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Abstract
In data-driven speech enhancement frameworks, learning

informative representations is crucial to obtain a high-quality
estimate of the target speech. State-of-the-art speech enhance-
ment methods based on deep neural networks (DNN) com-
monly learn a single embedding from the noisy input to pre-
dict clean speech. This compressed representation inevitably
contains both noise and speech information leading to speech
distortion and poor noise reduction performance. To alleviate
this issue, we proposed to learn from the noisy input separate
embeddings for speech and noise and introduced a subspace
affinity loss function to prevent information leaking between
the two representations. We rigorously proved that minimiz-
ing this loss function yields maximally uncorrelated speech and
noise representations, which can block information leaking. We
empirically showed that our proposed framework outperforms
traditional and state-of-the-art speech enhancement methods in
various unseen nonstationary noise environments. Our results
suggest that learning uncorrelated speech and noise embeddings
can improve noise reduction and reduces speech distortion in
speech enhancement applications.
Index Terms: speech enhancement, noise reduction, deep neu-
ral network, convolutional neural network, regression, subspace
affinity

1. Introduction
Speech enhancement aims to predict the target speech from
its noisy counterpart without the knowledge of noise informa-
tion. It plays a particularly important role in speech applica-
tions and has been extensively investigated for several decades.
Numerous reliable speech enhancement techniques have been
proposed in the literature. Classical speech enhancement meth-
ods typically employ a simple signal processing algorithm or
heuristic to estimate a gain function, which is then applied to
the noisy input to obtain the enhanced speech [1, 2, 3, 4]. Re-
cent advances in deep learning have motivated several speech
enhancement methods based on deep neural networks (DNN)
[5, 6, 7, 8, 9, 10, 11], which outperform traditional signal pro-
cessing based approaches.

Despite outperforming classical methods, DNN based
speech enhancement frameworks deliver unsatisfactory noise
reduction performance under challenging situations in which
nonstationary noise severely degrades the target speech. The
main reason for this limitation is that speech enhancement
methods based on deep learning commonly utilize an encoder-
decoder structure aiming to learn a single embedding via the
encoder [5, 6, 7, 8, 11]. The decoder then maps this represen-
tation to the enhanced magnitude spectrum or raw speech. A
significant drawback in this approach is that this compressed
representation inevitably contains both noise and speech infor-
mation resulting in speech distortion and poor noise reduction
performance.

To resolve this issue, one can construct a network that learns
the speech and noise representations separately in a supervised
manner using a single encoder. Two separate decoders are
then utilized to predict both the target speech and noise signals.
However, another problem arises: without proper regulariza-
tion, noise information unavoidably leaks into the speech em-
bedding and vice versa. This information leaking problem can
severely affect the performance of speech enhancement systems
adopting this approach.

In this work, we proposed a framework that learns separate
speech and noise embeddings with an inherent mechanism to
prevent information leaking between the two representations.
In particular, based on the hypothesis that speech and noise
signals are uncorrelated to some extent in a high dimensional
space, we designed a subspace affinity loss function for learning
such embeddings. More specifically, this loss function encour-
ages the speech and noise embeddings to reside in maximally
uncorrelated subspaces. A consistency loss combined with the
subspace affinity loss then guarantee that the speech informa-
tion correctly propagates to the speech decoder and the noise
information to the noise decoder. We theoretically proved that
minimizing this loss function produces maximally uncorrelated
speech and noise representations, which prevent leaking of in-
formation. We evaluated our proposed framework on a severely
noisy speech dataset and showed that our approach outperforms
state-of-the-art DNN based speech enhancement methods when
handling unseen nonstationay noise.

The paper is organized as follows. Section 2 presents our
network diagram and training loss. In Section 3, we introduce
the subspace affinity loss. We rigorously prove that minimiz-
ing this loss yields uncorrelated representations, which prevent
information leaking. In Section 4, we evaluate and bench-
mark our proposed framework against traditional and state-of-
the-art speech enhancement approaches on a public speech en-
hancement dataset with various nonstationary noise settings.
Section 5 summarizes our contributions and discusses future
works.

