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Abstract
When a bilingual switches languages, do they switch their
“voice”? Using a new conversational corpus of speech from
early Cantonese-English bilinguals (N = 34), this paper exam-
ines the talker-specific acoustic signature of bilingual voices.
Following prior work in voice quality variation, 24 filter and
source-based acoustic measurements are estimated. The analy-
sis summarizes mean differences for these dimensions, in addi-
tion to identifying the underlying structure of each talker’s voice
across languages with principal components analyses. Canon-
ical redundancy analyses demonstrate that while talkers vary
in the degree to which they have the same “voice” across lan-
guages, all talkers show strong similarity with themselves.
Index Terms: Bilingual speech production, Corpus phonetics,
Voice quality, Voice variation, Principal components analysis

1. Introduction
Voices can tell you a lot about the person who is talking, and
have been discussed as an “auditory face” [1]. They simulta-
neously provide information about the talker’s current physi-
cal and emotional state, as well as cues to who they are [1].
However, voices are highly variable, and while different voices
share some dimensions of acoustic variability, the way that
voices vary is argued to be largely idiosyncratic [2, 3]. De-
spite the high degree of variability and idiosyncrasies, listen-
ers nonetheless use talker-specific information to recognize and
discriminate voices. Listeners are good at identifying familiar
voices, but perform poorly on the same tasks with unfamiliar
voices [4]. It was suggested by [2] that familiarity with a voice
largely comes from learning how that voice varies across time
and space, whether within an utterance or across environments,
physical states, and emotions.

Bilingualism brings an additional dimension of variability
into the picture. Prior research in both perception and produc-
tion suggests that while some aspects of voice variability dif-
fer for linguistic reasons, other talker-indexical features remain
constant across languages, and still others can be influenced by
both linguistic and non-linguistic factors. That bilingual listen-
ers are sensitive to this information signals its importance [5, 6].

In this study, we examine how voice varies across a bilin-
gual’s two languages. Some differences are expected. Lan-
guages differ in terms of their consonant and vowel inventories,
which affect the spectral properties of a language. While all
languages have consonants and vowels, they differ with respect
to distribution, articulation, and acoustics (e.g., [7]). Supraseg-
mental and prosodic properties also vary across languages. Lan-
guages can differ in terms of whether a suprasegmental dimen-
sion is exploited at all, in addition to how a language might
carve up a potential suprasegmental space (e.g., number of tonal
contrasts). Within an individual bilingual, the acoustic variabil-
ity within each language can also be related to the social identi-
ties a talker adopts within each language (see discussion in [8]).

In an effort to understand what aspects of an individual’s
voice vary across languages and what are more or less fixed
talker-specific attributes, researchers have compared spectral
properties of bilingual speech. Results have been decidedly
mixed [8, 9, 10]. For example, a small group of English-
Cantonese bilinguals (n = 9) in did not differ in mean funda-
mental frequency (F0), but exhibited greater variability in F0
[9]. This was not the case in [11], which examined voice differ-
ences with Cantonese-English bilinguals reading passages (n =
40). Based on Long-Term Average Spectral measures, females
exhibited higher F0 in English than Cantonese, but males did
not [11]. In the same study, all participants had greater mean
spectral energy values (mean amplitude of energy between 0–8
kHz) and lower spectral tilt (ratio of energy between 0–1 kHz
and 1–5 kHz) in Cantonese [11]. Respectively, these findings
suggest a greater degree of laryngeal tension and breathier voice
quality in Cantonese compared to English.

Together, these bodies of literature invite us to consider
whether bilingual talkers have the “same” voice in each of their
languages. Using a new corpus of conversational Cantonese-
English bilingual speech—SpiCE [12]—we look at spectral
properties [8, 9, 10, 11], and also examine how acoustic vari-
ation is structured, following the work of [2, 3, 13].

