
Improved Hybrid Streaming ASR with Transformer Language Models

Pau Baquero-Arnal, Javier Jorge, Adrià Giménez, Joan Albert Silvestre-Cerdà,
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Abstract
Streaming ASR is gaining momentum due to its wide ap-

plicability, though it is still unclear how best to come close to
the accuracy of state-of-the-art off-line ASR systems when the
output must come within a short delay after the incoming audio
stream. Following our previous work on streaming one-pass
decoding with hybrid ASR systems and LSTM language mod-
els, in this work we report further improvements by replacing
LSTMs with Transformer models. First, two key ideas are dis-
cussed so as to run these models fast during inference. Then,
empirical results on LibriSpeech and TED-LIUM are provided
showing that Transformer language models lead to improved
recognition rates on both tasks. ASR systems obtained in this
work can be seamlessly transfered to a streaming setup with
minimal quality losses. Indeed, to the best of our knowledge, no
better results have been reported on these tasks when assessed
under a streaming setup.
Index Terms: streaming, hybrid ASR, language models, Trans-
former

1. Introduction
Fueled by recent progress in Automatic Speech Recognition
(ASR), streaming ASR is attracting great attention from both
the scientific community and the industry due to its immense
applicability. When compared to conventional (off-line) ASR,
streaming ASR is clearly more challenging for two main rea-
sons. First, system output must be delivered in real time as the
continuous input audio stream is processed. Second, the system
cannot defer its decision (full output) until seeing the complete
evidence, i.e. until the end of the acoustic stream. Thus, the
challenge is how best to come close to the accuracy of state-of-
the-art off-line ASR systems under streaming conditions; that
is, under the constraint of delivering continuous output within a
short delay, i.e. not much longer than a second, with respect to
the incoming audio stream.

Following the very popular end-to-end approach to machine
learning tasks, many authors are currently exploring the use of
purely neural network-based systems to ASR in general and
streaming ASR in particular [1, 2, 3, 4]. They are compara-
tively simple, easy-to-build systems from widely available deep
learning toolkits and require minimal expert knowledge (human
intervention). However, despite their simplicity and promising
prospects, it is still unclear whether or not they will soon sur-
pass state-of-the-art, hybrid systems combining separate acous-
tic and language neural network models under the conventional
statistical decision framework.

This work is focused on language models (LMs) for hy-
brid ASR systems with a view to use them under the streaming
setup. Following our previous work on real-time one-pass de-
coding with LSTM LMs [5], we recently introduced a novel

streaming one-pass decoder that under strict streaming condi-
tions, i.e. a delay of less than a second, achieves a minimal loss
of recognition accuracy with respect to the off-line setting [6].
The system described in [6] used bidirectional LSTM (BLSTM)
acoustic models and unidirectional LSTM LMs, both adjusted
to work with a short-window limited view of the incoming au-
dio stream. Inspired by the latest developments reported in [7]
for language modelling in the off-line setup, in this work we
report further improvements to our streaming decoder by re-
placing streaming-adapted LSTM LMs with Transformer mod-
els, with due adaptation. Empirical results on the LibriSpeech
and TED-LIUM tasks show that Transformer language models
(TLM) lead to top, state-of-the-art recognition rates and laten-
cies under streaming conditions, so that these hybrid ASR sys-
tems can work both under the off-line and streaming scenarios
with no significant differences in quality.

2. Streaming one-pass decoder
As indicated above, our streaming one-pass decoder was intro-
duced in [6], as a continuation of previous work on real-time
one-pass decoding with LSTM LMs [5]. In this decoder, hy-
potheses are organized by their history, and static look-ahead
scores are precomputed in advance instead of being dynam-
ically updated. To adapt the LSTM LMs, they are trained
with Variance Regularization (VR) to avoid computation of the
whole Softmax during search. The search is based on a lazy
strategy regarding LM scores, that is, postponing their compu-
tation as much as possible. Also, two additional parameters
for search pruning are introduced to control the trade-off be-
tween WER and RTF. On the acoustic side, BLSTMs are used
with a sliding, overlapping window over the sequence, averag-
ing outputs of all windows for each frame to obtain the acoustic
score (see section 4.5 for experimental details). A short ini-
tial delay is introduced at the beginning of the stream for the
purpose of initializing mean and variance statistics needed for
feature normalization. This decoder structure and streaming
setup demonstrated that can provide competitive performance
in terms of WER and latency under a streaming regime in well-
known benchmarks, as well as in our production systems, where
it carries out the transcription of long recordings of lectures,
seminars, and other similar contents.

