
Building a Robust Word-Level Wakeword Verification Network

Rajath Kumar1, Mike Rodehorst1, Joe Wang1, Jiacheng Gu1, Brian Kulis1,2

1Amazon Alexa Science, Cambridge, MA
2Boston University, Boston, MA

{rajathku, mikerode, wangjose, jiacheg, kulibria}@amazon.com

Abstract
Wakeword detection is responsible for switching on down-
stream systems in a voice-activated device. To prevent a re-
sponse when the wakeword is detected by mistake, a secondary
network is often utilized to verify the detected wakeword. Pub-
lished verification approaches are formulated based on Auto-
matic Speech Recognition (ASR) biased towards the wakeword.
This approach has several drawbacks, including high model
complexity and the necessity of large vocabulary training data.
To address these shortcomings, we propose to use a large recep-
tive field (LRF) word-level wakeword model, and in particular,
a convolutional-recurrent-attention (CRA) network. CRA net-
works use a strided small receptive field convolutional front-end
followed by fixed time-step recurrent layers optimized to model
the temporal phonetic dependencies within the wakeword. We
experimentally show that this type of modeling helps the sys-
tem to be robust to errors in the location of the wakeword as es-
timated by the detection network. The proposed CRA network
significantly outperforms previous baselines, including an LRF
whole-word convolutional network and a 2-stage DNN-HMM
system. Additionally, we study the importance of pre- and post-
wakeword context. Finally, the CRA network has significantly
fewer model parameters and multiplies, which makes it suitable
for real-world production applications.
Index Terms: wakeword spotting, voice activated devices,
keyword spotting, wakeword detection, convolutional network,
convolutional recurrent network, attention network

1. Introduction
In recent years, smart devices such as the Amazon Echo, Google
Home, and Apple Homepod have gained immense popularity.
They have become an integral part of millions of people’s day-
to-day lives. These smart devices include headphones, mobile
phones, and speakers, etc., and are activated using a wake-
word such as “Alexa” or “Ok Google”. The wakeword detec-
tion1 system is designed and modeled to be operated in noisy
and challenging acoustic environments, as the devices come
in various form-factors. Given the number of devices in use,
unseen acoustic conditions may incorrectly cause a device to
wake, yielding undesirable False Accepts (FA). These FA’s ini-
tiate downstream systems in cloud services such as Automatic
Speech Recognition (ASR), Natural Language Understanding
(NLU), etc., and may result in unintended device behaviors.
However, if we set the operating point of the wakeword detec-
tion model conservatively to prevent FA’s, then we would risk
many cases where real requests are ignored, i.e., false rejects
(FR) degrading the user experience. Thus, a secondary verifi-
cation network is often modeled and employed on the cloud to
verify the wakeword detections.

1Wakeword spotting and detection are used interchangeably in the
literature. In this paper, we adopt the wakeword detection terminology.

Post-contextPre-context

Post-contextPre-context

Predicted start-index Predicted start-index

Wakeword Detector Wakeword Detector

Accurate alignment condition Noisy alignment condition

Wakeword Verification
System

A L E X A
A L E X A

Figure 1: System design of wakeword detectors and wakeword
verification. The green line is the predicted start-index of the
wakeword as inferred by the wakeword detector. Pre- and post-
context is the amount of context added from the predicted start-
index required by the wakeword verification system to verify the
presence of the wakeword. Note the different alignments sent by
different wakeword detectors affecting the context in each of the
illustrated streams.

In a real production scenario, a single wakeword verifica-
tion network operates on a wide variety of devices as illustrated
in Fig. 1. These devices may use a range of wakeword detec-
tion models of varying size and sophistication. Thus the veri-
fication network needs to generalize well and be robust to the
addition of new devices. Conventionally, wakeword verifica-
tion networks are large vocabulary ASR systems [1, 2, 3, 4].
They involve modeling the entire lexicon into the HMM, re-
sulting in increased complexity. More recently, these ASR sys-
tems are tuned to be biased towards wakeword phonetics of in-
terest [5, 6]. This has shown to improve wakeword verifica-
tion performance significantly. Although there has been work
on improving ASR performance, the ASR wakeword verifica-
tion approach is of high model complexity, requires large vo-
cabulary training data, and verification performance is heavily
coupled with the word error rate (WER) objectives of the end-
to-end ASR system. Most of these drawbacks are addressed
by whole-word modeling when trained on a large and diverse
enough number of examples. These are already widely used for
wakeword detection.

