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Abstract

This paper presents an end-to-end text-to-speech system with

low latency on a CPU, suitable for real-time applications.

The system is composed of an autoregressive attention-based

sequence-to-sequence acoustic model and the LPCNet vocoder

for waveform generation. An acoustic model architecture that

adopts modules from both the Tacotron 1 and 2 models is pro-

posed, while stability is ensured by using a recently proposed

purely location-based attention mechanism, suitable for arbi-

trary sentence length generation. During inference, the decoder

is unrolled and acoustic feature generation is performed in a

streaming manner, allowing for a nearly constant latency which

is independent from the sentence length. Experimental results

show that the acoustic model can produce feature sequences

with minimal latency about 31 times faster than real-time on

a computer CPU and 6.5 times on a mobile CPU, enabling it to

meet the conditions required for real-time applications on both

devices. The full end-to-end system can generate almost natural

quality speech, which is verified by listening tests.

Index Terms: Text-to-speech synthesis, real-time, sequence-

to-sequence model, streaming inference, end-to-end TTS

1. Introduction

Developments in Deep Learning research and in computer hard-

ware in the recent years have resulted in a paradigm shift in

almost all speech processing applications. For text-to-speech

(TTS) in particular, there is a shift from either concatenative

systems or HMM-based statistical parametric models into neu-

ral models. The latter have yielded very high quality synthetic

speech while at the same time the overall text-to-speech pipeline

has been greatly simplified.

In most cases, the speech synthesis pipeline consists of an

end-to-end acoustic model, such as Tacotron [1] and a vocoder,

such as WaveNet [2] or WaveRNN [3]. Given a sequence of

linguistic features the acoustic model predicts a sequence of

speech frames in a parametric form (e.g. mel-spectrograms).

The sequence of acoustic features is then fed into the vocoder

in order to synthesize the raw audio waveform at the desired

sampling rate. In the case of an end-to-end acoustic model the

sequence of linguistic features consists of just the character se-

quence or the phoneme sequence. Such models typically have a

very high number of parameters resulting in high runtime com-

plexity. In spite of their impressive and realistic results, this

can be prohibitive for applications that require real-time speech

synthesis on running devices without GPU, e.g mobile phones,

wearables and IoT devices.

1.1. Related work

Tacotron 2 [4] is the most popular acoustic model that produces

almost human-level speech when combined with the WaveNet

vocoder. It is an attention-based sequence-to-sequence model

that leverages Recurrent Neural Networks (RNNs) and location

sensitive attention [5]. Escaping the necessity for RNNs which

are considered complex and slow to train, convolutional models

have also been proposed such as Deep Voice 3 [6] and DCTTS

[7], as well as a Transformer [8] model which is based on the

original architecture used for machine translation [9].

Autoregressive models are characterized by slow inference

speed, as the generation process is done sequentially. There is

always a model state, that has to be passed on to the next time-

step for the model to be able to produce the acoustic frame.

ParaNet [10], ClariNet [11] and GAN-TTS [12] are fully con-

volutional models that attempt to escape the autoregressiveness

of the above models and synthesize speech in parallel. The lat-

ter two achieve direct text-to-audio synthesis, using knowledge

distillation and adversarial training respectively. FastSpeech

[13] is the most consistent attempt at solving the slow infer-

ence speed problem. It consists of a Feed-Forward Transformer

network that enables parallel acoustic frame generation, guided

by a length regulator that produces the alignment between each

linguistic unit and its corresponding number of acoustic frames.

As for vocoders, WaveNet [2] is the first autoregressive con-

volutional model that produces high quality audio when con-

ditioned on mel-spectrograms. It is also an example of very

slow inference speed because of its sample-by-sample genera-

tion, which is later alleviated in Parallel WaveNet [14] through

parallel generation. WaveGlow [15] is a non-autoregressive

model that uses normalizing flows and produces state-of-the-

art results, but is slow for inference on CPU. Two more recent

attempts that instead use adversarial training are MelGAN [16]

and Parallel WaveGAN [17].

