
NAAGN: Noise-aware Attention-gated Network for Speech Enhancement 

Feng Deng, Tao Jiang, Xiao-Rui Wang, Chen Zhang, Yan Li 

Kuai Shou Technology Co., Beijing, China 

 

Abstract 
For single channel speech enhancement, contextual information 
is very important for accurate speech estimation. In this paper, 
to capture long-term temporal contexts, we treat speech 
enhancement as a sequence-to-sequence mapping problem, and 
propose a noise-aware attention-gated network (NAAGN) for 
speech enhancement. Firstly, by incorporating deep residual 
learning and dilated convolutions into U-Net architecture, we 
present a deep residual U-net (ResUNet), which significantly 
expand receptive fields to aggregate context information 
systematically. Secondly, the attention-gated (AG) network is 
integrated into the ResUNet architecture with minimal 
computational overhead while furtherly increasing the long-
term contexts sensitivity and prediction accuracy. Thirdly, we 
propose a novel noise-aware multi-task loss function, named 
weighted mean absolute error (WMAE) loss, in which both 
speech estimation loss and noise prediction loss are taken into 
consideration. Finally, the proposed NAAGN model was 
evaluated on the Voice Bank corpus and DEMAND database, 
which have been widely applied for speech enhancement by lots 
of deep learning models. Experimental results indicate that the 
proposed NAAGN method can achieve a larger segmental SNR 
improvement, a better speech quality and a higher speech 
intelligibility than reference methods. 
Index Terms: speech enhancement, attention-gated network, 
residual learning, dilated convolution 

1. Introduction 
Speech enhancement is one of the most important and 
challenging tasks in speech applications. And in the last several 
decades, a large number of speech enhancement approaches 
have been proposed, including the Wiener filtering method [1], 
the spectral-subtraction method [2] [3] and statistical-model-
based methods [4] - [6], and so on. However, these kinds of 
speech enhancement methods generally do not perform well in 
adverse noise environments.  

Recently, due to the advances in deep learning, deep neural 
network (DNN)-based speech enhancement approaches [7] - 
[11] have been attracting large attention, and the speech 
enhancement task has been obtained significant improvements. 
For DNN-based speech enhancement methods, most have 
mainly focused on estimating the magnitude spectrogram of 
speech while reusing the phase from noisy speech for 
reconstruction [7][9]. As we know, to obtain accurate 
magnitude spectrogram estimation, the temporal contexts are 
very important. However, conventional DNNs cannot leverage 
long-term contexts. Therefore, recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs) have been 
used for speech enhancement [8] [9] [11]. [8] proposed an RNN 
model with four hidden LSTM layers, their experimental results 
show that the RNN model performs better than DNN-based 

model. [9] developed a CNN model based on dilated 
convolutions, in which the speech enhancement task is treated 
as a sequence-to-sequence mapping and the dilated 
convolutions are used to leverage contexts. Compared with the 
LSTM model in [8], the model in [9] shows better enhancement 
performance. [12] presented the U-Net structure for audio 
source separation tasks, which is a well-known architecture 
composed as a convolutional encoder-decoder with skip 
connections. Furthermore, the U-Net has been shown to be also 
effective to speech enhancement task [13] [14]. Motivated by 
its good performance, we used the U-Net architecture as the 
basis for the work presented in this paper.  

In this paper, to aggregate long-term contexts, we also 
formulate the speech enhancement task as a sequence-to-
sequence mapping, and propose a deep noise-aware attention-
gated network (NAAGN) by introducing residual learning [15], 
dilated convolutions [9] [10] and attention gate mechanism [16] 
into the U-Net architecture. The dilated convolutions expand 
receptive fields compared with conventional convolutions, and 
the receptive field is a region in the input space that affects a 
high-level feature. With the formulation of speech enhancement 
as a sequence-to-sequence mapping, large receptive fields of 
the NAAGN amount to long-term contexts. The residual blocks 
are summated to yield high-level features, which preserve and 
integrate the knowledge learned by all the stacked blocks of 
ResUNet. The attention gate (AG) block is incorporated into the 
proposed ResUNet architecture to highlight salient features that 
are passed through the skip connections, which can increase the 
long-term contexts sensitivity and prediction accuracy with 
minimal computational overhead. In addition, a novel noise-
aware multi-task loss function, called weighted mean absolute 
error (WMAE) loss, is proposed, in which both speech 
estimation loss and noise prediction loss are considered, and 
noise prediction loss term is added and expected to be 
complementary to speech estimation. In this way, the NAAGN 
can balance well between removing amount noise and reducing 
speech distortion. The experimental results show that the 
proposed NAAGN method achieves state-of-the-art 
performance, which outperforms the reference methods over 
several different metrics. 