3. Streaming Transformer language models
As with LSTM LMs, a first key idea to adapt TLMs to our
streaming one-pass decoder is to add a VR term during train-
ing as a way to ensure the sum of the Softmax deviates only
minimally from a provided value [8]. This is critical to reduce
the high computational cost of the linear projection before the
Softmax activation in inference time, as we are enabled to ap-
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proximate the normalization term by a constant.
In this way, the posterior probability of a word p(w|h) is

approximated as

p(w | h) = exp(vL(h)
T · aw)

Z(h)
≈ exp(vL(h)

T · aw)

D
, (1)

where h denotes the current history, L is the number of hidden
layers, vL(h) and Z(h) are respectively the input vector to the
Softmax layer and the corresponding normalization term, aw is
the weight vector for word w, and D is just a constant that can
be tuned as described in [8].

A second key idea, particularly concerning TLMs, is to
limit the word history size. The strength of self-attentive LMs
resides in their capacity to attend to all previous words. This
makes them more versatile than RNNs, as they are not required
to compress all the previous history into a single vector, which
can cause some information loss. However, this implies that the
whole history must be processed every time a next word is pre-
dicted. This is especially troublesome in the streaming setup:
if we allow the history to grow without limits, computational
time will increase accordingly. To circumvent this difficulty,
the Transformer history size is limited to the n previous words.
Therefore, there is no need to store any internal state, allevi-
ating the memory requirements. However, we should compute
the output again with each call. Despite TLMs are considered
well-optimized performant models, this possible drawback will
be assessed during the empirical study.

4. Experiments
4.1. Experimental setup

We evaluate the performance of our streaming decoder and
models on the LibriSpeech ASR corpus [9], and on the TED-
LIUM release 2 corpus [10]. Acoustic models were trained
on the 961 hours for LibriSpeech and the 207 hours provided
in TED-LIUM release 2. As development and test data, we
used the *-other for LibriSpeech, with 5.3 hours for dev and
5.1 hours for test, and the *-legacy ones for TED-LIUM, with
1.6 and 2.6 hours for dev and test, respectively. Regarding the
text data, we used the ∼800M text provided for LibriSpeech,
whereas for TED-LIUM the data comes from the six provided
subsets plus the TED-LIUM training audio transcriptions with
up to 230M running words. System vocabularies were restricted
to 200K and 153K words for LibriSpeech and TED-LIUM, re-
spectively. Out-of-vocabulary (OOV) ratios were less than 1%
in both tasks.

The acoustic models (AM) were trained as follows. First,
we trained context-dependent feed-forward DNN-HMMs with
three left-to-right states, using the transLectures-UPV toolkit
(TLK) [11]. The state-tying schema follows a phonetic decision
tree approach [12]. This resulted in 8.3K and 10.8K tied states
for LibriSpeech and TED-LIUM, respectively. Feed-forward
models were used to bootstrap BLSTM-HMMs [13], trained
with TLK and TensorFlow [14]. BLSTMs are composed of 8
layers, with 512 cells per layer and direction, and trained using
the cross-entropy criterion. Back-propagation through time was
limited to a window size of 50 frames.

For language modelling, we trained TLMs using fairseq
[15], with a custom implementation of the VR criterion [8]. We
followed the ‘base’ configuration, with 512 cells per layer, a
feed-forward of 2048, and 8 attention heads. Only in TED-
LIUM, the intersection between the provided vocabulary and
the vocabulary of the training set resulted in a smaller output

layer (of 144K units). We ran our experiments with three dif-
ferent models per task, corresponding to a different number of
Transformer layers: 12, 18, and 24.

