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Abstract
One of the problems with automated audio captioning (AAC) is

the indeterminacy in word selection corresponding to the audio

event/scene. Since one acoustic event/scene can be described

with several words, it results in a combinatorial explosion of

possible captions and difficulty in training. To solve this prob-

lem, we propose a Transformer-based audio-captioning model

with keyword estimation called TRACKE. It simultaneously

solves the word-selection indeterminacy problem with the main

task of AAC while executing the sub-task of acoustic event de-

tection/acoustic scene classification (i.e., keyword estimation).

TRACKE estimates keywords, which comprise a word set cor-

responding to audio events/scenes in the input audio, and gen-

erates the caption while referring to the estimated keywords to

reduce word-selection indeterminacy. Experimental results on

a public AAC dataset indicate that TRACKE achieved state-of-

the-art performance and successfully estimated both the caption

and its keywords.

Index Terms: automated audio captioning, keyword estima-

tion, audio event detection, and Transformer.

1. Introduction

Automated audio captioning (AAC) is an intermodal transla-

tion task when translating an input audio into its description

using natural language [1–6]. In contrast to automatic speech

recognition (ASR), which converts a speech to a text, AAC

converts environmental sounds to a text. This task potentially

raises the level of automatic understanding of sound environ-

ment from merely tagging events [7, 8] (e.g. alarm), scenes

[9] (e.g. kitchen) and condition [10] (e.g. normal/anomaly) to

higher contextual information including concepts, physical

properties, and high-level knowledge. For example, a smart

speaker with an AAC system will be able to output “a digital

alarm in the kitchen has gone off three times,” and might give us

more intelligent recommendations such as “turn the gas range

off.”

One of the problems with AAC is the existence of many

possible captions that correspond to an input. In ASR, a set

of phonemes in a speech corresponds almost one-to-one to a

word. In contrast, one acoustic event/scene can be described

with several words, such as {car, automobile, vehicle, wheels}
and {road, roadway, intersection, street}. Such indeterminacy

in word selection leads to a combinatorial explosion of possible

answers, making it almost impossible to estimate the ground-

truth and difficulty in training an AAC system.

To reduce the indeterminacy in word selection, conven-

tional AAC setups allow the use of keywords related to acous-

tic events/scenes [4, 5]. The audio samples in the AudioCaps

dataset [4] are parts of the Audio Set [11], and their captions are

annotated while referring to the Audio Set labels. Therefore, au-

tomatic text generation while referring to keywords (e.g. Audio

Set label) may restrict the solution space and should be effective

in reducing word-selection indeterminacy.
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Figure 1: Overview of training procedure of TRACKE.

Unfortunately, in some real-world applications such as us-

ing a smart speaker, it is difficult to provide such keywords in

advance. For example, to output the caption “a digital alarm

in the kitchen has gone off three times,” conventional AAC sys-

tems require the keywords related to the acoustic events/scenes

such as {alarm, kitchen}. However, if the user can input such

keywords, the user should know the sound environment with-

out any captions. This dilemma means that we need to solve the

word-selection indeterminacy problem of AAC while simulta-

neously executing the traditional sub-task of acoustic event de-

tection (AED) [7, 8]/acoustic scene classification (ASC) [9]1.

We propose a Transformer [13]–based audio captioning

model with keyword estimation called TRACKE, which simul-

taneously solves the word-selection indeterminacy problem of

AAC and executing the AED/ASC sub-task (i.e. keyword esti-

mation). Figure 1 shows an overview of the training procedure

of TRACKE. TRACKE’s encoder has a branch for keyword es-

timation and its decoder generates captions while referring to

the estimated keywords for reducing word-selection indetermi-

nacy. In the training phase, a set of ground-truth keywords is ex-

tracted from the ground-truth caption, and the branch is trained

to minimize the estimation error of the keywords. A summary

of our contributions is as follows.

1. We decompose AAC into a combined task of caption

generation and keyword estimation, and keyword es-

timation is executed by adopting a weakly supervised

polyphonic AED strategy [14].

2. This is the first study that has adopted Transformer [13]

to AAC2. We also extended Transformer to simultane-

ously solve the word-selection indeterminacy problem of

AAC and the related AED/ASC sub-task.

