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Abstract

For continuous speech processing, dynamic attention is help-
ful in preferential processing, which has already been shown by
the auditory dynamic attending theory. Accordingly, we pro-
pose a framework combining dynamic attention and recursive
learning together called DARCN for monaural speech enhance-
ment. Apart from a major noise reduction network, we design
a separated sub-network, which adaptively generates the atten-
tion distribution to control the information flow throughout the
major network. Recursive learning is introduced to dynamically
reduce the number of trainable parameters by reusing a network
for multiple stages, where the intermediate output in each stage
is refined with a memory mechanism. By doing so, a more flex-
ible and better estimation can be obtained. We conduct exper-
iments on TIMIT corpus. Experimental results show that the
proposed architecture obtains consistently better performance
than recent state-of-the-art models in terms of both PESQ and
STOI scores.
Index Terms: monaural speech enhancement, recursive learn-
ing, attention U-Net, dynamic attention

1. Introduction
In real environments, clean speech is often contaminated by
background interference, which may significantly reduce the
performance of automatic speech recognition [1], speaker ver-
ification [2] and hearing aids [3]. Monaural speech enhance-
ment aims to extract the target speech from the mixture when
only one-microphone is available [4]. In recent years, deep neu-
ral networks (DNNs) have shown their promising performance
on monaural speech enhancement even in highly non-stationary
noise environments owing to their superior capability in mod-
eling complex nonlinearity [5]. Typical DNN-based methods
can be categorized into two classes according to estimation tar-
gets, where one is masking-based [6] and the other is spectral
mapping-based [7].

Conventional DNNs usually adopted fully-connected (FC)
layers for noise reduction [6, 7]. To tackle the speaker gener-
alization problem, Chen et al. proposed to utilize stacked long
short-term memory (SLSTM) [8], which significantly outper-
formed DNNs. Recently, various convolutional neural networks
(CNNs) with complex topology were proposed [9, 10, 11, 12],
which could reduce the number of trainable parameters. More
recently, Tan et al. combined convolutional auto-encoder
(CAE) [13] and LSTM together to propose convolutional re-
current neural network (CRN) [14], where CAE helped to learn
temporal-frequency (T-F) patterns and LSTM effectively cap-
tured dynamic sequence correlations.

A variety of models with more complex topologies have
been proposed recently [10, 11, 12, 14], which have shown im-
proved performance, they still have some limitations for the fol-
lowing two fold. For one thing, the number of the parameters is
often partly limited to meet the low-latency requirement, which
heavily restricts the depth of the network. For another, the in-
crease of depth is more likely to cause a gradient vanishing
problem. Recently, progressive learning was proposed [15, 16],
which decomposes the mapping process into multiple stages.
Experimental results in [16] have shown that by sharing the
sequence modeling module among different stages, it dramat-
ically decreases the number of trainable parameters and effec-
tively maintains the performance. Based on this conception, re-
cursive learning [17] was proposed by reusing the network for
multiple stages, where the output in each stage is linked by a
memory mechanism. It further alleviates the parameter burden
and deepens the network without introducing extra parameters.

Human tends to generate adaptive attention with dynamic
neuron circuits to percept complicated environments [18],
which is also described by the auditory dynamic attending the-
ory for continuous speech processing [19, 20, 21]. For exam-
ple, when a person hears an utterance from the real environ-
ments, the more noise components are dominant, the more neu-
ron attentions are needed to figure out the meaning and vice
versa. This phenomenon reveals the dynamic mechanism of au-
ditory perception system. Motivated by the physiological phe-
nomenon, we propose a novel network called DARCN, which
combines dynamic attention and recursive learning together.
Different from the previous networks [10, 11, 12, 14] that a sin-
gle complex network is designed for the task, the framework
encompasses a major network and an auxiliary sub-network in
parallel, where the one is noise reduction module (NRM) and
the other is attention generator module (AGM). The workflow
of the framework is as follows: at each intermediate stage, both
the noisy feature and the estimation from the last stage are com-
bined into the current input. AGM is adopted to generate the at-
tention set, which is subsequently applied to NRM through the
pointwise convolution and sigmoid function. In this way, AGM
actually serves as a type of perception module to flexibly adjust
the weight distribution of NRM, leading to better performance
for noise suppression. To our best knowledge, it is the first time
for a dynamic attention mechanism to be introduced for speech
enhancement task.