The remainder of this paper is organized as follows. In 
Section 2, the proposed NAAGN architecture is described. The 
performance evaluation is presented in Section 3, and Section 4 
gives the conclusions. 

2. NAAGN architecture 
In this section, we will discuss the details on the proposed 

NAAGN model. starting with the overview of NAAGN 
architecture, followed by the sub-blocks of the model. Finally, 
we will introduce a new noise-aware multi-task loss function to 
optimize the model, which plays a critical role for accurate 
speech estimation. 
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The block diagram of the proposed NAAGN method is given in 
Figure. 1, which includes two parts, the upper part is signal 
processing, and the lower part is NAAGN architecture. For the 
signal process procedure, firstly, the input time-domain 
waveform signal is transformed into time-frequency (T-F) 
domain by the short-time Fourier transform (STFT) and 
represented by a magnitude spectrogram and phase information. 
Secondly, based on the magnitude spectrogram, a multiplicative 
mask is predicted with NAAGN model. Thirdly, the modified 
magnitude spectrogram is obtained by applying the 
multiplicative mask to the input magnitude spectrogram. 
Finally, combined the modified magnitude spectrogram and 
input phase spectrogram, the inverse STFT (ISTFT) is applied 
to obtain the real-valued time-domain waveform. The key 
problem is how to model and predict the mask accurately, so 
we emphatically introduce the NAAGN architecture in the 
following sections. 

 

Figure 1: The block diagram of the proposed NAAGN method. 
Thick arrows denote concatenated operations, the triangle 
represents the gating signal for AG block. 

The NAAGN is a variant U-Net architecture applied in 
STFT domain, and the modifications are summarized as follows. 
Ahead each convolutional layer of U-Net, a dilated residual 
(Res.) unit is added, which combines strengths of both dilated 
convolutions and residual learning. The details of Res. unit will 
be presented in subsection 2.2. Furthermore, as we know, 
usually a minor linear shift in the spectrogram has disastrous 
effects on perception. Thus, the skip connections between 
layers at the same hierarchical level in the encoder and decoder, 

are also replaced with Res. units. This furtherly improves low-
level information to flow from the high-resolution input to the 
high-resolution output. Here, we call the variant of U-Net as 
ResUNet. For the ResUNet, the convolution/deconvolution 
units (Conv./Deconv.) are also made a few modifications, 
which can be shown as Figure 2.  The convolution kernels are 
set to be independent to each other by initializing the weight 
tensors as unitary matrices for better generalization and fast 
learning [14]. Batch normalization (BN) is implemented on 
every convolutional/deconvolution layer, and the activation 
function of ReLU is replaced with leaky ReLU, which yields 
training more stable. In the encode stage, instead of using max 
pooling, the convolution operations with different stride sizes 
over time and frequency directions to prevent spatial 
information loss. In the decode stage, strided deconvolution 
operations are used to restore the size of input. In addition, we 
apply the attention-gated network [16] to the Dec. 9 layer of 
ResUNet to better exploit context information, and the gate 
signal is the output of bridge layer, which is denoted by the 
triangle in Figure 1. Note that in the last layer of the NAAGN
model, the batch normalization and leaky ReLU activation were 
not used and non-linearity function was applied for mask 
instead. Next, we will introduce the main blocks of 
modification in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Schematic of Conv./Deconv. Block. Kf and Kt are the 
kernel size of convolution filter along the frequency and time 
axis, respectively. Sf and St denote the stride size of convolution 
filter along the frequency and time axis, respectively. The ‘same’
results in padding the input such that the output has the same 
length as the original input. Note that the symbol conv/deconv 
denotes the convolutional/deconvolution operation, which is 
different from symbol of Conv./Deconv.  

In convolutional neural networks, contextual information is 
augmented typically through the expansion of the receptive 
fields. One way to achieve this goal is to increase the network 
depth, which decreases computational efficiency and typically 
results in vanishing gradients [9]. Another way is to enlarge the 
kernel size, which likewise raises computational burden and 
training time. To address this problem, the dilated convolutions 
were used for multi-scale context aggregation in speech 
enhancement [9] [10], which are based upon the fact that dilated 
convolutions can exponentially expand receptive fields without 
losing resolution or coverage.  

To alleviate the vanishing gradient problem, the deep 
residual learning framework was developed [15], which lead to 
ease training of the network by improving the propagation of 
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information and gradients throughout the network. In this paper, 
motivated by the strengths of both dilated convolutions and 
residual learning, we present a residual unit with dilated 
convolutions, and call Res. Unit for short. As shown in Figure 
3, the Res. Unit consist of two convolution blocks and an 
identity mapping. Each convolution block includes a dilated 
convolution layer, a BN and a leaky ReLU activation function. 
And the dilation of dilated convolution is applied to both the 
frequency direction and the time direction, which can aggregate 
contextual information over both time and frequency 
dimensions. The identity mapping with Conv. Block of 
1x1convolution connects input and output of the unit, which is 
only used to ensure the same dimensions of two tensors that 
pass to addition operation. 
 