2. Method
2.1. Problem statement

We consider the single-channel speech enhancement problem

x = s+ n (1)

where x, s, and n are high dimensional vectors representing
the observed noisy speech, the unknown target speech, and the
unknown noise signals, respectively. We seek a high-quality
estimate of the clean speech s from the measured noisy signal
x without any noise information.

Our network is trained to produce from the noisy vector
separate representations for speech and noise, which are then
used to predict the target speech and the noise signals. In par-
ticular, we first use an encoder f to map the noisy input into an
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Figure 1: High-level diagram of our network.

encoding α ∈ Rd:
α = f(x). (2)

The speech representation zs ∈ RD and the noise representa-
tion zn ∈ RD are then obtained from this common encoding
using two linear mappings Ws ∈ RD×d and Wn ∈ RD×d,
where D ≥ d:

zs = Wsα and zn = Wnα. (3)

Finally, we use a speech decoder gs to predict the target speech
and a noise decoder gn to predict the noise signal:

ŝ = gs(zs) and n̂ = gn(zn). (4)

Here, ŝ is the target speech prediction and n̂ is the noise predic-
tion. Fig 1 show a high-level diagram of our network structure.

We train our network using triplets {(x, s,n)} of noisy
speech, target speech ground-truths, and noise ground-truths,
respectively. The network is trained to match the predicted
speech to the actual target speech, the predicted noise to the
noise ground-truth. During inference time, we obtain the final
speech prediction from the speech decoder gs and discard the
noise decoder gn.

The linear mappings Ws and Wn play a crucial role in
our framework. Properly regularizing these transformations can
prevent information leaking between the speech and noise em-
beddings, hence improving speech enhancement performance.
In particular,Ws andWn are constrained to extract maximally
uncorrelated information from the common embedding α. We
achieve this using a carefully-designed training loss function.

2.2. Training loss

Our training loss consists of a consistency loss and an affinity
loss:

L = Lconsistency (f, gs, gn,Ws,Wn) + λLaffinity (Ws,Wn) .
(5)

In Eq. (5), λ > 0 is a regularization parameter that balances
the loss components. The consistency loss Lconsistency encour-
ages the speech and noise predictions to be consistent with the
corresponding ground-truth counterparts and depends on all the
parameters of the network. The subspace affinity lossLaffinity, on
the other hand, is imposed onWs andWn only. It forces these
transformations to extract maximally uncorrelated information
from the common embedding α. A combination of Lconsistency

and Laffinity balanced by λ thus guarantees that speech informa-
tion properly propagates to the speech decoder and noise infor-
mation to the noise decoder.

In our framework, we use the Mean Squared Error (MSE)
function as the consistency loss:

Lconsistency =
1

|D|
∑
D

(
‖ŝ− s‖22 + η ‖n̂− n‖22

)
, (6)

where |D| denotes the number of samples in the training set D.
The main innovation in our work is the introduction of the

subspace affinity loss Laffinity to prevent information leaking be-
tween the speech and noise representations. We devote the next
section to the main idea and analysis of this loss function.

3. Subspace affinity loss
Our main assumption is that speech and noise can be repre-
sented by some uncorrelated embeddings in some high dimen-
sional space. We aim to learn such unknown representations by
regularizing the linear transformsWs andWn.

Denote Ws and Wn as the subspaces spanned by the
columns of Ws and Wn, respectively. Eq. (3) implies that,
in the ambient space RD , the speech encoding zs lie inWs, the
noise encoding zn inWn. Furthermore, as zs and zn share the
same encoding α in these subspaces, if Ws and Wn are dis-
similar, zs and zn will be dissimilar. Our subspace affinity is
designed to encourage the dissimilarity betweenWs andWn.

In this section, we will discuss the subspace affinity concept
which characterizes the dissimilarity between two arbitrary sub-
spaces. Then, we introduce our subspace affinity loss function
built upon this concept and show that minimizing this loss func-
tion results in maximally uncorrelated representations.

3.1. Subspace affinity

Subspace affinity is built upon the concept of principal angles
which naturally capture the notion of similarity/affinity between
subspaces.