In addition, we also explored LM combination by in-
terpolating Transformer models with n-gram and/or LSTM
LMs. Regarding n-gram LMs, we used the 4-gram ARPA LM
(fglarge) provided with the LibriSpeech dataset, while for TED-
LIUM we trained a standard Kneser-Ney smoothed 4-gram LM
with the same data as [10] using SRILM [16]. A pruned ver-
sion of these models was used to estimate the static look-ahead
tables. LSTM LMs were trained with both the Noise Con-
trastive Estimation (NCE) [17] and the VR [8] criterions, using
the CUED-RNNLM toolkit [18]. They consisted of a 256-unit
embedding layer and two LSTM layers of 2048 units. Output
Softmax layers have the same number of units as TLMs.

To assess and compare LM performances, we provide per-
plexities (PPL) computed over the development sets of each
task. And, to evaluate overall ASR system quality, we com-
pute Word Error Rate (WER%) figures on the corresponding
development and/or test sets. Additionally, we carried out time-
measuring experiments for the ASR systems when processing
the development sets both under off-line and streaming setups.
For the off-line case, we compute Real Time Factor (RTF) val-
ues. RTF is defined as the ratio between the time needed by
an off-line ASR system to sequentially transcribe the whole de-
velopment set, and the duration of that set. For the streaming
case, we provide mean system latencies. We define latency as
the time elapsed between the system receiving the last input
frame of an uttered token, and the point in time when the first
hypothesis for that token is delivered. These time-measuring
experiments were conducted on an Intel Xeon(R) CPU E5-
1620@3.50GHz, and a GPU GTX2080Ti with 12GB. The es-
timation of the scores for the BLSTM, LSTM, and TLM was
performed on GPU, while the estimation of the n-gram scores
and the rest of the decoding was carried out on CPU.

Experiments are structured as follows. First, Section 4.2
gauges the performance of the different LMs considered in this
work, and studies the effect of limiting the history of TLMs.
Section 4.3 analyses the ASR performance considering WER
and RTF, for different number of Transformer layers and search
parameters. Next, Section 4.4 assesses the interpolation of the
best performing Transformers with the other LMs. Finally, Sec-
tion 4.5 compares the performance of the ASR systems, using
the best LM combination, in both off-line and streaming condi-
tions, also providing latencies for the latter case.

4.2. Language model evaluation

First, Table 1 shows the PPLs on the development sets for the
three types of LM models considered in this work: n-gram,
LSTM, and Transformer (12, 18 and 24 layers). As expected,
TLMs obtain significantly better PPLs than the other LMs con-
sidered. Moreover, increasing the number of Transformer layers
provided slight improvements of PPL. This observation leads
us to explore whether a streaming ASR system can benefit from
them, in terms of WER and latency.
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Table 1: LM perplexities for LibriSpeech and TED-LIUM.

Model LibriSpeech TED-LIUM
n-gram 140.9 117.5
LSTM 72.5 86.7
Transformer 12L 60.7 74.3
Transformer 18L 58.1 72.4
Transformer 24L 56.2 71.0

Next, Figure 1 shows the impact of limiting the history win-
dow in the evaluation of TLMs, in terms of PPL (left vertical
axis) as a function of the history size (in words), computed over
the development sets of LibriSpeech (left plot) and TED-LIUM
(right plot). This analysis is performed for Transformer models
of 12, 18, and 24 layers. The discontinuous line indicates the
percentage of fully-seen sentences (right vertical axis).
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Figure 1: Transformer LM PPLs (left vertical axis) for differ-
ent number of layers (in legend), and percentage (right vertical
axis) of fully-seen sentences (discontinuous line), as a function
of history size, for LibriSpeech (left) and TED-LIUM (right).

From this figure we realize that PPLs consistently and
greatly improve in all cases as we increase the history win-
dow size, until we reach size 40, approximately. For history
sizes higher than 40, PPL improvements are negligible. In Lib-
riSpeech, this is the expected behaviour, considering that 94%
of sentences are shorter than 40. This result is more interesting
in TED-LIUM, where a significant number of sentences (35%)
are longer than 40 words. This latter fact is more representative
of a streaming ASR scenario, for example a long lecture, where
most of the history would not be available with any realistic
window size. Due to these reasons, we used a history window
size of 40 words for the rest of the experiments of the paper.