In this paper, we focus on utilizing improvements in wake-
word detection for the verification task. Traditionally, for low-
latency wakeword detection, DNN-HMM based systems have
been utilized [7, 8, 9]. These 2-stage DNN-HMM systems were
further improved by better training strategies [10] and robust
architectures [11]. [12] introduced a small footprint wakeword
detection system that directly models the whole wakeword.
This type of approach requires large amounts of wakeword-
specific data for robust performance. This methodology was

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-20181972

extended to several architectures, including convolutional net-
works [13], residual networks [14], temporal convolutional net-
works [15], and recurrent networks [16, 17, 18], which all im-
proved significantly over [12]. More recently, self-attention lay-
ers [19] in combination with recurrent layers [20] have shown
to perform better than recurrent networks for word-level mod-
eling. Here, attention is used to re-weight the time step outputs
of the recurrent layers before feeding onto feed-forward layers
for classification. The receptive field of most of these networks
is designed to be the average duration of the wakeword in the
training corpus. We find that this design consideration degrades
the performance of the model for a person with a speaking rate
lower than the average. More importantly, the audio preceding
and following the wakeword serves as an essential cue to indi-
cate whether the wakeword was directed at the device in order
to make a request; e.g., the wakeword spoken in the middle of
a sentence is often not meant for the device. A larger receptive
field is also needed for our verification model to be robust to er-
rors in the location of the wakeword as predicted by the detector.
Taking into account the learnings from wakeword detection lit-
erature and the design requirements mentioned previously, we
propose using a convolutional recurrent attention architecture
for the verification task.

We compare our proposed verification model against state-
of-the-art wakeword detectors [13], a 2-stage DNN-HMM, con-
fidence scores from a large vocabulary ASR model, and a large
receptive field (LRF) convolutional network. The streaming
wakeword detectors utilized in these experiments are similar
to [13]. We refer to accurate wakeword start estimation as ac-
curate alignment condition and inaccurate estimation as noisy
alignment condition. Our experiments show that the proposed
CRA network outperforms all the considered baselines in both
accurate and noisy conditions. We also empirically show the
importance of pre- and post-context of the wakeword. Addi-
tionally, our proposed CRA network, in comparison to the sim-
ilar LRF convolutional network, operates at significantly fewer
model parameters and multiplies.

2. System Design
2.1. Wakeword Detection and Input Frame
The end-to-end system comprises a wakeword detector and ver-
ification system, as shown in Fig. 1. When a wakeword is
detected, N total seconds of audio context are checked by the
wakeword verification model, where N < 2 seconds. The pre-
and post- context addition described in Fig. 1 is dependent on
the accuracy of the wakeword start prediction, thus may differ
from the true start of the wakeword. On this audio context, 64-
bin Log Filter Bank Energies (LFBE) are computed every 10
ms over a window of 25 ms resulting in an input feature frame
of 195× 64.

2.2. Wakeword Verification
Unlike detection, which operates in a streaming manner, wake-
word verification performs a single pass on the input localized
context frame. To validate our proposed CRA architecture, we
consider several baseline systems that include both whole-word
and phonetic based models.