Definition 3.1 (Principal angles [12]). The principal angles
{θi}di=1 between two subspaces U and V of dimensions du and
dv , where d = min{du, dv}, are recursively defined by

cos θi := max
ui∈U

max
vi∈V

uT
i vi

‖ui‖2 ‖vi‖2
, (7)

with the orthogonality constraints uT
i uj = 0,vT

i vj = 0, j =
1, ..., i− 1.

Definition 3.2 (Subspace affinity [12]). The affinity between
two subspaces U and V of dimensions du and dv , respectively,
is defined as

aff (U ,V) :=

(
d∑

i=1

cos2 θi

) 1
2

, (8)

where {θi}di=1 are the principal angles between U and V and
d = min{du, dv}.

Intuitively, the subspace affinity compactly captures the no-
tion of correlation between two subspaces. That is, the sub-
spaces are dissimilar or uncorrelated when the principal angles
are right angles, i.e., the affinity is small. On the other hand,
large affinity due to small principal angles implies the subspaces
are correlated.

The following lemmas provides an easy way to compute
principal angles and subspace affinity.

Lemma 3.1. Let the columns of U and V be orthonormal
bases for subspaces U and V of dimensions du and dv , re-
spectively. Let {σi}di=1 be the singular values of UTV , where
d = min{du, dv}, then

cos θi = σi, i = 1, ..., d. (9)
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Lemma 3.2. The affinity between two subspaces U and V can
be calculated by

aff (U ,V) =
∥∥∥UTV

∥∥∥
F
. (10)

Lemma 3.2 allows us to construct our subspace affinity loss
function.

3.2. Subspace affinity loss

Based on Lemma 3.2, we propose to minimize the following
subspace affinity loss to encourage the dissimilarity between the
subspacesWs andWn:

Laffinity =
∥∥∥W T

s Wn

∥∥∥2
F

(11)

+ µ

(∥∥∥W T
s Ws − I

∥∥∥2
F

+
∥∥∥W T

n Wn − I
∥∥∥2
F

)
.

In Equation (11), the last two terms force the columns of Ws

andWn to be orthonormal bases of the subspacesWs andWn,
respectively. The first term of the loss penalizes the squared
affinity of the two subspaces. Minimizing the subspace affinity
loss therefore promotes the dissimilarity betweenWs andWn.

In our framework, minimizing the subspace affinity loss
function leads to an attractive properties of the speech and
noise representations which prevents information leaking be-
tween them.

Theorem 3.1. Assume Ws and Wn are orthonormal bases of
Ws andWn, respectively. The correlation between the nonzero
speech and noise embeddings is bounded by the affinity between
Ws andWn:

| cos(zs,zn)| ≤ aff (Ws,Wn) . (12)

Proof. LetW = W T
s Wn, we have

| cos(zs,zn)| = |zT
s zn|

‖zs‖2 ‖zn‖2
=
|αTWα|
‖α‖2 ‖α‖2

=

∣∣∣∣αTWα

αTα

∣∣∣∣ ,
(13)

where the second equality is due to Eq. (3) and the assumption
that Ws and Wn are orthonormal bases of Ws and Wn, re-
spectively. Let λ1 ≤ λ2 ≤ ... ≤ λd be the eigenvalues of the
symmetric matrix W , the min-max theorem implies that the
Reyleigh quotient α

TWα
αTα

is bounded [13]:

λ1 ≤
αTWα

αTα
≤ λd. (14)

Therefore,
| cos(zs,zn)| ≤ max

i
|λi|. (15)

As W is symmetric, maxi |λi| = σmax, where σmax is the
largest singular value ofW . We conclude that

| cos(zs,zn)| ≤ σmax ≤

√√√√ d∑
i=1

σ2
i = ‖W ‖F = aff (Ws,Wn) ,

(16)
where σi’s are the singular values ofW .

Corollary 3.1.1. The speech embedding zs and the noise em-
bedding zn are uncorrelated, i.e., | cos(zs,zn)| = 0, when the
affinity betweenWs andWn vanishes.

We can achieve zero affinity when the total dimension of
Ws andWn is less than or equal the ambient dimensionD, e.g.,
two perpendicular lines and R3. A special case isWs andWn

are orthogonal subspaces of RD , e.g., a line perpendicular to a
2D plane in R3. In these situations, the embedding correlation
is zero, which implies the representations are uncorrelated.

