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