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Abstract
Recent End-to-end text-to-speech (TTS) systems based on the
deep neural network (DNN) have shown the state-of-the-art
performance on the speech synthesis field. Especially, the
attention-based sequence-to-sequence models have improved
the quality of the alignment between the text and spectrogram
successfully. Leveraging such improvement, speech synthesis
using a Transformer network was reported to generate human-
like speech audio. However, such sequence-to-sequence models
require intensive computing power and memory during train-
ing. The attention scores are calculated over the entire key at
every query sequence, which increases memory usage. To mit-
igate this issue, we propose Reformer-TTS, the model using a
Reformer network which utilizes the locality-sensitive hashing
attention and the reversible residual network. As a result, we
show that the Reformer network consumes almost twice smaller
memory margin as the Transformer, which leads to the fast con-
vergence of training end-to-end TTS system. We demonstrate
such advantages with memory usage, objective, and subjective
performance evaluation.
Index Terms: speech synthesis, attention-based TTS, Reformer
network

1. Introduction
With the development of neural network techniques and high
computing power, the performance of synthesized speech by
text-to-speech(TTS) has been improved. Traditional TTS sys-
tem is based on statistical parametric speech synthesis [1] such
as HMM-based speech synthesis [2], SPSS using deep neural
network [3]. These SPSS approaches are composed of text fea-
ture extraction module, duration model, acoustic model, and
vocoder. In multi-stage approach, errors can accumulate over
each stage which could deteriorate the synthesized speech qual-
ity. Furthermore, lots of linguistic and acoustic knowledge is
needed to design the SPSS architecture. To resolve this prob-
lem, integrated end-to-end TTS models like Deep Voice[4, 5],
Tacotrons [6, 7] has been proposed. These models also elim-
inate the need for the complex design of the feature extrac-
tion models. Especially, attention-based TTS models such as
Tacotrons [6, 7], DCTTS [8], Transformer TTS [9] take place
in end-to-end TTS. In the attention-based TTS, attention mech-
anism enables the model to learn the alignment between the text
and spectrogram without explicit arrangement between text and
spectrogram.

However, There are two main problems in the attention-
based TTS: attention failure and memory problem. The atten-
tion failure occurs when alignment path do not have monotonic
curve which result skipping and repeating. To overcome the
attention failure, There have been attempts, such as forward
attention[10] and guided attention[8].

Second, the memory problem is that the attention mecha-

nism causes memory inefficiency in the training step. The at-
tention score is calculated for the entire key sequence at every
query samples. Hence, the memory complexity is O(LqLk)
where Lq and Lk are the length of query and key sequences, re-
spectively. Especially, in the Transformer TTS, there are three
stages that use the attention mechanism: two self attentions in
text encoder and mel decoder and an encoder-decoder attention
that aligns text with mel spectrogram. Therefore, a considerable
amount of memory is required compared to the number of pa-
rameters while training. Since it is reported that large batch size
is crucial for the stable training [9], training with small memory
causes quality degradation of the synthesized speech.

In the Transformer network, the attention scores are almost
zero except on a few key vectors. Thus, it is not necessary to cal-
culate attention scores for the entire key sequences. In Reformer
network [11], the existing attention mechanism is replaced with
locality-sensitive hashing (LSH) [12] attention. In addition, the
reversible residual network (RevNet)[13] was also used as an
alternative to the residual network [14], which has the effect of
refining the latent variables but has a memory disadvantage due
to storing activation. It was reported that in the NLP task, the
Reformer network has a positive effect on memory while main-
taining the performance.

In this paper, we propose a Reformer TTS model where
some of the self-attention modules are replaced with LSH
self-attention, and reversible residual networks are introduced,
which reduce the memory cost while maintaining the advan-
tages of the Transformer network. In addition, we employed a
forward attention [10] that easily forms monotonic alignment
path. From the experimental evaluation, we demonstrate that
the proposed system is efficient in terms of memory while the
speech quality is not degraded compared to the Transformer
TTS. We found that Reformer TTS can be trained on approx-
imately half memory usage compared to Transformer TTS of
similar parameter size and same batch size. This advantage
leads to more robust and faster convergence during training.

2. Background

In this section, we first briefly describe the Transformer TTS
model and the Reformer network.