It is important to note that although it is possible to manu-
ally design Ws and Wn to be orthogonal subspaces of RD so
that zs and zn are uncorrelated, e.g. by sampling the elements
ofWs andWn from a Normal distribution, the subspace affin-
ity loss provides a flexible way to balance the prediction consis-
tency and the correlation of the encodings, especially when the
uncorrelated assumption between speech and noise is violated.

Remark. One can directly enforce a correlation con-
straint on the embeddings, by minimizing the dot-product of
the speech and noise embeddings, to obtain uncorrelated repre-
sentations. However, this only guarantees the uncorrelation be-
tween the speech and noise embeddings asymptotically, instead
of on individual samples as such cost functions aim to minimize
the average of the embedding dot-products of all data samples.

4. Experimental results
In this section, we empirically evaluate and benchmark our
affinity minimization framework against state-of-the-art speech
enhancement methods on a public speech enhancement dataset.

4.1. Dataset

We use the popular VCTK dataset by Valentini et al [14] which
is publicly available at [15]. The dataset includes clean and
noisy speech data sampled at 48 kHz. In our experiments, we
downsample the data to 16 kHz.

For training, we use the clean speech audio data of 28
speakers selected from the Voice Bank corpus [16]. The noisy
training data are created by adding to the clean speech ten differ-
ent types of noise at four signal-to-noise ratios (SNR), yielding
40 noise conditions. The ten noise types include eight real noise
samples selected from the Demand data [17] and two artificially
ones. The four training SNRs are 0 dB, 5 dB, 10 dB, and 15 dB.

The test data is different from the training data. The noisy
test set is created by adding five different types of noises from
the Demand database to the clean speech of two speakers from
the Voice Bank corpus. The noise types and speakers in the test
set are different from the ones used in training. The four test
SNR values are 2.5 dB, 7.5 dB, 12.5 dB, and 17.5 dB. Conse-
quensely, there are 20 different noise conditions.

4.2. Objective metrics

To evaluate the enhanced speech, we use four popular objective
measures for speech enhancement. Each metric is computed by
comparing the enhanced speech with the corresponding clean
reference of each of the test samples. The first three metrics
predict the Mean Opinion Score (MOS) that would result from
human perceptual trials. They include (1) CSIG which predicts
the signal distortion MOS, (2) CBAK which is a MOS predic-
tor of background-noise intrusiveness, and (3) COVL which
computes the MOS value of the overall signal quality. CSIG,
CBAK, and COVL all produce MOS values from 1 to 5. Fi-
nally, PESQ, which stands for Perceptual Evaluation of Speech
Quality, is a broadly used objective measure for speech quality.
It provides a score in the range between -0.5 to 4.5. For all of
the metrics, the higher value corresponds to the better quality of
the enhanced speech.
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Table 1: Encoder architecture.

Type Kernel Stride Output Activation

Input 16× 256× 1

Conv2d 5× 3 1× 1 16× 256× 64 LReLU
Conv2d 3× 3 1× 2 16× 128× 128 LReLU
Conv2d 3× 3 1× 2 16× 64× 128 LReLU
Conv2d 3× 3 1× 2 16× 32× 128 LReLU
Conv2d 3× 3 1× 2 16× 16× 128 LReLU
Conv2d 3× 3 1× 2 16× 8× 128 LReLU
Conv2d 3× 3 1× 2 16× 4× 128 LReLU
Conv2d 3× 3 1× 2 16× 2× 128 LReLU
Conv2d 3× 3 1× 2 16× 1× 128 LReLU
Conv2d 1× 3 2× 1 8× 1× 256 LReLU
Conv2d 1× 3 2× 1 4× 1× 256 LReLU
Conv2d 1× 3 2× 1 2× 1× 256 LReLU
Conv2d 1× 1 2× 1 1× 1× 256

4.3. Experimental setup

Data format. Our network predicts the log power spectrum
of clean speech from that of the corresponding noisy signal.
Then, the predicted power spectrum is combined with the noisy
phase extracted from the noisy signal to produce the enhanced
speech. To obtain the signal power spectrum, we apply the
Short-Time-Fourier-Transform (STFT) to the raw audio using
512 FFT points with a hop size of 256 and Hann window. This
produces 16 × 257 overlapping time-frequency frames, where
16 frames are equivalent to 256 ms. Finally, we remove the last
frequency bin yielding 16× 256 time-frequency frames.