2. Methods
2.1. Data

The 34 talkers (17 female, 17 male) studied here come from
the SpiCE corpus of bilingual speech in Cantonese and English
[12]. The corpus comprises two conversational interviews with
early bilinguals—one in each language. While these interviews
were conducted in either Cantonese or English, code-switching
occurred regularly within each interview. Talkers were of a sim-
ilar age (Mdn = 21, M = 22.4, SD = 4), learned both languages
from an early age (Cantonese: Mdn = 0, M = 0.03, SD = 0.2; En-
glish: Mdn = 0, M = 1.32, SD = 1.8), and considered themselves
to be proficient speakers (Cantonese: Good/Excellent = 29, Fair
= 5; English: Good/Excellent = 33; Fair = 1). Talkers, however,
had varied language background profiles (e.g., locations lived,
dialects, knowledge of other languages), and should not be char-
acterized as a homogeneous bilingual group. This heterogeneity
is an accurate representation of the Cantonese speech commu-
nity [14] and it is considered a boon in this study, as analyses
are conducted on a within-talker basis.

The audio recordings are high quality, with a 44.1 kHz sam-
pling rate, 24-bit resolution, and minimal background noise.
Both the participant and interviewer wore head-mounted mi-
crophones connected to separate channels, and levels were ad-
justed to minimize speech from the other talker. The participant
channel was extracted, including any code-switches they made
during the interview, as this process was done without ortho-
graphic transcripts. We then identified all voiced segments with
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the Point Process (periodic, cc)1 and To TextGrid (vuv) Praat al-
gorithms [15], implemented with the Parselmouth Python pack-
age [16]. While speech from the interviewer can occasionally
be heard in the participant channel, it is quiet enough to have
been ignored by the Praat algorithms. This method captures
vowels and approximants, as well as some voiced obstruents,
differing slightly from [2].

2.2. Acoustic measurements

All voiced segments were subjected to the same set of acoustic
measurements of voice quality made by [2]2 in VoiceSauce [17].
The suite of selected measurements are drawn from a psychoa-
coustic voice quality model [13]. Measurements were made ev-
ery 5 ms during voiced segments, as in [2].

F0 is a correlate of pitch, associated with linguistic (e.g.,
lexical tone), prosodic, and talker characteristics. F1, F2, and
F3 are the three formant frequencies typically discussed in re-
lation to linguistic contrasts (e.g., for vowels and sonorant con-
sonants). The fourth formant frequency, F4, is not typically
discussed in linguistic contexts, and is instead associated with
talker characteristics.

The corrected amplitude difference between the first two
harmonics, H1*–H2*, is a measure of harmonic spectral slope
associated with phonation type. The asterisk indicates that the
value has been corrected [18]. The corrected amplitude differ-
ence between the second and fourth harmonics, H2*–H4*, is
a measure of harmonic spectral slope in a slightly higher fre-
quency band. H4*–H2kHz* is the corrected amplitude dif-
ference between the fourth harmonic and the harmonic clos-
est to 2000 Hz; it is a measure of harmonic spectral slope in a
higher frequency band. The corrected amplitude difference be-
tween the harmonics closest to 2000 Hz and 5000 Hz, H2kHz*–
H5kHz*, is a measure of harmonic spectral slope that does not
depend on F0. Together, these harmonic-based measures char-
acterize source spectral shape [13].

Cepstral Peak Prominence (CPP) is a measure of the ratio
between harmonic energy and spectral noise, and is associated
with non-modal phonation types. Root Mean Square (RMS)
Energy is a measure of overall amplitude. The subharmonics-
harmonics amplitude ratio (SHR) is a measure of spectral noise
associated with period doubling or irregularities in phonation.
Together, these three measures characterize key aspects of spec-
tral noise.

2.3. Exclusionary criteria and post-processing

Observations were removed if they included impossible or er-
roneous values, including instances where F0, F1–F4, CPP, or
H5kHz was equal to zero. Filtering was done with just one
of the uncorrected harmonic amplitude measures, as erroneous
values tended to co-occur on the same observation, and the dis-
tribution of H5kHz did not span zero, with the exception of (er-
roneous) values equal to zero. This minimizes the removal of
correctly measured zero values.