 

 
 
 
 
 
 

 
 
 

 
 

 
 

Figure 3: Schematic of dilated Res. Unit. The tuples (2,2) 
and (4,4) are dilation rate, which means the dilation 
applied both in time and frequency directions. 

In [16], attention gate (AG) model was introduced for medical 
imaging that can automatically learn to focus on target 
structures of varying shapes and sizes and to suppress irrelevant 
background regions in an input image while highlighting salient 
features useful for a specific task. Therefore, we incorporate the 
AG block into our proposed deep ResUNet architecture to 
better exploit contextual information. Meanwhile, by balancing 
the computational complexity and performance, we integrated 
AG into the last skip connection with minimal computational 
overhead, see Figure 1, to increase the model sensitivity and 
prediction accuracy. For the AG block, the gating signal is the 
output of bridge layer, which is used to prune irrelevant and 
useless lower-level feature responses in skip connection. In this 
way, only relevant activations can be merged by the 
concatenation operation. 

The schematic of AG unit is shown as Figure 4, in which 
additive attention [16] is used. By summarizing the AG unit, we 
can obtain the formulations as follows: 

          (1) 
(2)

                                         (3) 
where  is a set of parameters of AG.  f corresponds to the 
input lower-level feature in skip connection. g is the gating 

signal contains contextual information to determine focus 
regions of input feature f. Wg, Wf and Wp are the linear 
transformations computed using channel-wise 1x1 
convolutions for the input tensors. bg and bp are the bias terms. 
w is attention coefficients computed from AG. Resampling of 
attention coefficients is done using nearest interpolation, which 
is used to match the dimensions of input features. In this way, 
the output of AG unit is the element-wise multiplication of 
input features f and attention coefficients w, which identify 
salient input regions and prune feature responses to preserve 
only the relevant activations. Thus, the AG can increase 
prediction accuracy and improve the performance of speech 
enhancement task, which can be validated in the performance 
evaluation section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Schematic of the AG Unit. 

Assuming the clean speech x is contaminated by an 
uncorrelated additive noise n, we can obtain the noisy speech 
signal y = x + n. By transforming y into STFT domain, we have 

                                                          (4) 
where X, Y and N are the magnitude spectrogram of the clean 
speech, noisy speech and noise signal, respectively.  
     For DNN-based magnitude spectrogram estimation methods, 
a popular loss function is mean squared error (MSE) between 
clean magnitude X and estimated magnitude , which does not 
consider the loss of noise estimation, and thus the performance 
of speech estimation maybe limited. In this paper, we propose 
a novel noise-aware multi-task loss function, named weighted 
mean absolute error (WMAE) loss, in which the noise 
prediction loss term is also added and expected to be 
complementary to speech estimation. Moreover, to properly 
balance the contributions of each loss term and solve the scale 
insensitivity problem, we weighted speech and noise estimation 
loss term proportional to the energy of speech and noise, 
respectively. Therefore, the final form of the WMAE loss can 
be given as follows:  

    (5) 
is estimated noise magnitude spectrogram 

and a is the weight coefficient that is the energy ratio between 
clean speech and noise, which is defined by 

                            (6) 
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3. Performance evaluation 
In the test experiments, as previous speech enhancement works 
[17] - [22], we employed the open database presented in [23] to 
perform direct performance comparison. The clean speech 
recordings of 30 speakers were provided from the voice bank 
corpus [24], where 28 speakers were chosen for the training set 
and 2 for the test set. The noisy training set was synthesized by 
mixing the clean speech training set with noise from the 
DEMAND database [25], which includes 40 different noisy 
scenarios with 10 different noise conditions at signal-to-noise 
ratios (SNRs) of 0, 5, 10 and 15dB. The noisy test set was 
created using remaining 5 noise types from the DEMAND 
database and clean test set of 2 speakers from the Voice Bank 
corpus. Both speakers and noise types in the test set are unseen 
in the training set. The SNRs were setting at 2.5, 7.5, 12.5 and 
17.5dB, respectively. Finally, the training and test set we used 
contain 11572 and 824 noisy-clean speech pairs, respectively.  

All the training and test utterances were first downsampled 
from 48kHz to 16kHz. We then compute the STFT with a 
Blackman window of 1024 and hop length of 256 samples. Here 
only 512 frequency bins were taken into account and the 513th 
frequency bin was ignored in order to use an exact power of two 
that allows a simpler network. Finally, we extract a sequence of 
64 frames that we feed as input and targets to the network, and 
the magnitude spectrograms are normalized to the range [0, 1]. 

