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Abstract

In recent years, variational autoencoders (VAEs) have been at-
tracting interest for many applications and generative tasks. Al-
though the VAE is one of the most powerful deep generative
models, it still has difficulty representing complex-valued data
such as the complex spectra of speech. In speech synthesis, we
usually use the VAE to encode Mel-cepstra, or raw amplitude
spectra, from a speech signal into normally distributed latent
features and then synthesize the speech from the reconstruction
by using the Griffin-Lim algorithm or other vocoders. Such in-
puts are originally calculated from complex spectra but lack the
phase information, which leads to degradation when recovering
speech. In this work, we propose a novel generative model to
directly encode the complex spectra by extending the conven-
tional VAE. The proposed model, which we call the complex-
valued VAE (CVAE), consists of two complex-valued neural
networks (CVNNs) of an encoder and a decoder. In the CVAE,
not only the inputs and the parameters of the encoder and de-
coder but also the latent features are defined as complex-valued
to preserve the phase information throughout the network. The
results of our speech encoding experiments demonstrated the
effectiveness of the CVAE compared to the conventional VAE
in both objective and subjective criteria.

Index Terms: complex neural networks, deep learning, varia-
tional autoencoder, speech synthesis, speech encoding

1. Introduction

Deep learning has been enormously successful in the fields of
image processing, speech signal processing, and more [1]. Re-
cently, generative models such as generative adversarial net-
works (GANSs) [2, 3], variational autoencoders (VAEs) [4, 5],
and restricted Boltzmann machines (RBMs) [6, 7] have been
attracting attention because they are more interpretable and re-
quire less labelled data than discriminative models.

The VAE is especially easy to implement and train and has a
powerful representation ability. The VAE consists of an encoder
that encodes the input into latent variables and a decoder that
reconstructs the input from the latent variables in a probabilis-
tic manner. Both the encoder and decoder usually stack multi-
ple layers to represent high-order abstraction, which results in
deep neural networks (DNNs). The most popular type of VAE
assumes Gaussian-distributed latent variables as the posterior
given inputs and the standard normal distribution as the prior.
The latent variables can also be modeled as other distributions
such as categorical distribution [8, 9], vector quantization (VQ)
[10, 11], Gaussian mixture models (GMMs) [12, 13], and the
von-Mises-Fisher distribution [14].

Although many variations of the VAE have been proposed
so far, to the best of our knowledge there is not yet a VAE with
a complex-valued variable prior. For the other machine learning
models, various extensions that represent complex-valued data
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have been proposed [15, 16, 17]. There are still many cases
where we need to deal with complex-valued actual data such
as medical images, radar images, wireless signals, and acoustic
intensity. In the speech community, typically used acoustic fea-
tures such as MFCC, Mel-cepstra, Mel-spectra, and amplitude
spectra are all calculated from the complex spectra of speech.
In other words, these features lack phase information and can
no longer represent the original complex spectra. Especially
in speech synthesis, we need to estimate the phase by using
the Griffin-Lim algorithm [18] or recover the signal from the
amplitude-based acoustic features by using vocoders such as a
Mel-log spectrum approximation (MLSA) filter [19], WORLD
[20], STRAIGHT [21], or WaveNet [22], which results in de-
graded reconstruction of speech.

In this paper, we propose an extension of the VAE, which
we called complex-valued VAE (CVAE), that can directly
encode complex-valued spectra and learn the distribution of
complex-valued latent variables. The encoder and decoder con-
sist of complex neural networks [15] and output complex nor-
mal distributions of the latent variable and the observation, re-
spectively. In addition, the CVAE imposes the standard com-
plex normal distribution with zero mean, unit covariance, and
zero pseudo-covariance as a prior of the latent variables. The
KL divergence between the prior and the posterior of the la-
tent variables can still be derived into a quite simple form. We
also propose a reparameterization trick in the CVAE training,
similar to the conventional VAE. As this does not involve im-
plicit gradients [23], the gradients of the decoder can be directly
propagated back to the encoder during the training.

Some studies have reported the use of VAEs for represent-
ing a distribution of complex-valued output data [24, 25, 26, 27,
28, 29]. These methods assume a zero-mean complex normal
distribution whose variance parameters are output by a decoder,
whereas in this paper, we propose a complete complex-valued
VAE consisting of complex-valued output, latent variables, and
weights of the DNN encoder and decoder.

In Section 2, we briefly review the conventional VAE. In
Section 3, we present our proposed model, CVAE, and its repa-
rameterization trick. In Section 4, we report our experimental
results. We conclude in Section 5 with a brief summary.