2. Preliminaries of audio captioning

AAC is a task to translate an input audio sequence (φ1, ...,φT )
into a word sequence (w1, ..., wN ). Here, φt ∈ R

Dx is a set

of acoustic features at time index t, and T is the length of the

1A conventional method [4] uses ASC-aware acoustic features such
as the bottleneck feature of VGGish [12]. In contrast, we attempt to
solve the word-selection indeterminacy problem of AAC explicitly by
using the AED/ASC sub-task.

2The use of a Transformer in AED/ASC tasks has been investigated
[15, 16].
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input sequence. The output of AAC wn ∈ N denotes the n-th

word’s index in the word vocabulary, and N is the length of the

output sequence.

Previous studies addressed AAC using a sequence-to-

sequence model (seq2seq) [17,18]. First, the encoder E embeds

the input sequence into a feature-space as ν. Here, ν can be

either a fixed dimension vector or a hidden feature sequence.

Then the decoder D predicts the posterior probability of the n-

th word under the given input and 1st to (n − 1)-th outputs

recursively as

ν = Eθe (φ1, ...,φT ) , (1)

p(wn|ν,wn−1) = Dθd (ν,wn−1) , (2)

where θe and θd are the sets of parameters of E and D, respec-

tively, wn−1 = (w1, ..., wn−1), and wn is estimated from the

posterior using beam search decoding.

As mentioned above, one of the problems with AAC is in-

determinacy in word selection. Since one acoustic event/scene

can be described with several words, the number of possible

captions becomes huge due to combinatorial explosion. To re-

duce such indeterminacy, previous studies used meta informa-

tion such as keywords [4,5]. We definem = {mk ∈ N}Kk=1 as

a set of keywords where K is the number of keywords. By pass-

ing m to the decoder, it is expected that m works as an atten-

tion factor to select the keyword from the possible words corre-

sponding to the acoustic event/scene. Thus, (2) can be rewritten

as

p(wn|ν,m,wn−1) = Dθd (ν,m,wn−1) . (3)

3. Proposed Model

In real-world applications, there are not many use-cases for

AAC systems that require keywords. If the user can input such

keywords, he/she should know the sound environment with-

out any captions. To expand the use-cases of AAC, TRACKE

generates a caption while estimating its keywords from the in-

put audio. Sections 3.1 and 3.2 give an overview and details

of TRACKE, respectively, and Section 3.3 describes the pro-

cedure for extracting ground-truth keywords from the ground-

truth caption.

3.1. Model overview

Figure 2 shows the architecture of TRACKE. The components

of the encoder and decoder are the same of those of the original

Transformer [13], but the number of stacks and hidden dimen-

sions different. We use the bottleneck feature of VGGish [12]

(Dx = 128) for audio embedding, and fastText [19] trained

on the Common Crawl corpus (Dw = 300) for caption-word

and keyword embedding, respectively. Since the dimension[s?]

of audio feature and word embedding differ, we use two linear

layers to adjust the dimensions of audio and word/keyword em-

bedding to Df = 100, which is the hidden dimension of the

encoder/decoder.

In TRACKE, the size of the encoder output ν is Df × T .

The ν is passed to the keyword-estimation branch M as

m̂ = Mθm (ν) , (4)

where m̂ = {m̂k ∈ N}Kk=1 is the set of the estimated key-

words, and θm is the parameter of M. First, to input m̂ to D, m̂

is embedded into the feature space using fastText word embed-

ding. To adjust the feature dimension, the embedded keywords

Feed Forward

Audio embedding

(VGGish)

Dropout

Muti-Head

Attention

Word embedding

(fastText)

Linear
(word dim. reduction)

Audio Text

Muti-Head

Attention

Add & Norm

Feed Forward

Add & Norm

Linear

Dropout

3x

Add & Norm

Add & Norm

Masked

Muti-Head

Attention

Add & Norm

3x

Softmax

Linear

Sort & Select

Concat

Linear

ReLU

Sigmoid

MaxKeyword embedding

(fastText)

Keyword estimation 

branch

(a) (b)

m p(zc|ν)

ν

p(wn|ν,m,wn−1)
p(zc|ν)