Moving standard deviations were calculated for each of the
12 measures using a centered 50 ms window (≈ 10 observa-
tions). This captures dynamic changes for each of the voice
quality measures, which is important as they may better reflect

1The pitch range settings differed by gender (female: 100–500,
male: 75–300).

2The exception was formant dispersion, which was excluded be-
cause it was almost perfectly correlated with the measured value of F4
and led to problems with the principal components analyses.

what listeners attend to in talker identification and discrimina-
tion tasks [2].3 Observations missing a moving standard devia-
tion value (i.e., those near a voicing boundary) were removed.
Including both the values measured in VoiceSauce and their
moving standard deviations, a total of 24 measures were used in
the analysis described in the next section. Across the 34 talkers,
there were 3,126,267 observations after winnowing the data.

2.4. Principal components analysis

Principal components analysis (PCA) is a dimensionality reduc-
tion technique appropriate for data that include a large num-
ber of (potentially) correlated variables. The distillation into
components helps identify and facilitate describing the inter-
nal structure, in this case, of a voice. We adapt methods from
work on voices [2] and faces [19, 20]. The goal is to the cap-
ture similarities or differences for each talker’s voice across
languages. As such, we conducted PCAs separately for each
talker-language pair, and compared the results of each talker’s
English and Cantonese PCAs. All 24 measures were normal-
ized (z-scored) on by-PCA basis for the analysis. PCAs were
implemented with the parameters package [21] in R [22], us-
ing an oblique promax rotation to simplify the factor structure,
as the measurements reported in the previous section were ex-
pected to be somewhat correlated [2].

Each PCA included the number of components for which
all resulting eigenvalues were greater than 0.7 times the mean
eigenvalue, following Jolliffe’s [23] recommended adjustment
to the Kaiser-Guttman rule. We used this rule, rather than a
more sophisticated test (e.g., broken sticks), as it is not detri-
mental to our exploratory analysis to err on the side of including
marginal components. Additionally, across each of the compo-
nents, only loadings with an absolute value of 0.32 or higher
were interpreted [24, 2]; however, all loadings were retained for
the canonical redundancy analysis described in the next section.

2.5. Canonical redundancy analysis

In order to assess whether variation in a talker’s voice is struc-
turally similar across both languages, we compare the PCA
output from English and Cantonese by calculating redundancy
indices from a canonical correlation analysis (CCA) [23, 25].
CCA is a statistical method used to explore how groups of vari-
ables are related to one another. The two sets of variables are
transformed such that the correlation between the rotated ver-
sions is maximized. This is useful here, as a talker may have
similar components in their English PCA and Cantonese PCA,
but these components might not necessarily be in the same or-
der, even if they account for comparable amounts of variance.

Redundancy is a relatively simple way to characterize the
relationship between the loadings matrices of two PCAs—the
two sets of variables under consideration here. The two indices
represent the amount of variation in a talker’s Cantonese PCA
output that can be accounted for via canonical variates by their
English PCA output, and vice versa. Notably, the two redun-
dancy indices are not symmetrical [25].

We computed redundancy indices for all pairwise combina-
tions, including cases where similar values were expected (same
talker, different language), and cases where we expected dissim-
ilarity (different talker and language). Considering that the PCA
analyses retain the lower-dimensional structure within each lan-
guage, these redundancy indices effectively reflect the degree to

3We used SD, as opposed to the coefficients of variation used by [2].
Regardless, all variables were scaled prior to inclusion the PCAs.
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which the lower-dimensional structure of the voice variability is
retained across a talker’s two languages.

3. Results
3.1. Crosslinguistic comparison of acoustic measurements

For each acoustic measurement and talker, we conducted a Stu-
dent’s t-test and calculated Cohen’s d, in order to give a high-
level assessment of whether variable means differed across the
two languages. These comparisons have no bearing on how a
given variable varies. Table 1 reports counts of talkers by ef-
fect size. Notably, across all talkers and variables, only 21.1%
yielded non-trivial Cohen’s d values. Most talkers (32/34) had
at least one non-trivial comparison. The distribution of these
counts is depicted in Figure 1.