Network architecture. Our general network structure con-
sists of an encoder, a speech decoder and a noise decoder, and
two bias-free fully-connected layers to split the bottleneck at the
end of the encoder into a speech encoding and a noise encoding.
For this speech enhancement experiment, we propose a time-
frequency separable architecture for the encoder and the de-
coders. In particular, our encoder consists of a series of 13 con-
volutional layers which downsample the input time-frequency
frame along the frequency and the time axes separately. The
first 9 layers downsample the frequency axis, and the last 4 lay-
ers perform downsampling along the time axis. The detailed
configuration of the encoder is shown in Table 1. Similarly, the
decoders reverse the downsampling process in the encoder by
upsampling the data along the frequency and the time axes sep-
arately. The decoders use pixel shufflers [18] for upsampling
data. Each layer in the encoder and the decoders uses the Leaky
ReLU activation function and batch normalization. We use skip
connections between the encoder layers and the corresponding
layers in both the speech and noise decoders. As the last en-
coder layer in Table 1 produces an encoding of length d = 256,
we setD = 2d = 512 so that the affinity betweenWs andWn

vanishes when the training converges.

Training setup. We train our network using the ADAM
optimizer with a learning rate of 0.0001, decay rates β1 = 0.5
and β2 = 0.9, and a batch size of 64. The leaky ReLU constant
is 0.2. We set η = 1, λ = 0.1 and µ = 10. These values are
chosen using grid search. To prevent overfitting, we apply `2
regularization to the convolutional weights with a value of 0.1.
For each configuration, the network is trained for 200 epochs.

Figure 2: Losses curves. Left: Lconsistency. Right: Laffinity.

4.4. Results

We benchmark our proposed framework against classical and
state-of-the-art speech enhancement methods which include:
(1) Wiener filtering [2] based on a priori SNR estimation; (2)
SEGAN [5]; (3) Wavenet [7]; (4) MMSE-GAN [6]; (5) D+M
[19]; and (6) UNet [11]. Table 2 shows the numerical results of
the aforementioned objective metrics on the test dataset for all
benchmarked frameworks. For reference, we also report the ob-
jective measures computed for the noisy test signals. The results
indicate that our affinity minimization framework outperforms
state-of-the-art speech enhancement methods in all the metrics.

Table 2: Speech enhancement benchmark

PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63
Wiener [2] 2.22 3.23 2.68 2.67
SEGAN [5] 2.16 3.48 2.94 2.80
WaveNet [7] N/A 3.62 3.23 2.98

MMSE-GAN [6] 2.53 3.80 3.12 3.14
D+M [19] 2.73 3.94 3.35 3.33
UNet [11] 2.90 4.22 3.32 3.58

Ours 3.04 4.30 3.42 3.69

Fig. 2 shows the consistency loss for the train and test sets
and the affinity loss. Notice that the affinity loss starts vanishing
when the training consistency loss starts crossing below the test
consistency loss. This phenomenal suggests that our network
achieves zero affinity at convergence. This leads to uncorrelated
representations as proved in Theorem 3.1.

5. Conclusions
We presented a speech enhancement framework that learns sep-
arate representations for speech and noise and proposed the
subspace affinity loss function to prevent information leaking
between the two representations. We theoretically proved that
minimizing this loss function produces maximally uncorrelated
speech and noise representations, allowing the speech informa-
tion to correctly propagate to the speech decoder and the noise
information to the noise decoder. Experimental results indicated
that our framework is significantly more robust than state-of-
the-art DNN based speech enhancement approaches in unseen
nonstationary noise settings.

Our results for unseen noise conditions suggest that uncor-
related representations learned by the subspace affinity mini-
mization enable the network to generalize to unseen noise distri-
butions. Precisely quantify this behaviour of our framework al-
lows a better understanding of the generalization of DNN based
speech enhancement. We reverse this task for future works.
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