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Abstract
Speech enhancement has found many applications concerning
robust speech processing. A masking based algorithm, as an
important method of speech enhancement, aims to retain the
speech dominant components and suppress the noise dominant
parts of the noisy speech. In this paper, we derive a new type of
mask: constrained ratio mask (CRM), which can better control
the trade-off between speech distortion and residual noise in the
enhanced speech. A deep neural network (DNN) is then em-
ployed for CRM estimation in noisy conditions. The estimated
CRM is finally applied to the noisy speech for denoising. Ex-
perimental results show that the enhanced speech from the new
masking scheme yields an improved speech quality over three
existing masks under various noisy conditions.
Index Terms: speech enhancement, constrained ratio mask,
deep neural network

1. Introduction
Speech enhancement, which aims to obtain the clean speech
estimate under noisy environment, has been widely adopted in
robust speech processing related applications. Various speech
enhancement methods have been proposed during the past
decades, among which the masking based algorithms have re-
ceived much attention and achieved a series of progresses [1].
Inspired by the masking effect of the human auditory mecha-
nism, the goal of this kind of methods is to estimate a mask,
which can be applied into the noisy speech to retain the speech
dominant regions and suppress the noise dominant regions. An
appropriate and accurate mask is of great importance to the en-
hancing performance. To this end, researchers have made large
efforts from two aspects: finding an optimal mask and develop-
ing reliable mask estimation algorithms.

The ideal binary mask (IBM) [2] is one of the pioneering
masks investigated in the literature. Given the clean speech on
a time-frequency (T-F) representation, the mask value of a T-F
unit is set to 1 if the local signal-to-noise ratio (SNR) is greater
than a preset threshold, otherwise it is set to 0. This simpli-
fies speech enhancement to a binary classification. However,
speech enhancement using IBM has some limitations such as
introducing the residual musical noise. As a result, the ideal
ratio mask (IRM) [3, 4], which can be viewed as a smoothed
form of IBM, is proposed. The IRM is obtained by computing
the ratio between the energy of clean speech and that of noisy
speech for each T-F unit. Denoising with IRM is actually as-
signing large ratios to the T-F units with higher local SNR and
small ratios to those with lower local SNR. Another mask with
similar concept is the spectral magnitude mask or ideal ampli-
tude mask (IAM) [5], which computes the ratio of the magni-
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tude of clean speech to that of noisy speech. Note that IRM and
IAM are motivated by the frequency response of the Wiener fil-
ter, which achieves the optimal signal-to-noise ratio (SNR) gain
for stationary signals. However, speech signals and many real-
world noises are nonstationary. To overcome this problem, the
optimal ratio mask (ORM) is proposed in [6], by considering
the correlation between the desired speech and noise, leading
to an improved SNR of the enhanced speech. The above men-
tioned masks only focus on enhancing the magnitude spectro-
gram. More recently, the phase information has been consid-
ered in masking techniques, such as the phase sensitive mask
(PSM) [7] and the complex IRM (cIRM) [8], to better recover
the complex speech spectrogram.

Probably, supervised learning algorithms, such as Gaussian
mixture model (GMM) [9] or support vector machine (SVM)
[10], are the most popular mask estimation methods in early
works. In recent years, the deep learning based methods have
made a great progress. A feed-forward deep neural network
is adopted in [4] to learn the mapping between noisy acoustic
features and IRM. Other achitectures can be found in [11, 12],
where recurrent neural network and convolutional neural net-
work are, respectively, employed as the estimation model. The
deep structure and powerful learning capability enable DNN
to better explore the non-linear relationship between noisy fea-
tures and masks, leading to a better estimation result.

Although the DNN estimated masks have achieved good
performance in improving speech intelligibility, none of these
works further investigates the trade-off between the speech dis-
tortion and residual noise in the enhanced speech. Several tradi-
tional methods have been proposed to denoise with less speech
distortion and remove residual noise as much as possible. In
[13], the authors proposed a new weighting rule using masking
properties, which calculates the weighting coefficients to keep
the perceived noise to be equal to a pre-defined level. How-
ever, the speech distortion is not explicitly considered in their
processing. In [14], a spectral constraint is applied into the
short-time spectral amplitude (STSA) estimator, which adap-
tively suppresses the noise dominant regions and reduces the
speech distortion in the speech dominant regions.