2. Preliminary: VAE

The variational autoencoder (VAE) [4] is a generative model
that defines two paired distributions ¢4 (|x) and pe(x|l) of H-
dimensional latent variables I € R and D-dimensional ob-
servation & € R”, where ¢ and  are model parameters of
an encoder and a decoder, respectively. g, (l|z) is actually an
approximation of the real posterior distribution p(l|x). The en-
coder and decoder are typically composed of neural networks
(NNs), and their parameters {6, ¢} are estimated using the auto-
encoding variational Bayes (AEVB) algorithm. Given the ob-

http://dx.doi.org/10.21437/Interspeech.2020-1964



servation z, the lower bound of the log-likelihood can be found
by using the Jensen’s inequality, as

logp(®) = Drc1(qs(Uz)||pe(llz)) + L(0, ¢; )

Do (CC, l)
> L0, ¢;2) £ Egy1a [bg }7 M
(0, 0:0) = Basttie) |98y 1]2)
where Dgr(q||p) denotes the Kullback-Leibler (KL) diver-
gence between distributions ¢ and p. The lower bound
L(0, ¢; x) can be further rewritten as

L(0,¢;x) = Eq,1)a) [log po(z|l)]
— Dr1(qe(t|z)]|p(1)). )

The first term on the right side of Eq. (2) indicates the expec-
tation of the conditional log-likelihood of the observation given
the latent variables that are encoded from the observation, while
the second term indicates the constraint that the posterior and
prior distributions of the latent variables are close to each other.
From the point of view of an auxiliary function, the optimum
{6, ¢} that maximize the lower bound L£(6, ¢;x) is also the
reasonable solution for the log-likelihood log p(«). Therefore,
in the VAE training, each parameter is optimized so as to max-
imize £(0, ¢; x) using the gradient method. However, it is dif-
ficult to back-propagate the gradients with respect to ¢ due to
the sampling process. This is typically resolved by utilizing a
reparameterization trick in the Gaussian case, as discussed later.

2.1. The VAE with Gaussian latent variables

There has been much prior research on the VAE adopt the Gaus-
sian distribution as the posterior and prior of latent variables. In
this case, the encoder NN outputs a concatenated vector of the
mean p € R and the variance & € R+ . In the forward pass
of the VAE, we obtain reconstructed data =’ as the output of the
decoder NN that inputs a sample of latent variables I:

I~ qo(llx) 2 N(I; p, A(o)), 3)

where N (+; u, X)) denotes the multivariate Gaussian distribu-
tion with a mean vector g and a covariance matrix 33, and
A() is the function that returns a diagonal matrix whose di-
agonal elements are the input. This kind of VAE also imposes
a standard Gaussian prior on the latent variable distribution as
p(l) £ N(0,I). Therefore, the second term on the right side
of Eq. (2) can be calculated analytically as:

Drcr(gsU[®)||p(1)) = Drr (N (1, A()) ||V (0, T))

1, T
=5 ptlo—1-logal).
For continuous data such as Mel-cepstra, the conditional
distribution of the data is also often modeled as Gaussian with
a unit covariance, as

po(z|l) £ N(x;a, I), “
where @ € RP is the output of the decoder NN. In addi-
tion, the Monte Carlo method approximates an expectation
Eq, @1z [f(1)] of L samples as

1 & ,
ST ra®).
=1

Note that the approximation with only a sample L = 1 performs
sufficiently as long as the minibatch size is large enough [4].
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Figure 1: Comparison of forward pass of the vanilla VAE (a)
without reparameterization and (b) with reparameterization.
Solid and dotted lines indicate the forward pass and the sam-
pling process where the gradients cannot be back-propagated,
respectively.

From the above, the first term on the right side of Eq. (2) can be
made simpler:

1
Eq, e [logpe(|l)] ~ *5”5” —al + K, (6)

where K is a constant independent of model parameters.

2.2. Reparameterization trick

The model parameters are optimized to maximize the lower
bound by using the gradient method. However, the gradients
of the decoder cannot be back-propagated toward the encoder
due to the sampling process of Eq. (3). To circumvent this, we
utilize the reparameterization trick, as shown in Fig. 1. With
a normal sample € ~ N'(0, I), a sample of latent variables in
Eq. (3) becomes equivalent to

l=p++ooe, @)

which is differential to the outputs of the encoder. Therefore,
the gradients from the decoder can be back-propagated to the
encoder.

3. Proposed model: CVAE

The VAE discussed above represents real-valued data due to the
assumption of Gaussian-distributed observations. We can also
properly represent binary data by assuming a Bernoulli distribu-
tion, which will change the loss function in Eq. (6) into a cross
entropy. However, these models cannot represent complex-
valued data correctly under the assumption of the distribution,
although they can feed a concatenated vector of the real and
imaginary parts of complex-valued data. We propose, there-
fore, a new generative model that directly represents complex-
valued data through an encoder complex-valued neural network
(CVNN) and a decoder CVNN, similarly to the VAE, as shown
in Fig. 2. We call this model a complex-valued variational au-
toencoder (CVAE). Unlike the vanilla VAE, both the encoder
and decoder of CVAE output the distribution of complex-valued
variables.