2.2.1. Baselines
Phonetically modeled systems that we consider are ASR [21]
and 2-stage DNN-HMM [11]. The ASR system we consider is a
large vocabulary DNN-HMM system, with an n-gram language
model to recognize the spoken words in the audio stream. The
system outputs a confidence score for each recognized word in

(b)

(7
x
3
)
x
 1

2
8

(3
,1

),
 (
1

,2
)

(9
x
5
)
x
 9

6

(1
,1

),
 (
2

,3
)

(4
x
3
)
x
 1

2
8

(1
,1

),
 (
1

,1
)

F
la

tt
e
n

5
0

0

(4
x
3
)
x
 1

2
8

(1
,1

),
 (
1

,1
)

x
 2

x
 3

(filter H x W) x nb filters

(stride H, W), (pool H, W)

Convolution

Dense

Posterior

Recurrent

(7
x
3
)
x
 1

2
8

(3
,1

),
 (
1

,2
)

(9
x
5
)
x
 9

6

(1
,1

),
 (
2

,3
)

(4
x
3
)
x
 1

2
8

(1
,1

),
 (
1

,1
)

1
2

8
 L

S
T

M
 c

e
lls

5
0

0

x
 3

x
 3

 Attention Block

Q

V

K

M
a
t.

 M
u

l.

S
c
a
le

S
o

ft
m

a
x

M
a
t.

 M
u

l.

(a)

Figure 2: (a) and (b) describes the architecture diagram of 195
frame receptive field convolutional network and convolutional
recurrent attention system, respectively.
the range (0,1). Similarly, for the defined wakeword, the ASR
model outputs a confidence score, which we use to verify the
presence of the wakeword by comparing to a fixed threshold.
Since every stream is initiated with the wakeword, we set the
confidence score for the wakeword to be 0 when the wakeword
is not detected by ASR. Note that this ASR model is not specif-
ically trained for the wakeword verification task, i.e., is not bi-
ased towards the wakeword. In the 2-stage DNN-HMM sys-
tem, the first stage is similar to the acoustic part of the ASR
system. However, unlike ASR, the 2-stage system is modeled
only on the phonemes representing the wakeword and 2 addi-
tional outputs to distinguish background and silence [22]. A
fixed length feature vector is extracted from the first stage DNN-
HMM. This vector is engineered to aggregate information over
all the frames in the hypothesized wakeword segment of the
stream [22]. We pass the extracted vector as input to the sec-
ond stage, which consist of multiple feed-forward layers. The
second stage is a binary classification system trained to verify
the presence of the wakeword. The two stages are trained sepa-
rately, and the resulting score from the second stage is used for
verification.

For whole-word baseline systems, we consider the detectors
that were designed for streaming data. We feed in fixed-length
195-frame inputs to these detectors and consider the maximum
over the scores produced as the wakeword confidence score. We
consider different receptive field (RF) fully convolutional detec-
tors (76 and 100 frames, respectively) to understand RF’s effect
on performance. Additionally, a convolutional network with a
receptive field of 195 frames is also considered; this network
need not be evaluated in a streaming fashion, as the network
outputs a single score for the 195 frame input. The architecture
and parameter details of the 195 RF CNN is described in Fig.
2a. The parameters of the 76 and 100 RF CNN are similar to
the 195 RF CNN.

We train each of the described RF CNN’s differently. As
discussed earlier, the 76 and 100 RF CNN’s are optimized to
perform as detectors, while the 195 RF CNN is modeled for
single-pass inference. The training data for the 76 RF CNN
centers the wakeword in the 76 frame LFBE input. However,
for the 100 RF CNN, we align the end of the wakeword to-

1973

wards the end of the 100 frame LFBE input. For both 76 and
100 RF CNNs, we jitter the wakeword location inside the input
frame by a small margin. Our experiments show that jittering
ensures model robustness during streaming inference. During
the evaluation, we feed 195 frame context LFBE data to both
of these CNN’s on which streaming inference is performed. We
use the maximum score of the output streaming posteriors for
classification. For the 195 RF CNN, we provide the accurate
aligned LFBE data during training as-is without adding jitter.
We conducted experiments providing accurate and noisy align-
ment data as input during training for 195 frame RF CNN and
decided on the former based on its superior verification perfor-
mance in the accurate alignment condition. For all CNN’s de-
scribed, we report evaluations on both accurate and noisy align-
ment conditions.