Linear
(audio dim. reduction)

ν

Linear
(word dim. reduction)

m

Encoder output

Figure 2: (a) Architecture of TRACKE and (b) details of

keyword-estimation branch M.

are then passed to the linear layer for dimension reduction of

words/keywords. Then, the output RDf×K is concatenated to

ν. Finally, the concatenated feature R
Df×(T+K) is used as the

key and value of the multi-head attention layers in D, and the

decoder estimates the posterior of the n-th word, the same as in

(3), as

p(wn|ν, m̂,wn−1) = Dθd (ν, m̂,wn−1) . (5)

3.2. Keyword-estimation branch

Let C be the size of the keyword vocabulary and m be a set of

keywords extracted from the ground-truth caption (described in

Section 3.3). The M estimates m, that is, whether the input

audio includes audio events/scenes corresponding to keywords

in the keyword vocabulary.

The duration of each event/scene is different, e.g., a pass-

ing train sound is long, while a dog barking is short. Thus,

as in polyphonic AED [20, 21], it would be better to estimate

whether the pre-defined c-th event/scene has happened for each

t. However, the given keyword labels are weak; start and stop

time indexes are not given. Therefore, we carry out keyword es-

timation through the weakly supervised polyphonic AED strat-

egy [14] by (i) estimating the posterior of each event on each

t, p(zc,t|ν), then (ii) aggregating these posteriors for all t,

p(zc|ψ). Then, the most likely K events/scenes (i.e. keywords)

are selected.

First is the posterior-estimation step; M estimates the pos-

terior of the c-th keyword at t as

Ẑ = sigmoid (Linear (ReLU (Linear (ν)))) , (6)

where Ẑ ∈ [0, 1]C×T and its (c, t) element is p(zc,t|ν). Next is

the posterior-aggregation step. We use the global max pooling

strategy as follows because the maximum value rather than the

average for considering the difference in the duration for each

event

p(zc|ν) ≈ max
t

[p(zc,t|ν)] . (7)
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Then, p(zc|ν) is sorted in descending order and the top-K key-

words with high posterior are selected as m̂.

Note that the estimated order of the top-K keywords has no

effect on text generation because position encoding is not ap-

plied to the embedding vector of m̂. In addition, the computa-

tional graph is not connected from M to D because the sorting

and top-K selection after (7) are not differentiable. Therefore,

text-generation loss is not back-propagated to two linear layers

in (6), i.e. the update of θm is only affected by the accuracy of

keyword estimation.

3.3. Rule-based keyword extraction for training

We describe a rule-based keyword extraction for generatingm.

The keyword-estimation problem has been tackled as a sub-task

of text summarization and comprehension, and several machine

learning-based methods have been proposed [22–26]. In this

study, the first attempt to reveal whether the use of estimated

keywords is effective for AAC, we adopted a simple rule-based

keyword extraction method.

We use frequent word lemmas of nouns, verbs, adjectives,

and adverbs as keywords. From all captions in the training data,

we first extract words that belong to the four parts of speech.

Next, these words are converted to their lemmas and counted.

Then, the keyword vocabulary is constructed using the most

frequent C lemmas except “be”. Finally, the word lemmas

that exist in the keyword vocabulary are used as the ground-

truth keywords m. In the case of a ground-truth caption in the

Clotho dataset [5] “A muddled noise of broken channel of the

TV”, the words that belong to the four target parts of speech are

{muddled, noise, broken, channel, TV}. These words are then

converted to their lemmas as {muddle, noise, break, channel,

TV}. Finally, the lemmas that exist in the keyword vocabulary

are extracted asm.

3.4. Training procedure

TRACKE is trained to minimize two cost functions simultane-

ously; for captioning Lcap
θe,θd

and keyword estimation Lkey
θe,θm

.

For Lcap
θe,θd

, we used the basic cross-entropy loss as Lcap
θe,θd

=

N−1 ∑N

n=1 CE (wn, p(wn|ν, m̂,wn−1)) , where CE is the

cross-entropy between a given label and estimated posterior.