Let z € C” and h € C¥ be complex-valued data and
complex-valued latent variables, respectively. The same as the
conventional VAE, the objective of the CVAE L(6, ¢; z) is the
variational lower bound of the log-likelihood log p(z), as

logp(z) >L(0, ¢; z) ®)
=E,, (n|z) [logpe(2|h)] — Dxr(qs(h|2)|[p(h)).



Note that ¢ and 6, model parameters of the CVNN encoder and
decoder, are all complex-valued here.

First, the CVAE defines the data conditional distribution as
the multivariate complex normal distribution, as

po(z|h) £ Ne(z;a,T,C) )
1
70 /det(T)det(T — CHT-1C)

w4 To 2] 2]}

where @ € CP, T € CP*P, and C € CP*P denote the
parameters of the complex normal distribution N (+; a,T, C)
of mean, covariance, pseudo-covariance, respectively. For sim-
plicity, we use unit covariance and zero pseudo-covariance; i.e.
po(z|h) = Nc(z;a,I,0), and the decoder outputs only the
mean a in this paper. This provides the following deformation
in regards to the first term on the right side of Eq. (8):

(10)

Eq,(niz) logpo(zlh)] = ||z —al3+ K. (11)

Second, the CVAE also defines the complex normal distri-
bution on the latent variables to sample. As a simple but ef-
fective form, we assume the complex normal distribution with
diagonal covariance and pseudo-covariance matrices, as

h ~ qs(h|z) & No(h; p, A(o), A(6)), (12)

where i € C7, 0 € R+, and § € C¥ are the outputs of
the encoder. As a prior of the latent variables, we assume the
standard complex normal as p(h) = N.(0, I, O), which is one
of the simplest and most representative distributions of complex
random variables. As a result, the second term on the right side
of Eq. (8) can still be computed in a simple and closed form, as

Dr1(qs(h|2)|Ipo(R)) (13)
= Drr(Ne(p, A(a), A(9))IN:(0,1,0))  (14)

1
=p"pt o —1-Sloge® — 8|l (15)

where -2 and | - | denote the element-wise square and absolute
operations, respectively. The term of Eq. (14) indicates the con-
straint that makes the encoder outputs close to the simple stan-
dard complex normal while the pseudo-variance as well as the
mean and the variance can change by different input z.

In this paper, we estimate the parameters of the CVAE
{®,0} by using the complex-valued gradient method so as to
maximize Eq. (8). The simplest one is the complex-valued
steepest ascent [30, 31], which iteratively updates each param-
eter with a complex-valued learning rate « € C,R(a) > 0,
as

2L

H(new) P g(old) .
BT

(16)

where the partial derivative in Eq. (16) is the Wirtinger deriva-
tive:

17)

90 ~ 2 \an(0) ~ "93(0)

The same is true of ¢. In our experiments, we utilized the com-
plex Adam [17] for more efficient learning.
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Figure 2: The CVAE consists of (a) an encoder E that inputs
complex-valued observation z and outputs the distribution of
complex-valued latent variables, and (b) a decoder D that re-
constructs the observation z' from the latent variables.
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Figure 3: Reparameterization trick in CVAE. The solid and dot-
ted lines are forward pass and sampling process, respectively.

3.1. Reparameterization trick in CVAE

As in the conventional VAE, the sampling process in Eq. (12)
makes it impossible to back-propagate the gradients from the
decoder side to the encoder. Therefore, we propose a reparam-
eterization trick for the CVAE as shown in Fig. 3.

The complex-valued latent variables h can be decomposed
into the real part © € R and the imaginary part y € R¥ as
h = x + iy. Under the assumption of Eq. (12), the elements
of h are independent of each other, and  and y follow the
Gaussian distribution with the mean of R(pt) and () and the

variance of o, £ w and o, £ %W, respectively.
: A _S(9)
Because there are correlations p = FIR(E) between « and y,

the latent variables follow the probability

N (S + ooy [ 220 @ = Rw). 1= 90, )
after we sample £ = R(p) + 0, o €, where €, ~ N (0, I).
Therefore, we can sample gy using another standard normal ran-
dom variable €, ~ N (0, I) as

~ g ~
§=S(n) +poy[—Fo@-—Rp)+V(@1-poa,ce,

T

where /- denotes the element-wise square. Summarizing the
above, we can sample latent variables h as follows:

h=p+K0€ +Kyoey (18)
Ko e 07—’_6 (19)
20 + 2%(9)
/a2 — 512
Koy 2 PRRVACiitd L) (20)
20 + 2R(9)



Table 1: Experimental conditions of each method.