To our knowledge, the majority of previous research fo-

cuses on different architecture designs in order to produce the

best speech quality possible, utilizing powerful GPUs both for

training and inference. There has not been given much attention

to the performance of neural acoustic models when running on

CPUs, which represent a more realistic scenario for some real-

life applications. In the field of vocoders, WaveRNN [3] and

LPCNet [18] are prime examples that a very simple architec-

ture, in this case composed almost only from a couple of RNN

cells, when designed properly can produce faster than real-time

high quality results.
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1.2. Proposed method

In this paper, we emphasize on optimizing the acoustic model,

for real-life CPU applications. We build on prior work from

[1, 4, 18, 19] with the following contributions:

• A streaming inference method for purely autoregressive

models with minimal latency that is independent of the

sentence length

• An overall lightweight end-to-end TTS architecture with

low complexity that runs faster than real-time on CPU

• The utilization of a robust alignment model that elimi-

nates attention failure errors

We are particularly interested in a TTS system with state-of-

the-art quality suitable for applications both on mobile devices

and the server-side at low cost. For such applications, there are

variables that need to be considered when assessing the feasi-

bility of a model besides its quality. A significant hindrance for

many models is that the inference time depends on the sentence

length, which can lead to big slowdowns especially now that

very long sentence generation is made possible through novel

alignment models [19]. Another bottleneck is the latency from

the beginning of the synthesis until audible speech is generated.

The proposed acoustic model combined with the streaming

method can generate frames about 31 times faster than real-time

on a single CPU thread, while simultaneously minimizing its la-

tency down to about 50 ms. On a mobile phone, these numbers

change to 6.5 and 240 ms respectively because of the decreased

capabilities of the mobile CPU. The full synthesis including the

waveform generation is done about 7 times faster than real-time

on computer CPU and 2.7 times on mobile.

2. Method

2.1. Acoustic model architecture

The acoustic model maps the input sequence into a sequence

of acoustic feature frames that correspond to the representation

used by the LPCNet vocoder. It is an attention based sequence-

to-sequence model and a direct modification of Tacotron 1 and

2 [1][4].

The encoder converts input sequences p = [p1, ..., pN ] to

learnable embedding vectors, which are then processed by a 2-

layer pre-net and a CBHG stack from [1] in order to produce the

final encoder representation e = [e1, ..., eN ]. On the decoder

side, the inputs are acoustic frames f = [f1, ..., fT ] processed

again by a pre-net. At each decoding step an attention RNN

produces a hidden state hi by consuming the output of the pre-

vious step concatenated with the previous attention context vec-

tor. The attention module produces the current context vector,

which is then fed to a stack of 2 residual decoder RNNs along

with the attention RNN hidden state.

The output acoustic frames are predicted by a single fully-

connected layer. When the decoding is complete, a residual is

constructed from a 5-layer convolutional post-net from [4] and

added to the output in order to increase the quality of the final

outputs. Similar to Tacotron 2, a binary stop token that signals

the end of the acoustic sequence is also predicted from a fully-

connected layer with sigmoid activation.

2.2. Alignment model

In [19], a systematic comparison of various attention mecha-

nisms is performed and shows that the purely location-based

GMM attention introduced by Graves [20] is able to generalize

to arbitrary sequence lengths and not violate the monotonicity

of the learned alignment. It does not rely on the encoder outputs

for computing the scores, but instead has a state that is passed

on to the next step making it the best candidate for our stream-

ing model in order to be sentence-length-independent.

Our model uses a variation of GMM attention, similar to

[21], where the mixture of Gaussian distributions is replaced

by a Mixture of Logistic distributions (MoL), hence we refer

to it as MoL attention. In order to compute the alignments,

we directly use the Cumulative Distribution Function (1) of the

logistic distribution which is very simple to compute as it is

equal to the sigmoid function.