2.2.2. Convolutional Recurrent Attention Architecture

We base the convolutional recurrent attention (CRA) architec-
ture on the 195 RF CNN, i.e., we follow the same training and
inference methodologies. Here, the convolutional front-end has
a receptive field of 40 frames and is strided by 6 frames; this be-
haves as an efficient feature extractor to model short temporal
dependencies of phonemes. The convolutional front-end, with
C channels, traverses the 195 input frame, I ∈ Rt×f×1 in a
streaming fashion and outputs embeddings, D ∈ Rt′×f ′×C .
These embeddings are preserved temporally and are flattened
in the frequency dimension, D′ ∈ Rt′×f ′C , i.e., all of the fre-
quency dimensions and its respective channels at a particular
time step are considered as features for that particular time.
These frequency flattened embeddings, D′ are then passed to
the fixed timestep recurrent layers with N cells, i.e., all data dur-
ing training and inference are of 195 frames and therefore the
recurrent time dimension is fixed, and the recurrent states are re-
set at the end of 195 input frame. The output from the recurrent
layers, L ∈ Rt′×N , are then processed by scaled dot product
attention, which weights the importance of each timestep out-
put. In the attention block, L is passed through 3 linear layers in
parallel, and the outputs of each are denoted as key, K; query,
Q; and value, V , respectively. The dimension of the linear layer
is the same as N , i.e., dK = dQ = dV = N . The computation
inside the attention block results in the output A ∈ Rt′×N as
follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V. (1)

The output A of the attention is then summed temporally,
and A′ ∈ RN is obtained. A′ is further passed onto feed-
forward layers for classification. This architecture is illustrated
in Fig. 2b, along with its parameters.

3. Results and Discussion
3.1. Experimental Procedures
We use large human-annotated anonymized datasets for train-
ing in the order of 106 and evaluation in the order of 105, where
positive labels are given when a user says the wakeword to the
device, and negative labels are given when the user does not
say the wakeword, or says it not to the device, or the wake-
word is spoken by a media source. Note that all the streams
used in training for the 195 frame RF CNN and CRA architec-
tures are from the accurate alignment condition. The evaluation
datasets are grouped into accurate and noisy conditions with
prior knowledge of detector models; noisy alignment streams
are generally sampled from smaller and less sophisticated wake-
word detection models than those used for accurate alignment

% decrease in FAR in comparison to 2-stage DNN-HMM
System Accurate Alignment Noisy Alignment

ASR −6.9% −32.1%
76 CNN −19.4% −41.1%
100 CNN −34.6% −43.9%
195 CNN −52.6% −31.3%

CRA −54.6% −59.9%

Table 1: We report False Alarm Rate (FAR) percent decrease
relative to baseline 2-stage DNN-HMM model for all consid-
ered systems and the proposed Convolutional Recurrent Atten-
tion (CRA) architecture

streams. In practice, the accurate alignment condition has utter-
ances where we can rely on the accuracy of the predicted start
of the wakeword, whereas noisy alignment is when the estima-
tion is not reliable. In this paper, we report evaluation for all the
systems on both of these conditions.

We train the model for 300k steps with a batch size of 1200
samples. We use the Adam optimizer with a learning rate ini-
tialized at 0.001. We then apply an exponential moving average
of 0.99 over the gradients and choose the best model across all
saved checkpoints that provides the lowest average false alarm
rate within a range of low miss rates on a held-out development
dataset. The data in the training, development, and evaluation
datasets come from disjoint sets of devices. We train all the
models with a dropout of 0.3 and batch-normalization, applied
after every ReLU activation in the network. For evaluating the
performances of the models, we compute the percent change in
False Alarm Rate (FAR) relative to a baseline at a fixed False
Reject Rate (FRR). We select a low fixed FRR since instances
of real requests being rejected must be low for practical use.
Note that the improvements seen in FAR are not limited to the
chosen FRR point.

