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Abstract
We propose an audio-based wakeword-independent verification
model to determine whether a wakeword spotting model cor-
rectly woke and should respond or incorrectly woke and should
not respond. Our model works on any wakeword-initiated au-
dio, independent of the wakeword by operating only on the au-
dio surrounding the wakeword, yielding a wakeword agnostic
model. This model is based on two key assumptions: that au-
dio surrounding the wakeword is informative to determine if the
user intended to wake the device and that this audio is indepen-
dent of the wakeword itself. We show experimentally that on
wakewords not included in the training set, our model trained
without examples or knowledge of the wakeword is able to
achieve verification performance comparable to models trained
on 5,000 to 10,000 annotated examples of the new wakeword.
Index Terms: speech recognition, keyword spotting

1. Introduction
Voice-activated devices are designed to activate upon hearing a
specific wakeword1 and reply to the following command with
either a spoken response or an action (e.g. playing music, con-
trolling a smart home device, etc.). Generally, the system is
structured where an efficient, small-footprint model is running
locally on a device [1, 2]. When this small-footprint wakeword-
spotting model hears the specified wakeword, audio is sent to
a cloud-based system, allowing for more complex automatic
speech recognition (ASR) and natural language understanding
(NLU) models to attempt to interpret the command. Based on
the command, the cloud-based system can then issue a response,
with the ability to access content (e.g. music, live broadcasts,
etc.) that is not stored on the device and interact with smart
home devices over the internet.

Although wakeword detection models are capable of high-
degrees of accuracy, there is a risk of false wakes occurring due
to incorrect detections by the small-footprint model running lo-
cally on the device. In the event of a false wake, devices may
speak, play music, or interact with smart home devices with-
out prompting from the user. One approach to avoiding this is
through wakeword verification [3]. Wakeword verification is
the problem of confirming whether audio was correctly sent to
the cloud by a device-directed wakeword or incorrectly sent due
to a false identification of a wakeword by the model running lo-
cally on a device.

Wakeword verification systems improve upon on-device
wakeword-spotting models due to two main factors: the abil-
ity to use audio content following the wakeword and to run
larger/significantly more complex models than possible as a

†Work conducted while the author was at Amazon.com
1The terms wakeword and keyword are often used interchangeable

in literature. For consistency we use the term wakeword throughout
when referring to a word chosen to wake a voice-activated device.

detection model. Wakeword-spotting models are unable to
fully leverage audio following the wakeword, as waiting for
this audio to arrive before making a decision would signifi-
cantly increase the latency of the overall end-to-end system.
Additionally, the need to run continually streaming detection
presents limits on the inference complexity that can be run by
the wakeword-spotting model.

For a known wakeword, one natural approach to building a
wakeword verification system is to build a model that takes au-
dio (or audio-based features) as an input and attempts to predict
whether the user intended to wake the device based on anno-
tated training examples.

A wakeword agnostic system is necessary for many appli-
cations. For example, in voice interoperability, the goal is for
users to be able to directly interact with various cloud-based
systems by using distinct wakewords. In this setting, there is
a need for a wakeword verification system that scales to many
continually changing and growing wakewords while avoiding
the need to have a distinct model for each wakeword. Another
potential application is highly personalized wakewords, where
a large number of wakewords are required with limited or no
training data provided. These applications motivate the prob-
lem of wakeword-independent verification, where we seek to
build a system that identifies whether a wakeword was directed
at the device for any unknown wakeword.

For this problem, we focus on constructing a single model
that operates on any incoming wakeword. We assume the sys-
tem is wakeword agnostic, that is it has no prior knowledge of
the wakeword used by the device. Finally, training examples are
provided only for a small subset of wakewords, preventing use
of few-shot or query-by-example approaches that would allow
explicit modeling of the individually chosen wakewords.

We propose an approach to solving the wakeword-
independent verification problem that operates only on audio
before and after the wakeword. We assume the audio con-
tent surrounding the wakeword is informative in determining
whether the wakeword was user-generated and device-directed.
Additionally, we assume this behavior generalizes across wake-
words, allowing for models trained on surrounding audio from
one set of wakewords to generalize to new, unseen wakewords.

To leverage this assumption, we propose a novel convolu-
tional neural network architecture with two independent sets of
convolutional filters, one set operating on the audio preceding
the wakeword and one set operating on the audio following the
wakeword. We introduce an adversarial loss during training to
encourage generalization across wakewords and avoid overfit-
ting on specific on training wakewords.