In this paper, we propose a constrained ratio mask (CRM)
for speech enhancement, which is derived to minimize the
speech distortion while suppressing the residual noise such that
it falls below a threshold level. A DNN is then trained for CRM
estimation, which learns a mapping from the noisy features to
the CRM. Finally, the enhanced speech is obtained by applying
the estimated CRM to the noisy speech. Compared with the pre-
vious mask based algorithms, which mainly focus on retaining
the speech information, our CRM based system is the first one
to consider both speech distortion and the residual noise level
in the enhanced speech, by adaptively adjusting the value of the
CRM for different T-F units according to their local SNRs. Ex-
perimental results have shown that our proposed system yields
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better speech quality and similar speech intelligibility as com-
pared to several previous mask based algorithms.

2. Constrained ratio mask
We consider a noisy speech y(t) as the addition of clean speech
x(t) and background noise n(t), with t denoting the time in-
dex. The time domain noisy speech can be transformed into
a spectro-temporal spectrogram using short-time Fourier trans-
form (STFT), namely,

Y (k, l) = X(k, l) +N(k, l) (1)

where Y (k, l), X(k, l) and N(k, l) denote the STFT spectro-
grams of the noisy speech, clean speech and noise, respectively,
with k and l indicating the frequency bin and frame index. We
denote the ratio mask asM(k, l) ∈ [0, 1], which will be applied
into the magnitude of the noisy speech to get the enhanced mag-
nitude, i.e., |X̂| = M · |Y |. For simplicity, we have omitted k
and l without loss of generality. By directly using the noisy
phase for speech reconstruction, we obtain the STFT of the en-
hanced speech,

X̂ = (M · |Y |) ejφy =M · Y (2)

To derive a CRM, we first introduce the mathematical defi-
nitions of the speech and noise distortions as given in [13, 15].
The estimation error e of X̂ can be decomposed into two items
as follows,

e = X̂ −X =M · (X +N)−X
= (M − 1) ·X +M ·N
= ex + en (3)

The power spectrums of ex and en can be written as,

dx = E
[
ex

2] = (M − 1)2 · Px
dn = E

[
en

2] = M2 · Pn (4)

where Px and Pn are the power spectrums of the clean speech
and noise, respectively; dx denotes the speech distortion and
dn the noise distortion. We regard dx as the distortion to the
original clean speech introduced by the enhancement algorithm,
while dn is the distortion caused by the residual noise. The
above mentioned two distortion terms with respect to the value
of maskM are plotted in Fig.1 for three different values of input
SNR ξ = Px/Pn.

Ideally, we prefer a large value ofM to yield a small speech
distortion dx under the circumstance of the clean speech being
much stronger than the noise (i.e., ξ � 1). Conversely, if the
signal is weaker than the noise (i.e., ξ � 1), a small value of
M is required so that the residual noise or dn will be small.
However, we found that when employing a DNN to estimate
the IRM (tested under four different noises and input SNRs),
the values of estimated IRM are 0.15% ∼ 5.67% higher than
those of reference IRM, which results in a larger dn, indicating
that the enhanced speech suffers more residual noise.

To better remove the residual noise with no noticeable
speech distortion, we need to derive a mask to minimize the
speech distortion while constraining the noise distortion below
a threshold. To this end, we establish the following constrained
optimization problem,

min
M

dx

subject to dn ≤ δ (5)

Figure 1: The relationship between M and distortions

where δ is a preset threshold. It has been shown in [14] that the
optimal M for (5) satisfies the following equation:

(M − 1)Px + µMPn = 0 (6)

where µ (µ ≥ 0) is the Lagrange multiplier (also named as
the controlling factor in our paper). From (6), the CRM can be
expressed as

M =
Px

Px + µPn
=

ξ

ξ + µ
(7)