2.1. Transformer TTS

Text-to-speech using Transformer network converts and in-
put text sequence (x1, x2, x3, ..., xN ) into and acoustic fea-
ture sequence (y1,y2, ...,yT ), by attention-based sequence-
to-sequence [15] model. Similar to other general end-to-end
TTS models, the Transformer TTS follows the encoder-decoder
scheme, where text and mel spectrogram features hx

n,h
y
t are

extracted from encoder and decoder respectively, and feature
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Figure 1: procedure of locality-sensitive hashing attention

alignment α is performed through attention mechanism:

hx
n = Encoder(PreNetenc(x1:N )) (1)

hy
t = PreNetdec(y1:t) (2)

αt = Attn(hy
t−1,h

x
1:N ) (3)

ct =

N∑
i

(αt[i]h
x
i ) (4)

ŷt = Decoder(ct,h
y
:t−1), (5)

where N is the length of text, and n, t is sample indices of text
and mel spectrogram. PreNets which consume text and mel
include feature extraction module and inject locational infor-
mation by adding positional embedding. Attn is multihead at-
tention. c is attended context vector that is weighted sum of
text encoder output. In Transformer TTS, Enc() and Dec()
are stacks of the block which include the pairs of self-attention
network and feedforward network:

αE
1:N = Attn(x1:N ,x1:N ) (6)

αD
1:T = Attn(y1:T ,y1:T ) (7)

hx
n =

N∑
i

(αE
n (i)h

x
i ) (8)

hy
t =

T∑
j

(αD
t (j)hy

j ), (9)

where T is the length of mel spectrogram. With self-attention,
the Transformer network can extract text and audio features by
considering long term dependencies.

However, self-attention mechanism in Transformer net-
work has memory redundancy. Attention score is computed by
matrix multiplication QKT , where Q and K are the key and
query vector sequence respectively. Therefore, attention mod-
ule occupies O(LkLq) memory complexity, given Lk and Lq

are the lengths of key and query. However, although the atten-
tion score is calculated for the entire sequence, the dominant
score is concentrated in small portion of the sequence. In addi-
tion, residual networks between input and output of the atten-
tion network require more significant memory occupancy dur-
ing the backpropagation process.

2.2. Reformer network

Recently, the Reformer[11] is proposed as an alternative to an
efficient Transformer using LSH attention and reversible resid-
ual network. LSH performs clustering on the key sequences to
gather vectors with close distance into same cluster. The atten-
tion score is calculated only for the own cluster and adjacent to
itself, which results the memory-efficient attention. A hashing
method maps high dimensional vector x into a hash h(x). x
values with the same h(x) are placed in the same cluster. Gen-
erally, the hash function output values are independent of how
similar values the inputs are, but LSH uses a function that maps
nearby vectors to the same hash values. For example,

h(x) = argmax(xR+−) (10)

R+− = cat([R,−R]) (11)

can be a locality-sensitive hash function, where R is a random
projection matrix with size [dk, h/2], and dk is the dimension
of key vectors. In Figure 1, Three vectors x1, x2, and x3 are
projected into random projection vectors (h=6) and the highest
projections are from r1, r2, and r6, respectively. In such a way,
there is a high probability that vectors at close range have the
same hash outputs. Therefore, the probability of entering the
same bucket also increases. After QK vectors in the sequence
are clustered in hash buckets, the attention score is calculated
with key sequence in the same buckets by masking the others:

αi[j] = softmax(
∑
i∈P

exp(qi · kj −m(j,Pi)) (12)

m(x,A) =

{
0, if x ∈ A
∞, otherwise

(13)

Pi = {j|h(qi) = h(kj)} (14)

ct =

N∑
i

(αt[j]hj) (15)

Feedforward network and residual network follow the attention
module. The residual network is an effective method to over-
come the vanishing gradient problem. However, It must store
the activation in residual layers for updating the weight during
backpropagation, which leads to the memory usage in propor-
tion to the number of network repetition. Hence, RevNet can
relieve the memory burden on multiple feedforward networks
and attention networks.
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Figure 2: Overall architecture of the proposed model

3. Memory efficient Reformer TTS
We propose Reformer TTS, memory-efficient end-to-end
speech synthesis system. In Transformer TTS, it is reported
that batch size has an essential effect on stable training. The
Reformer TTS can solve the problem by relieving memory re-
dundancy through the LSH and RevNet. In this section, we will
describe the structure of Reformer TTS model and the function
of each part. The entire architecture of our model is shown in
Figure 2.