F (x;µ, s) =
1

1 + e−
(x−µ)

s

= σ
(

x− µ

s

)

(1)

Hence, for each decoder step i the alignment probabilities of

each encoder timestep j are computed as in (2) and the context

vector as the weighted sum of the encoder representations (3).

aij =

K
∑

k=1

wik (F (j + 0.5;µik, sik)− F (j − 0.5;µik, sik))

(2)

ci =

N
∑

j=1

aijej (3)

The parameters of the mixture are computed at each timestep

as in equations (4-6) from the intermediate parameters µ̂ik, ŝik,

ŵik which are predicted by 2 fully connected layers (7) applied

to the attention RNN state hi.

µik = µi−1k + exp(µ̂ik) (4)

sik = exp(ŝik) (5)

wik = softmax(ŵik) (6)

(µ̂ik, ŝik, ŵik) = W2 tanh(W1(hi)) (7)

2.3. Vocoder

We use the LPCNet [18] vocoder as adapted for reduced com-

plexity by the parallel work of [22]. By providing an initial

estimation of the spectral envelope through Linear Prediction

Coefficients (LPC), this method allows the neural model to fo-

cus on modeling the excitation signal, thus enabling it to pro-

duce state-of-the-art speech quality with a significantly lower

complexity. The conditioning parameters required for LPCNet

are used as a target for our acoustic model, so that we have an

end-to-end speech synthesis pipeline.

2.4. Streaming inference

During speech generation, the acoustic frame sequence must be

produced and then fed into the vocoder. A model like Fast-

Speech [13] can generate the whole sequence and then feed it

to a vocoder like WaveGlow [15] which in turn can generate

the full raw speech utterance. This process can take very little

time on GPU due to the memory efficient parallel computations.

However, for longer utterances that need to be synthesized on

CPU, this process can take a much longer time, thus increasing

the latency from when the synthesis starts until the final audible

speech is generated.

We implement a streaming inference process that enables

the feeding of acoustic frames into the vocoder before the in-

ference process of the acoustic model is finished as shown in
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Figure 1: Streaming inference architecture. The input sequence is fed into the encoder, which produces the linguistic representations.

The decoder, conditioned on the context vector produced by the attention module, generates a small batch of acoustic frames at each

step which are buffered. When the buffer contains enough frames, they are passed to the post-net in a larger batch. Care is taken so

that the buffer includes enough frames to accommodate the total receptive field of the convolutional layers in the post-net. Finally,

the output acoustic frames are passed to the LPCNet vocoder, after discarding the initial frames that were already vocoded but were

included as part of the receptive field and the most recent frames that need additional future frames to be processed by the post-net.

Figure 1. The LPCNet vocoder is autoregressive, so it can start

generating after receiving the first acoustic frame and because

it runs faster than real-time, the resulting audio can be audible

almost immediately.

In order to minimize latency, we continuously gather acous-

tic frames in groups that are passed in parallel to the post-net

taking advantage of its convolutional nature. The post-net is

trained to refine the full acoustic frame sequence, but since it is

fully convolutional it can perform the same process in a smaller

sequence just as well. The output frames from each decoder

step are accumulated in a buffer and then sent in larger chunks

to the post-net. A small window of frames before and after the

frame segments to be synthesized should be kept and fed to the

post-net as determined by the total receptive field of the convo-

lutional layers (21 in our model), in order for the output to be

identical to the non-streaming version of the model. The num-

ber of frames in each chunk sent to the post-net is a trade-off

between the latency and the real-time-factor (RTF) of the sys-

tem. If it is small then the latency is small, as the first frames

available for vocoding require a few decoder steps, but the com-

putational overhead of the window frames is big hindering the

real-time-factor. On the other hand if the number of frames ac-

cumulated for post-net processing is too big the window frames

overhead diminishes but the latency increases as we need to wait

for more decoder steps. A value of 100 frames is chosen for

the chunk sent to the post-net that corresponds to 1 second of

speech, as it is common practice to buffer some amount of audio

before playback in order to avoid static, especially if the audio

is transmitted over the network. Then the vocoder synthesizes

the first 1 second of audio from the output of the post-net. With

the first second of audio synthesized, the user can start listen-

ing while the next audio segment is being generated. A detailed

visualization of the proposed method can be seen in Figure 1.