It should be noted that due to the unknown SNR ξ, the con-
trolling factor µ is to be determined. In other words, µ can be
viewed as a function of the local SNR or ξ in dB. Using (7) into
(4), the speech and noise distortions can be rewritten as,

dx = (M − 1)2 · Px =

(
µ

ξ + µ

)2

· Px

dn = M2 · Pn =

(
ξ

ξ + µ

)2

· Pn (8)

By adaptively adjusting the value of µ for each T-F unit, our
CRM can balance the trade-off between the speech and noise
distortions. For example, we would like to set a small value of
µ for the speech dominant unit, in order to minimize the speech
distortion and conserve the speech information; while for the
noise dominant unit, a large value of µ is chosen to remove the
noise as much as possible. As such, we propose the following
empirical expression for µ:

µ =


µ0 − SNR/s , Sl ≤ SNR ≤ Su
µmin , SNR > Su

µmax , SNR < Sl

(9)

where SNR = 10 log10 ξ, µmax and µmin are the maximum and
minimum values of µ, respectively, Sl and Su are the lower and
upper bounds of the local SNR, respectively, and µ0 and s are
constants related to µmax and µmin.

3. Proposed speech enhancement system
The proposed system is made of two stages: the off-line train-
ing stage and the on-line enhancement stage. In the training
stage, a DNN is employed to learn the mapping between the
noisy acoustic features and the reference CRM computed from
speech databases. In the enhancement stage, given a new noisy
speech, its features are extracted and sent to the well-trained
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DNN to obtain the CRM estimate, which is then applied to ob-
tain the enhanced magnitude. Finally, the enhanced speech is
reconstructed with the enhanced magnitude and noisy phase.
The main steps involved in the proposed speech enhancement
system are explained below.

3.1. Input features

Choosing appropriate input features for DNN plays an impor-
tant role in the deep learning algorithms. In order to obtain good
estimation performance, different acoustic features have been
investigated in [16]. Generally speaking, four kinds of acoustic
features are widely adopted in most works as input for DNN
based mask estimation. They are the amplitude modulation
spectrum (AMS); the relative spectral transform and perceptual
linear prediction (RASTA-PLP); the Mel-frequency cepstral co-
efficients (MFCC) and their deltas; the Gammatone filterbank
energies (GF) and their deltas. Since these features lie in differ-
ent ranges, normalization is required to scale the input features
for achieving better results. Moreover, to make use of the tem-
poral information of the speech, the features of two adjacent
time frames are incorporated with the current frame to form a
input feature set.

3.2. Network structure

The architecture adopted in our method is a fully-connected
feed-forward neural network. The DNN has a total of five lay-
ers that includes an input layer, an output layer and three hidden
layers with 1024 units in each layer. We employ the rectified
linear unit (ReLU) as activation function in the hidden layers,
and employ the linear function in the output layer.

To learn the weights and biases in the network, the famous
back propagation is adopted to update the parameters in the
training process. Ideally, the model parameters are trained to
minimize the cost function J , which is defined as the mean
square error between the reference and the estimated CRM.

J =
1

2L

L∑
l=1

K∑
k=1

(
M̂(k, l)−M(k, l)

)2
(10)

where L denotes the total number of speech frames.

3.3. Waveform reconstruction

In the enhancement stage, the estimated CRM is firstly out-
put by the well-trained DNN. Afterwards, we apply the esti-
mated CRM to the noisy magnitude spectrum to obtain the es-
timated magnitude. The enhanced speech spectrum is then re-
constructed with the estimated magnitude X̂(k, l) and the noisy
phase φy(k, l) as X̂(k, l) = |X̂(k, l)|ejφy(k,l). Finally, the en-
hanced speech x̂(t) is obtained by performing the inverse STFT
of X̂(k, l).

4. Experimental results
4.1. Experimental setup

The clean speech database used in our experiment is the TIMIT
corpus [17], in which 731 utterances from different female
and male speakers are used for the training and 87 utterances
used for testing. several types of noises are picked from the
NOISEX-92 corpus [18], in which four types (babble, white,
buccaneer1, factory) are regarded as seen noises, and the other
four (pink, buccaneer2, street, hfchannel) as unseen noises. In

the training stage, we mix the clean training speeches with seen
noises at four levels (-3dB, 0dB, 3dB, 6dB) of signal-to-noise
rates (SNRs) to obtain 11696 noisy speeches. In the enhance-
ment stage, both seen noises and unseen noises are mixed with
clean testing speeches at the above four SNR levels. The num-
ber of noisy utterances used in enhancement stage is 1392 for
both seen noises and unseen noises. The sampling rate of all
speech utterances and noises is set to 16 kHz. Hamming win-
dow is used in framing and the window size of STFT is 320
with 50% overlap.