Empirically, we show that the proposed model trained on
data from two wakewords is capable of generalizing to new, un-
known wakewords with performance comparable to wakeword-
specific models built with knowledge of the wakeword and
trained on 5,000 to 10,000 annotated examples.
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Figure 1: (a) Features used in by the wakeword-independent model. The audio associated with the wakeword is ignored, with audio
in the preceding 0.5 seconds and following 0.5 seconds cropped out and LFBE features are extracted for each cropped segment. (b)
Architecture of our wakeword-independent verification CNN model.

1.1. Related Work

As far as we know, [3] is the only existing published paper on
wakeword verification. In [3], verification is performed using
an Automatic Speech Recognition (ASR) model. In this set-
ting, audio that is streamed to the cloud is processed by an ASR
system modified to improve wakeword spotting accuracy. This
approach is inapplicable for a wakeword agnostic system, where
the wakeword chosen to wake the device is unknown or may not
be in the ASR lexicon (e.g. foreign language phrases).

Related past approaches have utilized a fusion of a low-
footprint detection model with a verification model running on
the device [4, 5]. These approaches rely on knowledge of the
chosen wakeword and access to annotated training examples.

Our approach is related to zero-shot learning [6, 7, 8],
where models are built to extend to unseen classes during test
time. One major difference between our approach and the stan-
dard zero-shot learning setting is that we do not receive any se-
mantic descriptors of the unknown wakewords and are unaware
of the selected wakeword during test time. As such, approaches
based on semantic descriptions of unseen classes are not easily
applied to our problem setting.

Similarly, exemplar-based learning [9, 10, 11, 12], few-shot
learning [13], metric-based approaches [14], and transfer learn-
ing [15] are also closely related, however generally are not ap-
plicable to this problem as we do not have access to examples
(annotated or unannotated) for the unknown selected wakeword.

2. Wakeword-Independent Verification
2.1. Input

Our system is designed to work on audio sent to the cloud by
devices running a wakeword-spotting model. On these devices,
a model is continually running to identify wakewords. When
this model believes a wakeword has been spoken, the device
wakes and audio is sent from the device to the cloud. We assume
that when audio is sent to the cloud, an estimate of where the
wakeword begins and ends in the audio stream is provided, but
no additional information is sent (e.g. what wakeword was used
or a score/confidence from the device-side model).

Once the device-side wakeword model detects a wakeword
and estimated location of the wakeword are sent to the cloud.
Note that only 0.5 seconds of audio preceding the wakeword
is sent to the cloud where it is used to initialize feature extrac-
tion for the ASR system. Using this estimated location of the
wakeword, our verification model extracts audio from the 0.5
seconds preceding and 0.5 seconds following the wakeword, ig-
noring the audio during the wakeword itself as shown in Figure
1a. For each audio segment, log filterbank energies (LFBE) are

extracted for 64 frequency bins between the frequencies 80 and
7,200 Hz over a 25 msec window with a 10 msec stride, yielding
two sets of (48× 64)-dimensional features.

2.2. Model Architecture

We propose a convolutional neural network (CNN) model with
two sets of convolutional layers, one taking the pre-wakeword
audio features as inputs and the other taking the post-wakeword
audio features as inputs, as shown in Fig. 1b. These convo-
lutional layers have the same structure, however independent
filters are learned in each set of convolutional layers, allowing
for different types of embedding to efficiently be learned for the
pre-wakeword and post-wakeword audio segment.

Table 1: Layer Parameters

Layer Name Parameters Output Dim.
Inputs 48× 64× 1

Conv1 96 @ 7× 5 Filters
2× 3 Max Pooling 21× 20× 96

Conv2
128 @ 5× 3 Filters

2× 1 Striding
1× 2 Max Pooling

9× 9× 128

Conv3 128 @ 3× 3 Filters 7× 7× 128
Conv4 160 @ 2× 3 Filters 6× 5× 160
Conv5 160 @ 2× 3 Filters 5× 3× 160
Flatten/Merge 4800
Dense1 500 Nodes 500
Dense2 500 Nodes 500
Dense3 500 Nodes 500

The embedding generated from the pre-wakeword and post-
wakeword audio features is flattened and concatenated, then
sent to dense layers. Following these dense layers, a binary
prediction of whether the audio was from a device-directed ut-
terance of a wakeword or the device incorrectly woke is output.
See Table 1 for details on the parameters for each layer.