The remainder of the paper is structured as follows. Sec-
tion 2 formulates the problem. The architecture of the network
is illustrated in Section 3. Section 4 is the dataset and exper-
imental settings. Section 5 presents the results and analysis.
Section 6 draws some conclusions.
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2. Problem formulation and notation
In the time domain, a noisy signal can be modeled as x (n) =
s (n) + d (n), where n is the discrete time index. With short-
time Fourier transform (STFT), it can be further rewritten as:

Xk,l = Sk,l +Dk,l, (1)

where Xk,l, Sk,l, and Dk,l respectively refer to the noisy,
clean, and noise components at the frequency bin index k and
the time frame index l. In this study, the network is deployed to
estimate the magnitude of spectrum (MS), which is then incor-
porated with the noisy phase to recover the estimated spectrum.
Inverse short-time Fourier transform (iSTFT) is used to recon-
struct the waveform in the time domain.

For simplicity of notation, we define the principal notations
used in this paper. |X| ∈ RT×F , |S| ∈ RT×F , |S̃l| ∈ RT×F ,
and |S̃| ∈ RT×F denote the magnitude of noisy spectrum, the
magnitude of clean spectrum, the estimated magnitude of spec-
trum in the lth stage, and the final estimated magnitude of clean
spectrum, respectively. T and F refer to the timestep and the
feature length, respectively. As recursive learning is used, the
superscript l denotes the stage index, and the number of stages
is notated as Q.

3. Architecture illustration
3.1. Stage recurrent neural network
Stage recurrent neural network (SRNN) is first proposed in [17],
which is the core component in recursive learning. It is ca-
pable of aggregating the information across different stages
with a memory mechanism, which is comprised of two parts,
namely two-dimensional convolutional (2-D Conv) block and
convolutional-RNN (Conv-RNN) block. The first part tries to
project the input features into a latent representation, followed
by Conv-RNN to update the state in the current stage. Assum-
ing the output of 2-D Conv and Conv-RNN at stage l are respec-
tively notated as ĥl and hl, the inference of SRNN is formulated
as:

ĥl = fconv

(
|X|, |S̃l−1|

)
, (2)

hl = fconv rnn

(
ĥl,hl−1

)
, (3)

where fconv and fconv rnn refer to the functions of 2-D Conv
and Conv-RNN, respecively. hl−1 is the state of the last stage.
In this study, ConvGRU [22] is adopted as the unit in Conv-
RNN, whose calculation process gives as follows:

zl = σ
(
Wl

z ~ ĥl +Ul
z ~ hl−1

)
, (4)

rl = σ
(
Wl

r ~ ĥl +Ul
r ~ hl−1

)
, (5)

nl = tanh
(
Wl

n ~ ĥl +Ul
n ~

(
rl � hl−1

))
, (6)

hl =
(
1− zl

)
� ĥl + zl � nl, (7)

where W and U represent the weight matrices of the cell. σ(·)
and tanh(·), respectively, denote the sigmoid and the tanh acti-
vation functions. ~ represents the convolutional operator and�
is the element-wise multiplication. Note that biases are ignored
for notation convenience.

3.2. Attention gate
Attention U-Net (AU-Net) is first proposed in [23] to improve
the accuracy in the segmentation-related tasks, where attention
gates (AGs) are inserted between the convolutional encoder and

 : 1 1,p pCW

 : 1 1,q qCW

+ ReLU  : 1 1,1r W  × 

p

q

Fig. 1: The structure of attention gate adopted in NRM. p and
q refer to the feature of a decoding layer and its corresponding
feature in a encoding layer, respectively. Wp, Wq and Wr

are 2-D convolutional layers, whose kernel size are 1 × 1. Cp

and Cq refer to the channel numbers of p and q. Batch normal-
ization is used after each convolutional operation.