4.3. ASR systems with Transformer language model

In this section we analyse the performance of hybrid ASR sys-
tems with TLMs of varying number of layers, under an off-
line setup. The idea is to find a good trade-off between quality
(WER) and speed (RTF). As we aim to bring these systems to a
streaming setup, our search for the best WER-RTF trade-off is
limited to those with RTF < 1, to ensure they are able to process
input audio streams in real-time. System speed is adjusted by
using different search (prune) parameters.

Figure 2 shows WER (vertical axis) and RTF (horizontal
axis) curves for ASR systems with TLMs of 12, 18 and 24 lay-
ers, computed over the development sets of LibriSpeech (left-
most plot) and TED-LIUM (right-most plot). As expected, in
both cases, the lowest RTF values are obtained with 12 layers.

But, as we are seeking a good WER-RTF balance, the best op-
tion is different for each particular task. For LibriSpeech, the
LM with 24 layers provides the best quality (5.6% WER) that
complies RTF constraints (∼0.9 RTF). On the other hand, for
TED-LIUM, the LM with 12 layers is not only the fastest, but
also provides the best quality (5.8% WER, ∼0.8 RTF).
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Figure 2: WER vs RTF of ASR systems with different Trans-
former LMs, for LibriSpeech (left) and TED-LIUM (right).

Considering the results of this experiment, we interpret this
in the light that WER is specially sensible to PPL changes in
the LibriSpeech task. In TED-LIUM, however, this correlation
is weaker, and, as such, more exploration of the search space is
always preferred, even with a LM with inferior PPL. In other
words, time is better spent exploring more prefixes, instead of
computing more Transformer layers for each candidate prefix.
Moreover, it is important to remark that LibriSpeech provides
four times more text data than TED-LIUM, then the improve-
ments of increasing the size of the model are somehow limited.
To us, all of the above explains the different behaviour of the
two tasks in figure 2. For the remaining experiments, we se-
lected the best-performing TLMs giving RTFs < 1, this is, 24
and 12 layers for LibriSpeech and TED-LIUM, respectively.

4.4. ASR systems with language model combination

In this section we aim to increase overall ASR performance
by LM combination, studying the effects of combining the
best performing TLMs with the corresponding n-gram and/or
LSTM LMs on our streaming decoder. For simplicity and tak-
ing into account PPL results, we only tried combinations in-
volving Transformer LMs. LM combinations are done by per-
forming a linear interpolation that minimizes PPL on the devel-
opment sets. First, we study the impact of these combinations
on the PPLs, and then, we analyse how PPL gains are translated
into ASR performance, in terms of quality and speed.

Table 2 shows interpolation weights (W%) and PPLs com-
puted for each possible combination over the development set
of both tasks. Only the weights of the n-gram (ng) and LSTM
(ls) models are shown. Therefore, the remaining (up to 100%)
is for the Transformer model.

We observe that LM combination has a positive effect on
the PPL, but the magnitude of this effect is diverse. On Lib-
riSpeech, the improvement is very slight, a 3% reduction on
PPL considering the three LMs, but on TED-LIUM, the im-
provement is significant, obtaining a PPL reduction of a 18%
with the same combination. Correspondingly, n-gram and
LSTM models take lower weights on LibriSpeech (up to 15%),
and higher on TED-LIUM (up to 46%).

Next, we analyse how these PPL gains translate to ASR
system performance. As LM combination increases the com-
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Table 2: Interpolation weights (W%) and PPLs computed over
the development sets of each task for all LM combinations.

LibriSpeech TED-LIUM
Model W(%) PPL W(%) PPL
Transformer – 56.2 – 74.4

+ ng 4 54.9 27 63.2
+ ls 14 54.6 39 68.3
+ ng+ls 2+13 54.4 27+19 61.0

putational complexity of the decoding, we must again explore
different ASR system speeds, with different search parameters,
to ensure that they comply the RTF < 1 constraint while keep-
ing a good balance with quality. Figure 3 shows WER (vertical
axis) and RTF (horizontal axis) curves for all the LM combina-
tions shown in Table 2, computed over the development sets of
LibriSpeech (left plot) and TED-LIUM (right plot).
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Figure 3: WER vs RTF of ASR systems with different LM com-
binations, for LibriSpeech (left) and TED-LIUM (right).