3.1. Reformer TTS

3.1.1. feature extraction

In Reformer TTS, linguistic context information in text se-
quence is obtained through positional encoding which ensures
the sequential locational information, character-level encoding
with 512-dimension, and Pre-net sequentially. The encoder Pre-
net network is comprised of three 1-dimensional convolution
layer with 5 kernel size, to extract a 256-dimensional context
sequence, followed by a batch normalization and ReLU acti-
vation. A linear network is added at the end of the encoder
to compensate for the 0-centered positional encoding passing
through the ReLU network, where the output ranges [0, +∞)
Besides, the decoder pre-net network is composed of two linear
projections of 256 dimensions, ReLU activations, and dropouts.
In mel feature extraction, linear projection is also used behind
the pre-net in order to match the dimension of the 0-centered
issue as well as to fit the same dimension when calculating the
attention. The positional encoding is also placed between the
mel spectrogram and decoder prenet.

3.1.2. Encoder

In the encoder, LSH attention may cause the problem in align-
ment because the bucket size affects attention accuracy. If
bucket size is set too small, it is difficult to predict which key
vectors are attended accurately. Conversely, if it is set large to
be close to the text length, the attention is equivalent to full-
sight attention. In addition, the text has a shorter sequence
length than mel spectrogram. We observed that there was no
significant difference in memory between using and not using
the LSH attention. Therefore, Text encoder is composed of the
blocks of three self-attention layers and feedforward networks
where residual network and layer normalization are included.
Each hidden layer dimension is 256, and the output is sent to
encoder-decoder attention in the decoder.

3.1.3. Decoder

As in the general end-to-end TTS scheme, mel spectrogram se-
quence is predicted by the decoder network, which consumes
the character feature sequence. LSH attention is used for self-
attention of the decoder, but full-length attention is used for
encoder-decoder attention that follows. The LSH attention
combines query and key sequences to determine which buck-
ets to attend. However, the mel at query and text at key within
close vectors have different information. Therefore, mel and
text vectors are bucketed regardless of whether they are aligned
with each other. Therefore, we did not use the LSH attention at
the encoder-decoder attention and employed the same decoder
block in the Transformer TTS. Same as Tacotron2, the mel
spectrogram and stop token are predicted by two distinct lin-
ear projection networks. In addition, we give balancing weight
to positive stop token because positive stop tokens are sparser
than negative tokens over mel frames as used in Transformer
TTS [9].

The LSH attention can significantly save memory since it
is a partial attention. Because the LSH attention is unstable
compared to the Transformer self-attention, there could be mis-
aligned attention in the encoder-decoder network in the Re-
former network. When using the dot product attention, the
encoder-decoder module produced the result of poor alignment.
Meanwhile, forward attention technique[10] has been used in
end-to-end TTS to resolve misalignment problems. We use for-
ward attention with the transition agent, which is a strategy ex-
plained from the products-of-experts model[16]. By applying
this, the text feature was well-aligned with the speech feature,
and as a result, it can be observed that the problem of repeating
or skipping was resolved. With multihead attention, forward
attention is processed as Algorithm 1. The procedure and the
notation for Algorithm 1 is as follows:

headQ1:H = Chunk(Q, H) (16)

headK1:H = Chunk(K, H) (17)

headV1:H = Chunk(V , H) (18)

Attn1:H = softmax(
Qi:HK

T
i:H√

dk
) (19)

In encoder-decoder attention, forward attention scheme is
used in one layer of the decoder stack. In Transformer TTS,
it is noticeable from the attention that alignment is not formed
from all of the attention in the decoder stack. The attention
layers in the rest of the decoder stacks generate the attention
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Algorithm 1 Multihead forward attention

Initialize:
α1:H,0(1)←1.0
α1:H,0(n)← 0.0, n = 2, ..., N
u1:H,0 ← 0.5

for t=1 to T do:
α′1:H,t(n)← ((1− u1:H,t−1)α1:H,t−1(n)

+u1:H,t−1α1:H,t−1(n− 1))Attn1:H,t(n))
α1:H,t(n)← α′1:H,t(n)/

∑
i=1:N α

′
1:H,t(i)

c1:H,t ←
∑

i=1:N α1:H,t(i)head
V
1:H,i

u1:H,t ← DNN(c1:H,t,o1:H,t−1, head
Q
1:H,t)

end for

scores regardless of the alignment path between text and mel
spectrogram. Therefore, aligning is performed well by using
the forward attention only for one attention layer among the
decoder stack.