the decoder. Compared with a standard U-Net, AU-Net has the
capability of automatically suppressing the irrelevant regions
and emphasizing the important features. As the spectrum in-
cludes abundant frequency components, where formants are of-
ten dominant in the low-frequency regions and the regions of
the high-frequency have a sparse distribution, it is necessary to
discriminate different spectral regions with different weights.
The schematic of the AG adopted in this paper is shown in Fig-
ure 1. Assuming the inputs of the unit are p and q, where p and
q refer to the feature of a decoding layer and its correspond-
ing feature in an encoding layer, respectively. the output can be
calculated as:

y = q� σ (Wr ~ReLU (Wp ~ p+Wq ~ q)) , (8)
where Wp, Wq and Wr are the convolution kernels. Note that
the unit consists of two branches, where the one merges the in-
formation of both inputs and generates the attention coefficients
through a sigmoid function and the other copy the information
of q and multiply the coefficients. After the output of AG is ob-
tained, it is concatenated with the feature from the correspond-
ing decoding layer along the channel dimension as the input of
the next decoding layer.

3.3. Proposed architecture
The overview of the proposed architecture is depicted in Fig-
ure 2-(a). It has two modules, namely AGM and NRM, and
the two modules are designed to interleave execution during the
whole process. The architecture is operated with a recursive
procedure, i.e., the whole forward stream can be unfolded into
multiple stages. In each stage, the original noisy spectrum and
the estimation from the last stage are concatenated, serving as
the network input. It is sent to AGM to generate the current
attention set, representing the attention distribution at the cur-
rent stage. It is subsequently applied to NRM to control the
information flow throughout the network. NRM also receives
the input to estimate the MS. As a consequence, the output of
AGM dynamically depends on how well MS is estimated in the
last stage, i.e., AGM is capable of re-weighting the attention
distribution according to the previous feedback from the noise
reduction system.

Assuming the mapping functions of AGM and NRM are
denoted asGA andGR, respectively. The calculation procedure
of the proposed architecture works as follows:

al = GA

(
|X|, |S̃l−1|; θA

)
, (9)

|S̃l| = GR

(
|X|, |S̃l−1|,al; θR

)
, (10)

where al is the generated attention set at stage l. θA and θR
represent the network parameters for AGM and NRM.

In this study, we use a typical U-Net [24] topology for
AGM, which consists of the convolutional encoder and the de-
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Fig. 2: The schematic of proposed architecture. (a) Proposed architecture and its unfolding structure. The architecture encompasses
two parts in parallel, namely AGM and NRM. (b) The detailed structure of NRM. (c) The connection between AGM and NRM. Note
that the connection is applied to each layer of the encoder (decoder) part.

coder. The encoder consists of five successive 2-D convolu-
tional layers, each of which is followed by batch normalization
(BN) [25] and exponential linear unit (ELU) [26]. The number
of channels through the encoder is (16, 32, 32, 64, 64). The de-
coder is the mirror representation of the encoder except all the
convolutions are replaced by deconvolutions [27] to effectively
enlarge the mapping size. Similarly, the number of channels
through the decoder is (64, 64, 32, 32, 16). The kernel size,
stride for both encoder and decoder are (2, 5) and (1, 2), re-
spectively. Similar to U-Net [24], the skip connections from the
encoder to the decoder part are introduced to compensate for
information loss during the encoding process.

The detail of NRM is shown in Figure 2-(b). It includes
three parts, namely SRNN, AU-Net and a series of GLUs [10].
Given the input of the network, whose size is T × F × 2. 161
is the feature length, and 2 is the number of the input channel.
The output size after SRNN and consecutive six convolutional
blocks are T×4×64. It is subsequently reshaped into T×256.
six concatenated GLUs proposed by [10] are set to explore the
contextual correlations efficiently. The output of GLUs is re-
shaped back to T×4×64, which is subsequently sent to decoder
to expand the feature size and estimate the MS. The number of
channels for the encoder and the decoder in AU-Net are (16, 16,
32, 32, 64, 64) and (64, 32, 32, 16, 16, 1), respectively. The ker-
nel size and stride in NRM are the same as the setup in AGM
except for the last layer, which takes the pointwise convolution,
followed by Softplus as the nonlinearity [28] to obtain the MS.
Note that different from direct skip connections in a standard
U-Net, the feature mappings from the encoder are multiplied
with the gating coefficients from the AGs before they are con-
catenated with the decoding features, which help to weigh the
feature importance in multiple encoding layers.