During training, a gradient reversal layer [16] is attached to
the output of the dense layers followed by a wakeword predic-
tion head. Details about this are described in Section 2.3 below.

2.3. Adversarial Training

To train the wakeword-independent verification model, we use
annotated data collected from a set of different wakewords,
training the model to identify whether a user intentionally woke
the device or whether the device falsely woke.

Training data is collected for a small subset of commonly
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(a) “Amazon” wakeword (b) “Computer” wakeword

Figure 2: Comparison of the wakeword-independent model with wakeword-specific models trained using 2k, 5k, and 10k annotated
examples for the wakewords “Amazon” and “Computer” (trained separately for each wakeword). Note that the relative axes are
independent across graphs.

used wakewords, where the data is labeled by human annota-
tors as either a true wake, where a user correctly pronounced
the selected wakeword and intended to wake the device, or as
a false wake, where the user did not intend to wake the de-
vice, the device woke to media, or the user spoke a differ-
ent/mispronounced wakeword.

Although the audio associated with the wakeword is re-
moved from the features input into the network, the model
can potentially overfit to the wakewords in the training set.
Overfitting risks include bias in words used around a specific
wakeword in conversation as well as potential “leakage” of the
start and end of the wakeword into the pre-wakeword and post-
wakeword audio segments due to inaccurate estimation of the
start and end points of the wakeword audio. Additionally, the
difference in wakeword detection models used on device to gen-
erate the training data can cause the model to overfit to specific
environment/noise conditions, leading to poor generalization to
new wakewords and device-side wakeword detection models.

To overcome this, we use an adversarial strategy [16] across
wakewords during training. The goal of the adversarial predic-
tion task is to ensure that the embedding used for prediction is
agnostic to the initiated wakeword. To this end, we define the
objective function as

E (θ, γy, γw) =

n∑
i=1

[
L
(
γT
y f (xi, θ) , yi

)
− λL

(
γT
wf (xi, θ) , wi

) ]
, (1)

where θ are the set of parameters for the network excluding
the prediction and adversarial prediction layers, f(x, θ) is the
embedding of the network for example x and parameters θ, γy is
the set of weights in the prediction layer (predicting whether the
user intended to wake the device), γw is the set of weights in the
adversarial prediction layer (predicting the wakeword detected
correctly or incorrectly by the device), L is a loss function (we
use cross entropy), λ is an adversarial weight, xi is the set of
LFBE features for the ith example, yi is the label of whether the
ith example was device directed, and wi is the wakeword the
device generating the ith example was attempting to detect.

During training, we seek the parameter values at the saddle
point where θ and γy minimize the objective while γw maxi-
mizes the objective. To implement this, we attach to the final
embedding of the network a gradient reversal layer and second

prediction head that attempts to predict the wakeword.
In practice, we sweep over the weight assigned to the adver-

sarial loss (along with other hyperparameters such as learning
rate and regularizaiton) and select the model with the highest
performance on a held-out set of annotated data from a set of
examples using the same wakewords as in the training set.

One additional benefit of adversarial training is the ability
to leverage unannotated data where the wakeword detected by
the device is known, but the audio has not been annotated to
determine whether the device falsely woke. Given this data, the
training data set can be augmented with these examples, with
no weight put on the verification task for these examples, but
a non-zero adversarial weight on the wakeword prediction task.
This potentially improves performance of the model across a
wider range of noise conditions and allows better generaliza-
tion across the selection of wakewords. We do not explore this
empirically in this paper and leave this as an area of future work.

3. Experiments
We train our wakeword-independent model on annotated train-
ing data for two known wakewords, “Alexa” and “Echo”, with
hyper-parameters optimized over a validation split of data from
these two wakewords. This annotated data set consists of mil-
lions of annotated examples combined from these two wake-
words. For evaluation, we apply our model on two new, unseen
wakeword test data sets for the wakeword “Amazon” and “Com-
puter”, each containing tens of thousands of evaluation exam-
ples per wakeword. All datasets have a significant bias towards
true wakes, with a similar distribution between true and false
wakes across training and evaluations datasets.

We compare performance of our model to wakeword-
specific CNN models trained over the entire audio segment (in-
cluding the wakeword itself). Each wakeword-specific model is
trained using annotated data for the associated test wakeword
for both training and hyperparameter optimization. We train
these models using varying volumes of annotated data and com-
pare performance to our wakeword-independent models.