To assess the enhancement performance, three objective
metrics are adopted in our experiment: the perceptual evalua-
tion of speech quality (PESQ) [19], the short-time objective in-
telligibility (STOI) [20] and the signal-to-distortion ratio (SDR)
[21]. PESQ has a high correlation with the subjective scores of
the perceptual speech quality, while STOI focuses on the eval-
uation of the speech intelligibility. SDR is a measurement that
is widely-used in speech separation and source enhancement,
which is given by,

SDR = 10 log10
‖x(t)‖2

‖x̂(t)− x(t)‖2 (11)

where ‖·‖2 takes the power of the signal. For all metrics, a
larger score indicates a better performance.

4.2. Controlling factor µ

In this section, we investigate the enhancement performance
when setting different values for the controlling factor µ.
Firstly, we consider the following three types of lower and up-
per bounds for the local SNR as given in Table 1. Moreover,
we set µmin = 1, µmax = 10 and s = 25/(µmax − µmin). A
T-F unit will be treated as a noise dominant unit when the local
SNR is under Sl. In contrast, a T-F unit is regarded as a speech
dominant unit when the local SNR is above Su.

Table 1: Different settings of lower and upper bounds

Type Sl (dB) Su (dB) µ0

#1 -15 10 (3µmin + 2µmax)/5

#2 -10 15 (2µmin + 3µmax)/5

#3 -5 20 (µmin + 4µmax)/5

#4 0 25 µmax

As shown in Table 2, if Sl and Su are very small, the noise
dominant unit would be falsely classified to speech dominant
unit, the residual noise would be fully removed and thus the
scores of SDR and PESQ will decrease. On the contrary, if the
Sl and Su are too large, the speech unit with low local SNR
will be mistakenly considered as noise, which could suppress
the speech information leading to a decrease of STOI score. In
terms of all metrics, the optimal case is type 3. The correspond-
ing improvement of PESQ and SDR scores is significant, while
the STOI score has no obvious degradation, which indicates that
it removes the background noise quite well without extra speech
distortion. For type 4, although it has the best PESQ and SDR
scores, this setting is not perfect as the decrease of STOI score
shows that the speech information is damaged compared with
other settings. Secondly, we also investigate the different set-
tings for µmin (varies from 0.5 to 1.5) and µmax (varies from 5
to 15). However, the objective results of the enhanced speech
do not change significantly.
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Table 2: Objective results with different controlling factors (on
seen noise)

-3dB 0dB 3dB 6dB
Noisy 1.35 1.54 1.75 1.97
Type1 1.98 2.25 2.51 2.78

PESQ Type2 2.00 2.27 2.53 2.79
Type3 2.01 2.29 2.55 2.81
Type4 2.02 2.30 2.56 2.81
Noisy 0.60 0.67 0.74 0.81
Type1 0.75 0.82 0.87 0.90

STOI Type2 0.75 0.82 0.87 0.90
Type3 0.75 0.82 0.87 0.90
Type4 0.74 0.81 0.86 0.90
Noisy -2.85 0.11 3.08 6.07
Type1 7.08 9.29 11.33 13.46

SDR Type2 7.29 9.49 11.52 13.62
Type3 7.44 9.63 11.64 13.73
Type4 7.54 9.71 11.72 13.78

4.3. Performance comparison

To evaluate the enhancement performance, we compare our
CRM with three existing masks as shown in Table 3. We
adopted type 3 as the setting of the controlling factor. For fair
comparison, all masks are estimated by the DNN with the same
input features and configurations. As the difference between
any two comparison methods is that the DNNs use different
masks as their outputs. Hence, we use the mask’s name to rep-
resent each method in this section.