CVAE VAE(R+I) VAE(GL)
input features complex spectra  real & imag of complex spectra  amplitude spectra
speech reconstruction inverse STFT & OLA inverse STFT & OLA Griffin-Lim
no. of epochs 80 540 290

optimizer (learning rate)
encoder architecture
decoder architecture

CAdam (0.0001)
255-100-[50,50,50]
50-100-255

Adam (0.001)
510-200-[100,100]
100-200-510

Adam (0.001)
255-100-[50,50]
50-100-255

Table 2: Experimental results of each method. Values after £+
indicate the 95% confidential intervals.

Method PESQ MOS
VAE(GL) 1.90 1.5240.08
VAE(R+]) 1.80 1.8340.10
CVAE 2.44

3.08 £0.13
CVAE(w/o 8) 2.39 -

Original -  4.814+0.04

As shown in Fig. 3, the gradients from the decoder can be back-
propagated to the encoder side.

4. Experiments
4.1. Setup

To evaluate our proposed model, we conducted analysis-by-
synthesis experiments using 50 sentence speech signals for
training and another 53 for tests pronounced by a female an-
nouncer (“FTK”) from set “B” of the ATR speech corpora [32].
The speech signals were downsampled from the original 20kHz
to 16kHz and then processed into 255-dimensional complex
spectra using the short-time Fourier transform (STFT) with a
window length of 512 and a hop size of 64 as the input fea-
tures. We used the remaining two-dimensional (first and last)
real-valued spectra as originals in the generation stage. Af-
ter we trained the CVAE, we evaluated it using the percep-
tual evaluation of speech quality (PESQ) and the 5-scale mean
opinion score (MOS) of 11 participants, comparing it with two
kinds of VAE: one that feeds the concatenated vector of real
and imaginary parts of the complex spectra (“VAE(R+I)”) and
one that feeds the magnitude spectra and recovers signals using
the Griffin-Lim (“VAE(GL)”). For each method, we stopped the
training when the loss did not go down. CVAE and “VAE(R+I)”
restored speech using the inverse STFT from the reconstructed
complex spectra followed by the overlap-add (OLA) method.
The number of Griffin-Lim iterations for “VAE(GL)” was 100.
Table 1 summarizes the experimental setup. The notation “255-
100-[50,50,50],” for example, indicates that the model has three
fully connected layers having 255, 100, 50 X 3 units in order.
Note that “VAE(R+])” has twice as many units as the CVAE
having two-degrees-of-freedom of real and imaginary units for
a fair comparison.

4.2. Results and discussion

The CVAE significantly outperformed the two VAE methods
in both objective and subjective criteria, as shown in Table 2.
“VAE(R+])” could not model the high frequencies very well,
as shown in Fig. 4. In contrast, the CVAE generated superior
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Figure 4: (a) Original amplitude spectrum and the recon-
structed spectra by (b) VAE(GL), (c) VAE(R+I), and (d) CVAE.

complex spectra that had fine structures and formants. This
is because the CVAE can capture the frequent complex spec-
tral patterns due to its direct complex encoding system and the
complex gradient method that keep the complex structures of
the data. When we compare the results of the two conventional
VAE methods, the performance of “VAE(GL)” was worse than
that of “VAE(R+I)” in the MOS criterion, as the Griffin-Lim al-
gorithm generates perceptually poor signals. For all methods,
we feel that the performance could be improved by a deeper ar-
chitecture, convolution layers, skip connections, and other tech-
niques. This will be investigated in our future work.

As a reference, we also took a look at our method without
using the pseudo-variance § as the output of the encoder (i.e.,
always & = 0). The absence of § degraded the performance, as
depicted in the “CVAE(w/o §)” row in Table 2. This means that
capturing the correlations between the real and imaginary parts
of the latent variables is important in the CVAE.

5. Conclusion

In this paper, we proposed a new generative model, the CVAE,
to directly represent complex spectra by extending the VAE.
The CVAE is based on the assumption that the complex-valued
latent variables follow the complex normal with diagonal co-
variance and pseudo-covariance matrices. We showed that the
sampled complex-valued latent variable can be back-propagated
by using our reparameterization trick. We demonstrated the
effectiveness of CVAE through analysis-by-synthesis experi-
ments. Our findings demonstrate that the CVAE has the poten-
tial to be just as a fundamental model as the VAE and can be ap-
plied to many tasks such as speech synthesis, voice conversion,
source separation, and even image or other signal processing.
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