The connection between AGM and NRM is shown in Fig-
ure 2-(c), where the feature in each layer of the AGM decoder
is passed through a pointwise convolution and a sigmoid func-
tion and multiplied to the feature in the corresponding layer of
the NRM encoder. Note that the sigmoid function is applied to
range the value scale into (0, 1).

3.4. Loss function
As the network is trained for multiple stages, at each of which
we obtain an intermediate estimation, the accumulated loss

can be defined as L =
∑Q

l=1 λlD
l
(
S̃l,S

)
, where λl is the

weighted coefficient for each stage, Dl (·) is the loss function
for the lth stage. We set λl ≡ 1, with l = 1, · · · Q in this study,
i.e., the same emphasis is given to each training stage.

4. Experimental setup
4.1. Dataset
The experiments are conducted on TIMIT corpus [29]. 4856,
800 and 100 clean utterances are selected for training, validation
and testing, respectively. Training and validation dataset are
created under the SNR levels ranging from -5dB to 10dB with
the the interval 1dB whilst we test the model under the SNR
conditions of (-5dB, 0dB, 5dB, 10dB). 130 types of noises used
in [17] are for training and validation. Another 5 types of noises
from NOISEX92 (babble, f16, factory2, m109 and white) are
used to explore the generalization capacity of networks. All the
collected noises are first concatenated into a long vector. During
each mixed process, a random cutting point is generated, which
is subsequently mixed with an utterance under an SNR level.
As a result, we create 40,000, 4000, 800 noisy-clean pairs for
training, validation and testing, respectively.

4.2. Baselines
In this study, four networks are selected as the baselines, namely
SLSTM [8], CRN [14], GRN [10] and DCN [12], all of
which have achieved state-of-the-art performance recently. For
SLSTM, four LSTM layers with 1024 units are stacked, fol-
lowed by one FC layer to obtain the MS. The input of SLSTM
includes the concatenation of the current frame and the previous
ten frames. CRN is a type of real-time architecture combining
CNN and LSTM. GRN and DCN are typical fully-convolutional
networks with gating mechanism.

4.3. Parameter setup
All the utterances are sampled at 16kHz. The 20ms Hamming
window is applied, with 10ms overlap in adjacent frames. 320-
point STFT is adopted, leading to a 161-D feature vector in
each frame. All the models are trained with mean-square er-
ror (MSE) criterion, optimized by Adam [30]. The learning
rate is initialized at 0.001, we halve the learning rate when con-
secutive 3 validation loss increment happens and the training is
early-stopped when 10 validation loss increment happens. All
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Table 1 : Experimental results under seen noise cases. BOLD indicates the best result for each case. The number of stage Q = 3 for
proposed architecture.

Metric PESQ STOI (in %)
SNR -5dB 0dB 5dB 10dB Avg. -5dB 0dB 5dB 10dB Avg.
Noisy 1.46 1.76 2.14 2.55 1.98 62.44 71.55 81.81 89.53 76.33

SLSTM 2.35 2.67 2.98 3.21 2.80 80.16 86.64 91.24 94.18 88.06
CRN 2.42 2.74 3.06 3.34 2.89 81.45 88.09 92.60 95.57 89.43
GRN 2.47 2.76 3.04 3.25 2.88 82.94 88.63 92.76 95.43 89.94
DCN 2.41 2.75 3.06 3.31 2.88 80.64 87.40 92.10 95.03 88.79

DARCN (Q = 3) 2.60 2.91 3.21 3.46 3.05 83.74 89.07 93.17 95.79 90.44

Table 2 : Experimental results under unseen noise cases. BOLD indicates the best result for each case. The number of stage Q = 3 for
proposed architecture.