3.2. Performance comparisons
The performance of wakeword verification systems in both ac-
curate and noisy alignment conditions are compared in Table
1. The 100 CNN nomenclature used in Table 1 is to be read
as 100 receptive field CNN. We report false alarm rate per-
cent decrease relative to the baseline 2-stage DNN-HMM for
all considered systems at a fixed false reject rate. From Table
1, We observe in both accurate and noisy alignment condition
ASR confidence scores performs the poorest with only −6.9%
reduction in false alarm rate relative to 2-stage DNN-HMM in
accurate alignment conditions and −32.1% in noisy alignment
condition. We note that in some cases ASR does not hypoth-
esize the wakeword and thus there is no resulting confidence
score. While 2-stage DNN-HMM system performs the poorest
amongst all the considered systems, ASR system performs bet-
ter than 195 RF CNN in noisy alignment condition (−32.1%
relative FAR reduction for ASR in comparison to −31.3% for
195 RF CNN). In all the other cases, word-level models outper-
form ASR system. We attribute the stronger performance of the
word-level models to the availability of large training datasets.
Considering various RF CNN’s in accurate alignment condition,
we find the performance improves as we increase the receptive
field. The lowest considered receptive field, 76 RF CNN has
a relative reduction in FAR of −19.4% in comparison to base-
line 2-stage DNN-HMM while the highest receptive field, 195
RF CNN reduces FAR by −52.6% relative. This positive in-
crease in FAR reduction as we increase receptive field in ac-
curate alignment condition is not observed in noisy alignment
condition. The 195 RF CNN improves over other CNNs by a

1974

% increase in FAR in comparison to 50pre-145post (CRA)
System Accurate Alignment Noisy Alignment

40pre-145post +1.8% +5.6%
30pre-145post +3.4% +11.4%
20pre-145post +2.3% +24.3%
10pre-145post +3.4% +65.0%
0pre-145post +4.8% +75.3%

Table 2: We report performance of our convolutional recurrent
attention architecture with respect to pre-context variations in
accurate and noisy alignment conditions. Specifically, we com-
pare percent increase in False Alarm Rate relative to the 195
receptive field CRA

large margin in accurate alignment condition while performance
drops significantly in noisy alignment condition (−31.3% rela-
tive FAR reduction for 195 RF CNN in comparison to −43.9%
and −41.1% for 100 and 76 RF CNN respectively). We can
infer from this that the local weights learned by CNN are not
robust enough to generalize to wakeword position variations
and is biased towards the wakeword alignment condition it was
trained on i.e., accurate alignment condition. This leads to supe-
rior performance in accurate alignment condition that does not
translate to noisy alignment condition. However, the smaller
RF CNN’s (76 and 100) that are evaluated in a streaming fash-
ion on the same 195 frame context LFBE performs better than
195 RF CNN in noisy alignment condition, since they search
for the wakeword within the available 195 LFBE frames. Com-
paring these systems against our CRA architecture, we find that
the proposed CRA system outperforms all the models in both
accurate and noisy alignment conditions (−54.6% and−59.9%
relative FAR reductions in comparison to 2-stage HMM-DNN
in accurate and noisy alignment conditions). The CRA and 195
RF CNN have the same receptive field, however we observe
significant gains in noisy alignment condition (−59.9% rela-
tive FAR reduction for CRA in comparison to −31.3% for 195
RF CNN) while observing slightly better performance than the
195 RF CNN in the accurate alignment condition (−54.6% rel-
ative FAR reduction for CRA in comparison to−52.6% for 195
RF CNN). Note that the CRA architecture is trained on accurate
alignment data, and we see performance improvements in both
accurate and noisy alignment conditions, unlike 195 RF CNN,
where we see gain only in accurate alignment condition when
compared to other word-level systems (76 and 100 RF CNN).
This is because the recurrent layers in CRA architecture learn
the transition of wakeword phonetics over time provided by the
convolutional front-end, thus making the network robust to dif-
ferent occurences of the wakeword inside the 195 frame LFBE.