For Lkey
θe,θm

, to avoid M from always outputting the most fre-

quent keywords, we calculate weighted binary cross-entropy,

the weight of which is the reciprocal of the prior probability, as

Lkey
θe,θm

= −
1

C

C∑

c=1

λczc ln ẑc + γc(1− zc) ln(1− ẑc), (8)

where ẑc = p(zc|ψ), and zc = 1 if c ∈m; otherwise, zc = 0.

Here, λc and γc are the weights as λc = (p(zc))
−1 and γc =

(1−p(zc))
−1, respectively, where p(zc) is the prior probability

of the c-th keyword calculated by

p(zc) =
# of c-th keyword in training captions

# of training captions
. (9)

4. Experiments

4.1. Experimental setup

Dataset and metrics: We evaluated TRACKE on the Clotho

dataset [5], which consists of audio clips from the Freesound

platform [27] and its captions were annotated via crowdsourc-

ing [28]. This dataset was used in a challenge task of the Detec-

tion and Classification of Acoustic Scenes and Events (DCASE)

2020 Challenge [29]. We used the development split of 2893

audio clips with 14465 captions (i.e. one audio clip has five

ground-truth captions) for training and the evaluation split of

1045 audio clips with 5225 captions for testing. From the de-

velopment split, 100 audio clips and their captions were ran-

domly selected as the validation split. We evaluated TRACKE

and three other models on the same metrics used in the DCASE

2020 Challenge, i.e., BLEU-1, BLEU-2, BLEU-3, BLEU-4,

ROUGE-L, METEOR, CIDEr, SPICE, and SPIDEr.

Training details: All captions were tokenized using the word

tokenizer of the natural language toolkit (NLTK) [30]. All to-

kens in the development dataset were then counted, and words

that appeared more than five times were appended in the word

vocabulary. The vocabulary size was 2145, which includes

BOS, EOS, PAD, and UNK tokens. The part-of-speech (POS)–

tagging and lemmatization for keyword extraction were carried

out using the POS–tagger and the WordNet Lemmatizer of the

NLTK, respectively. Then, the most frequent C = 50 lemmas

were appended to the keyword vocabulary. The average number

of keywords per caption was 2.23, and we used K = 5 because

the number of keywords of 95% of the training samples was less

than five.

The encoder and decoder of TRACKE are composed of

a stack of three identical layers, and each layer’s multi-

head attention/self-attention has four heads. All parameters

in TRACKE were initialized using a random number from

N (0, 0.02) [31]. The number of hidden units was Df = 100,

and the initial and encoder/decoder’s dropout probability were

0.5 and 0.3, respectively. We used the Adam optimizer [32]

with β1 = 0.9, β2 = 0.999, and ǫ = 10−8 and varied the learn-

ing rate as the same formula of the original Transformer [13].

TRACKE was trained for 300 epochs with a batch size of 100,

and the best validation model was used as the final output.

Comparison methods: TRACKE (Ours) was compared with

three other models:

Baseline The baseline model of the DCASE 2020 Challenge

Task 6 [1].

LSTM Long short-term memory (LSTM)–based seq2seq model

[17, 18]. E was two-layer bidirectional-LSTM, and its

outputs were aggregated by an attention layer. D was

one-layer LSTM whose initial hidden state was the en-

coder output. The number of hidden units was 180.

Transformer Transformer-based AAC. Its architecture is the

same as TRACKE, except that the keyword-estimation

branch was removed.

To investigate the effect of the number of keywords K, we

also evaluated TRACKE with K = 10 (Ours(K = 10)),
where K = 10 was larger than the maximum number of key-

words per audio clip in the training data. To confirm the upper-

bound performance of TRACKE, we also compared it with two

other models. One is Oracle1; instead of m̂, the keywords in

the meta-data of the Clotho dataset (i.e. Freesound tags) are

passed to the decoder in both training/test stages, and the other

is Oracle2; instead of m̂, all 5 ground-truth captions of m

is passed to the decoder in both training/test stages. Oracle1

gives the oracle performance when the keywords are given man-

ually, and Oracle2 gives this when the estimation accuracy of

the keywords is perfect.

4.2. Results

Table 1 shows the evaluation results on the Clotho dataset.