In order to evaluate the impact of using different audio con-
text, the wakeword-specific models have a nearly identical ar-
chitecture as the wakeword-independent model, with the excep-
tion of a larger input context (a fixed length of 2 seconds of
input audio) and the use of a single set of convolutional layers
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(a) “Amazon” wakeword (b) “Computer” wakeword

Figure 3: Comparison of the wakeword-independent model with wakeword-specific models trained using 2k, 5k, and 10k annotated
examples for the wakewords “Amazon” and “Computer” (trained separately for each wakeword), where the negative set is limited to
examples annotated as non-device directed or media-sourced wakeword. Note that the relative axes are independent across graphs.

operating on this context.
A comparison of performance between the wakeword-

independent and wakeword-specific models trained with differ-
ing volumes of training data is shown in Figure 2. Over the en-
tire evaluation datasets, we see the performance on both “Ama-
zon” and “Computer” falls between the wakeword-specific
models trained using 5,000 and 10,000 annotated examples with
a strong bias towards true wakes.

We do not compare the performance of our wakeword-
independent model to that of a wakeword-spotting model due to
the fact that at test-time, it is unclear as to the best approach to
normalize scores across different wakewords. For an examplar-
based approach, two users who have chosen the same wake-
word and provided examples will end up with different mod-
els, making comparison of scores difficult. As the wakeword-
specific baseline verification models operate on the same au-
dio as a device-model with additional context, these baseline
models provide an upper-bound on the performance expected
of device-side models of similar or smaller architectures.

The baseline models we compare against have a significant
advantage over the wakeword-independent model in two ways.

First, these models are wakeword aware and specific, being
able to look for the exact wakeword as opposed to being wake-
word agnostic. This allows them to reject examples where the
user intended to wake the device, but used an incorrect wake-
word. Our wakeword-independent model is inherently agnos-
tic to this type of false-wake, as it instead attempts to predict
whether the command was a user-generated, device-directed
command and not whether the wakeword was correctly spoken.

To examine the impact of this, we restrict the negative set
to be examples marked by annotators as non-device directed
or media-generated wakewords, with results shown in Figure
3. We see a significant improvement in the performance of the
wakeword-independent model relative to the baseline models,
with performance much closer to the wakeword-specific model
trained on 10,000 annotated examples, in particular for the sec-
ond test wakeword. This difference in behavior demonstrates
the efficacy of our model in identifying false wakes that contain
the wakeword but were not intended for the device.

Second, these models have the advantage of observing ex-
amples (positive and negative) drawn from the test distribu-
tion during training, whereas the wakeword-independent model
sees no examples drawn from this distribution during training.

Given the observed distribution during test-time is dependent
on the detection model running on device, this can cause the
wakeword-independent model to act on data never seen before,
e.g. novel noise patterns consistently rejected by the device-
wakeword models used to create the training data set.

We observe that the wakeword-independent model appears
to have worse performance at low false reject rates. Anecdotally
we observe that a majority of the randomly sampled examples
incorrectly classified by the wakeword-independent model as
non-device directed speech generally fall into two categories.
First, these examples tend to have a long pause after wakeword
and no speech before the wakeword, providing no audio con-
tent of use to the wakeword-independent model. Second, we
observe that many of these examples contain background media
or conversation, with the context of the wakeword-independent
model containing this audio rather than speech from the user.
This implies to us that the performance of the system in the
low false reject rate regime could be improved using a longer
audio context to ensure we capture speech directed at the de-
vice (if present) as well as fusion with source separation or
speaker identification systems in order to remove background
audio from the hypothesized wakeword audio source.

Interestingly, we also anecdotally observe that the
wakeword-independent model appears to outperform the base-
line wakeword-dependent models in identifying non-device di-
rected audio where the wakeword is present but not directed at
the device. We hypothesize this is due to the baseline mod-
els over-indexing on the presence of the wakeword, whereas
the wakeword-independent model must rely on the surround-
ing context, allowing it to correctly infer in these cases that the
audio is not intended for the device.

4. Conclusions
We present an approach to wakeword-independent verification
based on audio surrounding the wakeword. Our system lever-
ages the assumption that for a device-directed command, audio
surrounding the wakeword is independent of the wakeword it-
self, providing an approach to reducing false responses from
voice-activated systems for any chosen wakeword. We demon-
strate the efficacy of this approach by evaluating our system on
two unseen wakewords, with performance comparable to task-
specific models trained using thousands of annotated examples.
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