4. Experiments
In this section, we explain the training setup and experimental
evaluations.

4.1. Experimental setup

In the training process, The LJSpeech [17], English speech
dataset spoken by a female speaker is used. The database con-
tains about 24-hour 13,100 utterances with a 22,050 Hz sam-
pling rate. The mel spectrogram feature is 80-dimension ex-
tracted from 12.5 ms of hop length and 50 ms of frame length.
The notations and symbols such as numbers in the dataset are
re-written as pronounced in the text script. e.g., ”1828” is
written as ”eighteen twenty-eight”. 0-padding was done after
the text and mel spectrogram sequences to fit the size of the
bucket for LSH attention in the Reformer network. We also
used WaveGlow[18] vocoder, which can reconstruct audio sam-
ples from the mel spectrogram in parallel based on generative
flow network[19] trained on the ground truth mel spectrogram
features and audio waveforms. We trained WaveGlow with 12
stacks of Glow depth and 8 layers of non-autoregressive ker-
nel size 3 WaveNet in WaveGlow affine network. We used
a TITAN RTX to the Reformer TTS and the baseline Trans-
former TTS. The largest batch size of allowed memory capac-
ity was used. Compared to the Transformer TTS which could
contain 32 batch size with slightly over 9 million parameters,
The reformer TTS could be trained on 84 batch size on a single
GPU with approximately 13 million parameters. We trained the
model using the Adam optimizer [20] with β1 = 0.9, β2 = 0.999,
epsilon = 10−8 and a fixed learning rate of 0.0005.

4.2. Evaluation

We observed the number of the memory needed to train the
models. The memory usages on the Reformer TTS and Trans-
former TTS given the number of model parameters, batch size,
and the fixed length of text and mel spectrogram (256 and 1024,
respectively) are shown in Table 1: The results show that the
Reformer TTS model can be trained more efficiently in terms
of memory. Through the results, LSH attention and reversible
residual networks were used to configure the model to be able to
use a batch size almost twice as large as the model with almost
the same number of parameters.

For the perceptual subjective listening test, we also selected

The number of memory cached
Model Batch

size
Number of
parameters

Memory
cached

Transformer 32 12.47×106 16.76×109
Reformer 32 12.37×106 10.59×109
Transformer 44 12.47×106 23.07×109
Reformer 84 12.37×106 24.20×109

Table 1: Comparison of cached memory consuming on the
Transformer TTS and Reformer TTS

100 test text samples which are out of the dataset. 17 Korean na-
tive participants who are fluent in English listened to the speech
samples generated by Reformer TTS and Transformer TTS. The
order of the speech samples are randomly shuffled. Listeners
are asked to evaluate the speech quality in terms of the com-
parative mean opinion score (CMOS). The listeners rated each
sample in five categories: A is very bad, bad, normal, good, and
very good compared to B and each scored from 1 to 5 points to
calculate the CMOS score.

Model CMOS WER
Transformer with batch size 44 0.035 18.5%
Reformer with batch size 84 0 17.7%

Table 2: CMOS test and WER on Reformer TTS and Trans-
former TTS

In addition, for the objective test, we estimated word error
rate (WER) using ASR model in Google API was used to verify
the intelligibility of synthesized speech. Fastspeech[21] bor-
rowed WER as a measure of whether synthesized speech pro-
nounces well without skipping or repeating. This measure was
employed to supplement the fact that because CMOS partici-
pants were not given text scripts, they may not have noticed that
synthesized speech may contain omitted words. As shown in
Table 2, the Reformer TTS model showed almost similar pref-
erence to Transformer TTS. By constructing a partial attention
network using LSH attention and using a reversible residual net-
work, the Reformer TTS has sufficient expressive power to pre-
dict mel spectrogram from text sequence. In addition, the WER
was lower in the Reformer TTS, which is expected to be the ef-
fect of forward attention. Also, listeners can give high CMOS
scores on speech including skipping word by Transformer TTS,
because listeners evaluated with no given text scripts.

5. Conclusions and discussion
In this paper, we describe Reformer TTS, a memory-efficient
end-to-end neural TTS system. The state-of-the-art neural TTS
becomes more accessible and stable training of this becomes
possible. The speech sample generated from the Reformer TTS
shows the comparable quality to Transformer TTS.

Even though the Reformer TTS has enabled memory-
efficient training, LSH attention contains sorting, which slow
down the training speed. If the hash function with O(1) time
complexity were devised, faster training can be conducted.
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