We tried several variations before arriving at the described
parameters for the CRA architecture. We found that utilizing
GRU cells provided a slightly better performance than LSTM
cells. We experimented with different variants of convolutional
front-ends, specifically dilated and gated convolutional layers.
These variants were not optimal in terms of performance and
also had higher number of multiplies. We further experimented
by adding skip connections in the recurrent layers, which did
not have any effect on the model performance. Most of these
models resulted in a gradient explosion at the recurrent layers
leading to sub-optimal convergence. Towards the end, the de-
scribed CRA architecture proved to be the best of the architec-
tures we tried in terms of computational cost and performance.
Computationally, the 195 RF CNN architecture has 232M mul-
tiplies in inference mode while the CRA network has 197M
multiplies. Additionally, the CRA network has only a third of

% increase in FAR in comparison to 50pre-145post (CRA)
System Accurate Alignment Noisy Alignment

50pre-135post +2.3% +3.8%
50pre-125post +3.1% +12.9%
50pre-115post +3.9% +3.7%
50pre-105post +3.7% +6.3%
50pre-95post +8.1% +12.1%
50pre-85post +14.5% +30.5%

Table 3: We report performance of our convolutional recurrent
attention architecture with respect to post-context variations in
accurate and noisy alignment conditions. Specifically, we com-
pare percent increase in False Alarm Rate relative to the 195
receptive field CRA.

the 195 RF convolutional network’s parameters, thus signifi-
cantly reducing its memory footprint.

3.3. Importance of context
In a real world scenario, the speaking rates vary between peo-
ple and the model size of wakeword detectors are also different
affecting the accuracy of wakeword start prediction, thus it is of
importance to understand the model behaviour with changes to
pre- and post- context. The correlation of pre- and post- context
performance for both accurate and noisy alignment conditions
is described in Table 2 and 3 respectively. In this controlled
experiment, we experiment by successively increasing pre- and
post- context by ten frames and report percent change in false
alarm rate relative to the CRA architecture with 195 receptive
field. All these experiments are trained in similar settings us-
ing CRA architecture. The 50pre-145post nomenclature used
in Table 2 and 3 is to be read as a model input of 50 frame pre-
context and 145 frame post-context, where pre-context ends and
post-context begins at the point when the wakeword begins ac-
cording to the detector model. We find that for the accurate
alignment condition, pre-context provides only small gains in
performance (only +4.8% increase in false alarm rate relative to
50pre-145post when pre-context is 0); however, in noisy align-
ment condition, we find that pre-context has a larger impact on
performance of the model (+75.3% increase in false alarm rate
relative to 50pre-145post when pre-context is 0). From this ob-
servation, we infer that the noisy detector models often esti-
mate the wakeword start prediction too late, thus resulting in
poor performance with low pre-context. In post-context ad-
dition experiments, we find the performance worsens as post-
context decreases in accurate alignment condition (+14.5% in-
crease in false alarm rate relative to 50pre-145post when post-
context is 85 frames) and noisy conditions (+30.5% increase in
false alarm rate relative to 50pre-145post when post-context is
85 frames).

4. Conclusion
In this paper, we have described a whole word modeling ap-
proach to the wakeword verification task. Our proposed solu-
tion involves a strided convolutional front-end feeding into re-
current layers with attention. We empirically show that this type
of modeling helps the network to be robust to noisy wakeword
localization predicted by the wakeword detectors. We estab-
lish the efficacy of our approach by comparing against strong
baseline systems that include both phonetic and word-level ap-
proaches: ASR confidence scores, 2-stage DNN-HMM and 76-
100-195 frame RF CNN’s. In addition, we show the importance
of pre- and post- context in the wakeword verification task and
that our proposed approach is computationally efficient, making
it practical for production applications.

1975

5. References
[1] P. S. Cardillo, M. Clements, and M. S. Miller, “Phonetic searching

vs. lvcsr: How to find what you really want in audio archives,”
International Journal of Speech Technology, vol. 5, no. 1, pp. 9–
22, 2002.

[2] R. C. Rose and D. B. Paul, “A hidden markov model based key-
word recognition system,” in International conference on acous-
tics, speech, and signal processing. IEEE, 1990, pp. 129–132.