Table 3: Comparison masks and definitions

Mask Definition

IRM [4]
√
Px/(Px + Pn)

IAM [5] |X|/|Y |

OPM [6] (Py + Px − Pn)/2Py

a) Seen noise: Table 4 gives the average objective score on
seen noise. Obviously, the enhanced speech from CRM reaches
the highest score under all metrics in most cases. More specif-
ically, the proposed method has a large improvement on SDR
scores, which means our enhanced speech has a higher SNR.
The improvement indicates that our system strengthens the sup-
pression of noise in noise dominant units using a large control-
ling factor. Our enhanced speech also obtains the best PESQ
score, which reflects a good perceptual speech quality. The im-
provement of SDR and PESQ demonstrates that our CRM is
better at noise suppression, especially in the noise dominant re-
gions. Compared with the SDR and PESQ, the improvement of
STOI is not that obvious. This is because the STOI algorithm
mainly focuses on evaluating the intelligibility of the high-
energy speech frames, and our CRM employs a small value of
µ in speech dominant units. In this case, the value of our CRM
is similar to those of other masks and thus the STOI scores are
close for all tested methods. In terms of three metrics, we can
conclude that our proposed CRM removes more residual noise
while minimizing the speech distortion.

b) Unseen noise: Table 5 shows the average objective
scores on unseen noise. In general, our CRM still outperforms

the other reference methods even under the unseen noise envi-
ronment. However, compared to seen noise, the improvements
of the objective scores on the enhanced speech decrease a bit,
due to the increasing prediction error of masks. This result is
not surprising since the mismatch in the types of the noises be-
tween the enhancement stage and the training stage makes the
estimation of CRM with DNN more difficult.

Table 4: Results of different algorithms on seen noise

-3dB 0dB 3dB 6dB
Noisy 1.35 1.54 1.75 1.97
IRM 1.97 2.23 2.47 2.70

PESQ IAM 1.98 2.24 2.47 2.71
OPM 2.00 2.27 2.50 2.74
CRM 2.01 2.29 2.55 2.81
Noisy 0.60 0.67 0.74 0.81
IRM 0.74 0.81 0.86 0.90

STOI IAM 0.75 0.81 0.86 0.90
OPM 0.75 0.81 0.86 0.90
CRM 0.75 0.82 0.87 0.91
Noisy -2.85 0.11 3.08 6.07
IRM 5.72 8.03 10.19 12.45

SDR IAM 5.89 8.18 10.33 12.55
OPM 5.71 8.01 10.15 12.43
CRM 7.44 9.63 11.64 13.73

Table 5: Results of different algorithms on unseen noise

-3dB 0dB 3dB 6dB
Noisy 1.34 1.52 1.73 1.94
IRM 1.73 1.97 2.19 2.43

PESQ IAM 1.74 1.98 2.20 2.44
OPM 1.76 1.99 2.21 2.45
CRM 1.77 2.01 2.23 2.47
Noisy 0.63 0.69 0.76 0.82
IRM 0.71 0.77 0.83 0.88

STOI IAM 0.72 0.78 0.84 0.89
OPM 0.71 0.77 0.83 0.88
CRM 0.72 0.79 0.84 0.89
Noisy -2.84 0.10 3.07 6.06
IRM 2.54 5.31 8.03 10.77

SDR IAM 2.68 5.49 8.23 10.94
OPM 2.42 5.20 7.93 10.70
CRM 3.92 6.72 9.39 12.01

5. Conclusion
In this paper, a new type of mask named constrained ratio mask
(CRM) is proposed for speech enhancement. Compared with
traditional masks, employing CRM is able to control the speech
and noise distortions by adaptively adjusting the value of the
controlling factor based on the local SNR, which minimizes the
speech distortion while removing the residual noise as much as
possible. The CRM is predicted by the well-known DNN model
and is applied to the noisy speech to obtain the desired one.
Experimental results show that our enhanced speech achieves
better speech quality compared to the others resulting from ex-
isting masks under both seen and unseen noises. Future work
could be a possible extension of the CRM to jointly enhance the
magnitude and phase of the noisy speech.
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