These results suggest the following:
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Table 1: Experimental results on Clotho dataset with DCASE2020 Challenge metrics

Model # of params. B-1 B-2 B-3 B-4 CIDEr METEOR ROUGE-L SPICE SPIDEr

Baseline 4.64M 38.9 13.6 5.5 1.5 7.4 8.4 26.2 3.3 5.4

LSTM 1.12M 49.4 28.5 16.9 10.0 22.2 14.5 33.4 9.0 15.6

Transformer 1.11M 50.2 29.9 18.3 10.2 23.3 14.1 33.7 9.1 16.2

Ours(K = 10) 1.13M 49.9 29.7 18.4 10.8 23.0 14.5 34.5 9.1 16.1

Ours 1.13M 52.1 30.9 18.8 10.7 25.8 14.9 34.2 9.7 17.7

Oracle1 1.11M 53.4 32.2 20.0 11.7 27.5 15.4 35.1 10.1 18.8

Oracle2 1.11M 56.7 37.5 24.8 15.9 34.7 18.1 39.1 12.3 23.5
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Figure 3: Examples of TRACKE outputs. (i) Ground truth (R0 and R1) and estimated caption (Pred.) and keywords (Est. keywords),

(ii) input spectrogram, (iii) keyword posterior of each time index p(zc,t|ψ), and (iv) attention matrices of decoder.

(i) M works effectively for AAC. TRACKE (Ours)

achieved the highest score without given keywords. In addi-

tion, the BLEU-1 (ROUGE-L) score of Ours was 52.1 (34.2),

while that of Oracle1, which uses manually given keywords,

was 53.4 (35.1). Thus, the score of Ours was 97.6% (97.4%)

compared with Oracle1, in spite the fact that Ours is a per-

fectly automated audio-captioning model.

(ii) If TRACKE can accurately estimate the keywords, per-

formance might further improve. The oracle performance of

Oracle2 was significantly higher than that of Ours. Since the

keyword estimation accuracy of Ours was 48.1%3, we need to

improve this in future work.

(iii) If the estimated K is too large, the use of the esti-

mated keywords in text generation might be ineffective in re-

ducing indeterminacy in word selection because the scores of

Transformer and Ours(K = 10) were almost the same. To

further improve the performance of TRACKE, K should also

be estimated from the input.

(iv) Transformer might be effective for AAC because

Transformer was slightly better than LSTM. However, since

the training of Transformer requires a large-scale dataset, to

affirm the effectiveness of Transformer, we need to evaluate

Transformer by developing more large-scale datasets for AAC4.

(v) The use of pre-trained models is effective because there

were large performance gaps between Baseline and the others,

3The percentage of estimated keywords that were included in the
ground-truth keywords.

4The number of training sentence pairs in natural language process-
ing datasets, such as WMT 2014 English-French dataset, for machine
translation is 36 million.

and the major difference was the use of pre-trained models such

as VGGish [12] and fastText [19].

Figure 3 shows examples of TRACKE outputs. These re-

sults suggest that indeterminacy words were determined while

referring to the estimated keywords, for example, (b) {machine,

airplane} and (c) {close, fasten}. In addition, the posterior

probabilities of keywords imply the implicit co-occurrence rela-

tionships, rather than just classifying acoustic events/scenes. In

(c), the posterior probability of “person” increased even though

human sounds, such as speech, were not included in the input

audio. This might be the result of exploiting the co-occurrence

relationship that opening and closing a door is usually done by

humans.

5. Conclusions

We proposed a Transformer-based audio captioning model

with keyword estimation called TRACKE, which simultane-

ously solves the word-selection indeterminacy problem of the

main task of ACC while executing the AED/ASC- sub-task

(i.e. keyword estimation). TRACKE estimates the keywords

of the target caption from input audio, and its decoder gener-

ates a caption while referring to the estimated keywords. The

keyword-estimation branch was trained by adopting a weakly

supervised polyphonic AED strategy [14], and the ground-truth

keywords were extracted from the ground-truth caption via a

heuristic rule. The experimental results indicate the effective-

ness of TRACKE for AAC.

Future work includes improving keyword estimation while

adopting keyword-guided generation strategies in natural lan-

guage processing [23–25,33,34] and image captioning [35–38].
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