The NAAGN model was trained with the Adam optimizer 
[26]. We set the learning rate to 0.001. We train the models with 
a batch size of 32. The whole model was developed in Keras 
[27] with Tensorflow [28] backend. The model parameters are 
presented in Table 1. 

Table 1: The network structure parameter of NAAGN 

Layer       Unit   Filter Kernel  Stride 

Enc.1 
/Dec.1 

Res. Unit 
45 1x7 (1,1) 

(1,1) Conv./Deconv. 
Enc.2 
/Dec.2 

Res. Unit 
Conv./Deconv. 45 7x1 (1,1) 

(1,1) 
Enc.3 
/Dec.3 

Res. Unit 
Conv./Deconv. 90 5x7 

(1,1) 
(2,2) 

Enc.4 
/Dec.4 

Res. Unit 
Conv./Deconv. 90 5x7 

(1,1) 
(1,2) 

Enc.5 
/Dec.5 

Res. Unit 
Conv./Deconv. 90 3x5

(1,1) 
(2,2) 

Enc.6 
/Dec.6 

Res. Unit 
Conv./Deconv. 90 3x5 

(1,1) 
(1,2) 

Enc.7 
/Dec.7 

Res. Unit 
Conv./Deconv. 90 3x5 

(1,1) 
(2,2) 

Enc.8 
/Dec.8 

Res. Unit 
Conv./Deconv. 90 3x5 

(1,1) 
(1,2) 

Enc.9 
/Dec.9 

Res. Unit 
Conv./Deconv. 90 3x5 

(1,1) 
(2,2) 

AG (1,1) 

Bridge 
Res. Unit 

180 3x5 
(1,1) 

Conv./Deconv. (1,2) 
 

To evaluate the performance of the proposed NAAGN 
method, Wiener filtering (Wiener) with a priori noise SNR 
estimation [1], SEGAN [17], Wavenet [18], MMSE-GAN [19], 
Deep Feature Loss (DFL) [20], a recent hybrid model called 

MDPhD [21] and RSGAN-GP [22] were used as the reference 
methods. Meanwhile, to evaluate the contribution of AG block, 
the proposed ResUNet was also used as baseline approach. For 
the metrics to compare NAAGN and the aforementioned 
reference methods, the following five metrics are employed. 
SSNR: Segmental SNR. PESQ: Perceptual evaluation of speech 
quality [29]. CSIG: Mean opinion score (MOS) predictor of 
signal distortion [30]. CBAK: MOS predictor of background-
noise intrusiveness [30]. COVL: MOS predictor of overall 
signal quality [30]. In addition, to show the improvement in 
speech intelligibility, the Short-Time Objective Intelligibility 
(STOI) measure [31] is applied to compare with the reference 
methods who ever used it in the same open database [23]. Note 
that all these six metrics are better if higher.  

The comparison results are shown as Table 2 and Table 3. 
Results in Table 2 indicate that the proposed NAAGN model 
outperforms the reference methods with respect to all metrics 
by a large margin. Moreover, we also can see that the NAAGN 
model yield better performance than ResUNet, which proves 
the advantage of AG block incorporated into our method. In 
addition, Table 3 shows that the proposed model achieves 
higher speech intelligibility than reference methods. 

Table 2. Test results of objective quality 

Method SSNR PESQ CSIG CBAK COVL 

Noisy 1.68 1.97 3.35 2.44 2.63 

Wiener 5.07 2.22 3.23 2.68 2.67 

SEGAN 7.73 2.16 3.48 2.94 2.80 

Wavenet   3.62 3.23 2.98 

DFL   3.86 3.33 3.22 

MMSE-GAN 2.53 3.80 3.12 3.14

MDPhD 10.22 2.70 3.85 3.39 3.27 

ResUNet 10.08 2.85 4.04 3.48 3.45 

NAAGN 10.25 2.90 4.13 3.50 3.51 
 

Table 3. Test results of STOI 

Method Noisy MMSE-GAN RSGAN-GP NAAGN 

STOI 0.921 0.930 0.942 0.948 
 

4. Conclusions 
In this paper, we have proposed a NAAGN model for single 
channel speech enhancement, in which the residual learning, 
dilated convolutions and attention-gated network are 
incorporated into U-Net architecture. We also have designed a 
new noise-aware multi-task loss function, called WMAE loss, 
which takes the speech estimation loss and noise prediction loss 
into consideration simultaneously. Since the speech 
enhancement is treated as a sequence-to-sequence mapping 
problem, the NAAGN can capture long-term temporal contexts 
through its large receptive fields upon the input T-F 
representation. The attention-gated network is integrated into 
the proposed method, which furtherly increases the long-term 
contexts sensitivity and prediction accuracy with minimal 
computational overhead. Compared with the reference methods 
on the Voice Bank corpus and DEMAND database, the 
proposed NAAGN method shows the superior performance in 
all metrics, which achieves state-of-the-art performance. 
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