[3] I. Szoke, P. Schwarz, P. Matejka, L. Burget, M. Karafiát,
M. Fapso, and J. Cernocky, “Comparison of keyword spotting
approaches for informal continuous speech,” in Ninth European
conference on speech communication and technology, 2005.

[4] M. Weintraub, “Lvcsr log-likelihood ratio scoring for keyword
spotting,” in 1995 International Conference on Acoustics, Speech,
and Signal Processing, vol. 1. IEEE, 1995, pp. 297–300.

[5] A. H. Michaely, X. Zhang, G. Simko, C. Parada, and P. Aleksic,
“Keyword spotting for google assistant using contextual speech
recognition,” in 2017 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU). IEEE, 2017, pp. 272–278.

[6] S. Sigtia, P. Clark, R. Haynes, H. Richards, and J. Bridle,
“Multi-task learning for voice trigger detection,” arXiv preprint
arXiv:2001.09519, 2020.

[7] J. Wilpon, L. Miller, and P. Modi, “Improvements and applica-
tions for key word recognition using hidden markov modeling
techniques,” in [Proceedings] ICASSP 91: 1991 International
Conference on Acoustics, Speech, and Signal Processing. IEEE,
1991, pp. 309–312.

[8] M.-C. Silaghi and H. Bourlard, “Iterative posterior-based keyword
spotting without filler models,” in Proceedings of the IEEE auto-
matic speech recognition and understanding workshop. Citeseer,
1999, pp. 213–216.

[9] M.-C. Silaghi, “Spotting subsequences matching an hmm using
the average observation probability criteria with application to
keyword spotting,” in AAAI, 2005, pp. 1118–1123.

[10] S. Panchapagesan, M. Sun, A. Khare, S. Matsoukas, A. Man-
dal, B. Hoffmeister, and S. Vitaladevuni, “Multi-task learning and
weighted cross-entropy for dnn-based keyword spotting.” in Inter-
speech, vol. 9, 2016, pp. 760–764.

[11] M. Sun, D. Snyder, Y. Gao, V. K. Nagaraja, M. Rodehorst, S. Pan-
chapagesan, N. Strom, S. Matsoukas, and S. Vitaladevuni, “Com-
pressed time delay neural network for small-footprint keyword
spotting.” in INTERSPEECH, 2017, pp. 3607–3611.

[12] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014, pp. 4087–4091.

[13] T. N. Sainath and C. Parada, “Convolutional neural networks
for small-footprint keyword spotting,” in Sixteenth Annual Con-
ference of the International Speech Communication Association,
2015.

[14] R. Tang and J. Lin, “Deep residual learning for small-footprint
keyword spotting,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 5484–5488.

[15] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim,
and S. Ha, “Temporal convolution for real-time keyword spotting
on mobile devices,” arXiv preprint arXiv:1904.03814, 2019.

[16] R. Kumar, V. Yeruva, and S. Ganapathy, “On convolutional
lstm modeling for joint wake-word detection and text dependent
speaker verification.” in Interspeech, 2018, pp. 1121–1125.

[17] S. O. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky,
C. Fougner, R. Prenger, and A. Coates, “Convolutional recur-
rent neural networks for small-footprint keyword spotting,” arXiv
preprint arXiv:1703.05390, 2017.

[18] T. Yamamoto, R. Nishimura, M. Misaki, and N. Kitaoka, “Small-
footprint magic word detection method using convolutional lstm
neural network,” Proc. Interspeech 2019, pp. 2035–2039, 2019.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998–6008.

[20] C. Shan, J. Zhang, Y. Wang, and L. Xie, “Attention-based end-to-
end models for small-footprint keyword spotting,” arXiv preprint
arXiv:1803.10916, 2018.

[21] S. H. Krishnan Parthasarathi and N. Strom, “Lessons from build-
ing acoustic models with a million hours of speech,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019, pp. 6670–6674.

[22] M. Sun, V. Nagaraja, B. Hoffmeister, and S. Vitaladevuni, “Model
shrinking for embedded keyword spotting,” in 2015 IEEE 14th
International Conference on Machine Learning and Applications
(ICMLA), 2015, pp. 369–374.

1976