For LibriSpeech, the interpolation has little effect on the
WER, and the main explainer of WER differences are the search
parameters. This is aligned with the PPL results, where we ob-
served limited improvements. However, the Transformer + n-
gram combination provides slight but consistent improvements
in both quality and speed over the baseline TLM, when search
parameters are adjusted. For TED-LIUM, the significant im-
provements seen in PPL due to LM combination translate into a
similar fashion on WER figures, being the Transformer + n-
gram + LSTM combination the best performing in terms of
quality at acceptable RTF rates.

At this point, we select, as final ASR systems, those us-
ing the LM combination that exhibits the lowest WER with
RTF lower than 1. These are: Transformer + n-gram for Lib-
riSpeech, and Transformer + n-gram + LSTM for TED-LIUM.

4.5. Streaming ASR systems

To conclude our experiments, the two final systems of both tasks
are tested under a streaming setup. First, we measure WERs
over the development and test sets, and compare them with the
performance under an off-line setting, to quantify the expected
WER degradation. Then we compare these results with other
works, and, finally, we provide system latencies. The streaming
setup that provided the best result in [6] was used during these
experiments (in particular, an overlapping window of size 50
frames and stride 1 was used for the AM).

Tables 3 and 4 show WER figures of the final ASR systems
for LibriSpeech and TED-LIUM, respectively, evaluated on off-
line (constrained to RTF¡1) and streaming conditions, plus com-

parative results with related works. First, we can observe a
very small WER degradation when we move from off-line to a
streaming setup due to our inability to compute acoustic statis-
tics for normalization from the whole input stream. Second,
under streaming conditions, we obtain competitive results even
if compared with other works assessed under an off-line set-
ting; and top, state-of-the-art results when compared with other
works evaluated under the same streaming conditions.

Table 3: LibriSpeech results summary

System dev test
Off-line (RTF <1) 5.6 5.9
Streaming 5.9 6.4
Lüscher et al. [19] (Off-line) 4.5 5.0
Moritz et al. [1] (Off-line) 6.0 6.1
Moritz et al. [1] (Streaming) 7.2 7.3
Zhang et al. [2] (Off-line) – 5.6
Zhang et al. [2] (Streaming) – 10.0

Table 4: TED-LIUM results summary

System dev test
Off-line (RTF <1) 5.5 6.2
Streaming 5.7 6.4
Zhou et al. [20] (Off-line) 5.1 5.6

As for latencies, our theoretical latency (0.6s) is dominated
by the look-ahead window of 0.5 seconds, plus 0.1 seconds due
to batch processing. Actual latencies are slightly higher: our
measurements are 0.9±0.4s in LibriSpeech, and 0.8±0.3s in
TED-LIUM. We can compare this to a theoretical latency from
[1] of 2.2 seconds, and from [2] of 1.1 seconds. As a reference,
the UK Office of Communications recommends, to TV broad-
casters, a maximum latency of 3 seconds in live subtitling [21].

5. Conclusions and future work
Following our previous work on real-time one-pass decoding
with hybrid ASR systems and LSTM language models, in
this work we have reported further improvements by replacing
LSTMs with Transformer models. Two key ideas have been de-
scribed to adapt TLMs to our streaming one-pass decoder: the
incorporation of a VR term during training and the limitation of
the word history size. Empirical results show that TLMs lead
to top recognition rates on both tasks, LibriSpeech and TED-
LIUM, under the streaming setup.

Although LibriSpeech and TED-LIUM are free, widely
used tasks for comparison purposes, they are not well-suited
to accurately represent all the issues streaming systems have to
face. Accordingly, a first short-term goal is to test our decoder
on more realistic tasks, such as the Europarl-ST corpus [22] or
the RTVE Database [23].
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J. Civera, A. Sanchis, and A. Juan, “LSTM-based one-pass de-
coder for low-latency streaming,” in Proc. of ICASSP, 2020, pp.
7814–7818.
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