The only requirement for this method to be feasible in a pro-

duction environment, is that the CPU can run the process faster

than real time. This way a low and stable latency is guaranteed,

regardless of sentence length. In our experiments, we found

that a CBHG-based post-net architecture is also feasible and

although the final output is not identical to the non-streaming

version due to the bidirectional GRU layer, the quality is not

significantly affected if the window is adjusted properly.

3. Experiments and results

3.1. Experimental setup

We train our model on the LJ Speech dataset [23], after upsam-

pling the audio data to 24 kHz. The acoustic features used for

training are matching the ones by the LPCNet vocoder [18], i.e.

20 Bark-scale cepstral coefficients (increased by 2 bands com-

pared to LPCNet because of the higher sampling rate), the pitch

period and pitch correlation.

The input text is first normalized and converted into a

phoneme sequence by a traditional TTS front-end module,

though without any modification the proposed method can be

applied to character-based models. In the encoder, phonemes

are mapped into 256 dimensional embeddings and the GRU of

the CBHG module has 128 dimensions in each direction. The

decoder contains 3 RNNs, a 256-dimensional attention GRU

and two 512-dimensional residual decoder LSTMs. The atten-

tion module uses a mixture of 5 logistic distributions and its

feed-forward layers are 256-dimensional. Pre-net and post-net

layers are regularized by dropout [24] of rate 0.5 and the de-

coder LSTMs by zoneout [25] of rate 0.1.

The network parameters are trained with the Adam opti-

mizer [26], which minimizes the average L1 loss before and

after the post-net, batch size 32 and an initial learning rate of

10−3 linearly decaying to 3 · 10−5 after 100,000 iterations. L2

regularization with weight 10−6 is also used. For our imple-

mentation, we use the PyTorch framework [27].

3.2. Complexity

The decorrelation of the acoustic information into cepstrum and

pitch and the very low dimensionality of the used features, al-

lows us to reduce the model parameters without affecting output

quality. The proposed model as described in the previous sec-

tion has a total of 9.5 million parameters.

We also take advantage of the model’s ability to generate

batches of frames at each decoder time step instead of a single

frame. By increasing the number of frames per step (r) the RTF

can be reduced, as the decoder runs for fewer steps given the

same linguistic input, as shown in Table 1. However, the quality

is also dependent on r, so we adopt the value r = 5 as we find

it provides a good trade-off between speed and quality.
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Inference is done on a single thread on an i7-8700K CPU

at 3.7 GHz, as we are targeting a realistic server scenario where

there are multiple TTS requests running in parallel on the same

server. We also report that for r = 5 on a mobile Exynos 9820

CPU the RTF is 0.153 ± 0.006 for the acoustic model, while

when including the vocoder, the RTF of the total system is 0.136

± 0.005 ms on computer CPU and 0.372 ± 0.007 ms on mobile.

Table 1: Average RTF and latency (with standard deviation)

for different values of the number of frames per step (r) and

corresponding MOS (with 95% confidence interval) on the test

corpus. The RTF and latency measurements are for the acoustic

model inference only, without the vocoder inference time.