Metric PESQ STOI (in %)
SNR -5dB 0dB 5dB 10dB Avg. -5dB 0dB 5dB 10dB Avg.
Noisy 1.47 1.83 2.13 2.51 1.98 60.15 72.51 81.23 89.77 75.92

SLSTM 2.07 2.50 2.82 3.12 2.63 74.23 84.52 89.69 93.51 85.49
CRN 2.20 2.60 2.92 3.21 2.73 77.10 86.19 91.03 94.79 87.28
GRN 2.29 2.63 2.89 3.16 2.74 78.10 86.92 91.28 94.78 87.77
DCN 2.20 2.62 2.94 3.22 2.74 76.05 85.88 90.73 94.48 86.78

DARCN (Q = 3) 2.37 2.75 3.06 3.34 2.88 79.16 87.54 91.61 95.02 88.33

1 2 3 4 5
The number of stages Q

0.8

0.82

0.84

0.86

0.88

0.9

0.92

(a)

1 2 3 4 5
The number of stages Q

12

12.1

12.2

12.3

12.4

12.5

12.6

(b)

Fig. 3: The impact of the number of stages Q. (a) PESQ im-
provement for different Q. (b) STOI improvement for different
Q. All the values are evaluated for unseen noise cases and av-
eraged over different SNRs.

the models are trained for 50 epochs. The minibatch is set to 4
at an utterance level. Within a minibatch, the utterance whose
timestep is less than the longest one is padded with zero.

5. Results and analysis
This section evaluates the performance of different models with
perceptual evaluation speech quality (PESQ) [31] and short-
time objetive intelligibility (STOI) scores [32].

5.1. Objective results
Tables 1 and 2 summarize the results of different models for
seen and unseen noise cases, respectively. From the two tables,
one can observe the following phenomena. First, CRN, GRN,
DCN, and the proposed model consistently outperform SLSTM
in both seen and unseen noise cases. This is because SLSTM
solely considers the sequence correlations but neglecting the
implicit T-F patterns, which is crucial for spectrum recovery.
Moreover, stacked LSTM tends to cause an attenuation effect
due to the gradient vanishing problem, which limits the per-
formance. Second, compared with the baselines, the proposed
architecture obtains notable improvements in both metrics. For
example, when going from CRN to the proposed model, PESQ
is improved by 0.16 and STOI is improved by 1.01% on average
for seen cases. A similar trend is also observed for unseen cases,
indicating that the proposed model has a good noise general-
ization capability. Third, we observe that GRN and DCN can

Table 3 : The number of trainable parameters among different
models. The unit is million. BOLD denotes the lowest trainable
parameters.

Model SLSTM CRN GRN DCN Proposed
Para. (million) 36.81 17.58 3.13 2.92 1.23

achieve close performance. This can be explained as both net-
works have similar topology, where dilation convolutions com-
bined with the gating mechanism are applied for sequence mod-
eling.

5.2. Impact of stages
We study the impact of the number of stages Q, which is given
in Figure 3. One can get that with the increase of Q, both values
of PESQ and STOI are consistently improved when Q≤ 3. This
indicates that SRNN can effectively refine the performance of
the network by a memory mechanism. We also find that when
Q increases from 3 to 5, PESQ value slightly degrades whilst
STOI is still improved. This is because the distance-based loss
like MSE is utilized, the loss function and the optimization pro-
cess cannot guarantee consistent optimization for both metrics,
which is consistent with the previous study in [17].
5.3. Parameter comparison
Table 3 summarizes the number of trainable parameters for dif-
ferent models. One can see that the proposed model dramat-
ically decreases the number of trainable parameters compared
with other baselines. This demonstrates the superior parameter
efficiency of the proposed architecture.

6. Conclusions
In a complicated scenario, a person usually dynamically adjusts
the attention to the change of the environments for continuous
speech. Based on this neural phenomenon, we propose a frame-
work combining dynamic attention and recursive learning. To
adaptively control the information flow of the noise reduction
network, a separate sub-network is designed to update the at-
tention representation in each stage and is subsequently applied
to the major network. As a recursive paradigm is taken for train-
ing, the network is reused for multiple stages. As a result, we
achieve a refined estimation stage by stage. Experimental re-
sults show that, compared with previous state-of-the-art strong
models, the proposed model achieves consistently better perfor-
mance while further decreasing the parameter burden.
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