r RTF Latency (ms) MOS

2 0.067 ± 0.005 93.3 ± 10.9 4.00 ± 0.13

3 0.044 ± 0.002 70.4 ± 9.1 4.23 ± 0.14

5 0.032 ± 0.002 50.1 ± 7.7 4.20 ± 0.10

7 0.025 ± 0.001 40.8 ± 7.0 4.01 ± 0.16

10 0.020 ± 0.001 34.1 ± 6.7 1.63 ± 0.13

Ground truth 4.5 ± 0.10

3.3. Latency

In order to measure the effectiveness of our method, we com-

pute the latency in both streaming and non-streaming inference

setups and also compare the results with other approaches. For

comparison we selected the ESPnet toolkit [28] because it pro-

vides many state-of-the-art pretrained models. We tested the

Tacotron 2 [4], Transformer [8] and FastSpeech [13] models

which utilized all available CPU threads for parallelization of

operations, as per their original implementation. We also mea-

sured the latency of the fastest model, FastSpeech, running on a

single thread for a better comparison with our model. Note that

these models were trained on audio data at 22.05 kHz sampling

rate and with 11.6 ms frame shift, while we use 24 kHz sam-

pling rate and 10 ms frame shift in order to match the vocoder

requirements. As a result, our model needs to produce more

frames for the same duration of audio.

In these experiments, we are interested in the latency of the

acoustic model, i.e. the time interval measured from the begin-

ning of the synthesis until the desired number of frames is gen-

erated. A test corpus of 2213 sentences with various lengths was

used in order to have accurate measurements of how the sen-

tence length correlates to the latency and the results are shown

in Figure 2. Average latency values are also included in Table 1

and show its dependence on the r parameter. On mobile CPU,

the value corresponding to r = 5 is 240 ms.

By examining Figure 2, we notice that the latency for

all non-streaming inference models increases as the sentence

length increases. It is clear that our non-streaming model fol-

lows a similar pattern, but is faster due to its lightweight archi-

tecture. FastSpeech is faster on multi-threaded run mode, but

it becomes slower than our non-streaming model when running

on a single thread. On the other hand, the streaming model

has an almost flat curve showing that its latency increases very

slowly as a function of the sentence length. The slight increas-

ing tendency is exclusively attributed to the runtime of the en-

coder module that being autoregressive is dependent on the in-

put sequence length. However, the percentage of the encoder

complexity is minimal, especially if we also consider the com-

plexity of the vocoder, making the overall latency of the system

practically sentence-length-independent.
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Figure 2: Latency vs sentence length. A logarithmic scale is

used for the latency (y-axis) in order to better visualize the large

discrepancies between the various systems shown. The time du-

ration is used to measure sentence length (x-axis) since not all

systems have the same frame shift and front-end processing.

3.4. Quality

We ran a listening test to investigate how quality changes by

varying the r parameter. We randomly selected 40 sentences

from the benchmark corpus and synthesized them with each

system trained on the LJ Speech dataset1. The listeners were

presented a web-page containing shuffled audio samples and

were asked to score the naturalness of each sample on a 5-point

Likert scale. The Mean Opinion Score (MOS) for each system

including the ground truth is shown in Table 1. For the larger

r values 7 and 10, we notice quality degradation, which is at-

tributed to the inability of the model to adequately represent

the longer speech information in a single step. Especially for

r = 10, the model skips some of the phonemes in the input se-

quence, leading to completely unnatural speech. For r values 3

and 5, the quality is similar while for r = 2 the MOS is lower

as the model may have not fully converged due to its reduced

complexity.

The subjective evaluation shows that our model apart from

being very fast, also scores very high in terms of naturalness.

At the same time, we found no errors due to failed alignment in

the benchmark corpus meaning that the synthesis is very robust

thanks to the MoL attention module.

4. Conclusions

We have presented an autoregressive TTS acoustic model that

can produce high quality speech many times faster than real

time. The combination of the lightweight model architecture

with the proposed streaming inference method is ideal for real-

time applications on both large scale systems and smaller de-

vices as it offers a low and stable latency without the need of

expensive hardware like GPUs. The streaming generation out-

performs other tested TTS systems in terms of latency and does

not hurt the output quality, because the receptive field of the

convolutional post-net is taken into consideration. The atten-

tion mechanism that was selected provides great stability even

in very long sentences, which is an absolute requirement in real

applications. Further work can be made with improvements on

runtime by taking advantage of sparsification and quantization

methods for better performance which can enable the system to

be run on even more low-tier devices.

1Samples available at https://innoetics.github.io/
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