Table 1: This table reports counts of Cohen’s d for crosslinguis-
tic comparisons of each of the acoustic measurements by talker.
Degrees of freedom ranged between 49,274–136,644 across t-
tests. For most talkers and variables, the difference in means
was trivial, which is reflected in that column’s high counts.

Cohen’s d
Trivial Small Medium

Variable 0.0–0.2 0.2–0.5 0.5–0.8

F0 21 10 3
F0 s.d. 34 0 0
F1 24 9 1
F1 s.d. 29 5 0
F2 26 8 0
F2 s.d. 32 2 0
F3 24 9 1
F3 s.d. 29 5 0
F4 30 3 1
F4 s.d. 28 6 0
H1*–H2* 18 15 1
H1*–H2* s.d. 32 2 0
H2*–H4* 25 9 0
H2*–H4* s.d. 31 3 0
H4*–2kHz* 25 8 1
H4*–2kHz* s.d. 34 0 0
H2kHz*–5kHz* 23 10 1
H2kHz*–5kHz* s.d. 31 3 0
CPP 21 10 3
CPP s.d. 32 2 0
Energy 17 14 3
Energy s.d. 18 16 0
SHR 31 3 0
SHR s.d. 29 5 0

Figure 1: A summary of the number of non-trivial comparisons
from Table 1 across the 34 talkers.

For the non-trivial comparisons, there were consistent pat-
terns across languages for H1*–H2* and F0. For the remain-
ing variables, while some talkers exhibited a difference in mean
values, the direction of the difference varied, or relatively few
talkers exhibited the difference.

H1*–H2* was significantly higher in Cantonese for a rela-
tively large subset of the talkers (13/34), lower for a small num-
ber (3/34), but trivial for most (18/34). While based on a dif-
ferent measure than [11], this is consistent with the finding that
Cantonese tends to be breathier, or English creakier—the cur-
rent analysis does not distinguish between these interpretations.

If there was a non-trivial difference in F0 across languages,
then Cantonese had a lower mean F0 than English (13/34; Fe-
male = 7), though most talkers did not exhibit a difference
(21/34). This is consistent with prior findings that when a dif-
ference between English and Cantonese was found, Cantonese
had a lower mean F0 for females [11, 9]. We also observe this
difference for a small number of males.

3.2. PCA results

The PCAs across both languages for all 34 talkers resulted in
10–15 components and accounted for 74.6–85.8% of the total
variation. To assess whether talkers exhibit the same structure
in voice variability across their languages, we first consider the
patterns present across the different PCAs, as this provides con-
text for understating what unique structural characteristics in
talkers’ voices looks like. To this end, we briefly summarize
common patterns across PCA components, regardless of how
much variance they account for, as the difference is often quite
small. Figure 2 shows the first four components of a single
talker’s Cantonese and English PCAs, illustrating some exam-
ples of how components can vary (or not) across languages.

Figure 2: In the first four components of a talker’s Cantonese
and English PCAs, loadings are represented by bar height and
are labelled with the variable name; color represents concep-
tual groupings; and, the component’s variance is superimposed.

Broadly speaking, there were a lot of similarities in com-
ponent composition across both talkers and languages, with the
eight most commonly occurring components summarized in Ta-
ble 2. For context, recall that PCAs had anywhere from 10–15
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components total. These eight components consisted of source
spectral shape, spectral noise, as well as formant variables. On
the other hand, F0 co-occurred with a wide variety of variables
(often Energy), but in a manner that was less consistent across
talkers. There were additional components (not reported here)
that were shared by less than half of talkers. In summary, de-
spite the greater amount of shared structure across PCAs than
found in [2], there is still ample room for idiosyncratic varia-
tion, both in terms of which variables co-occur, as well as in
how much variance different components account for.

Table 2: A summary of the most commonly occurring com-
ponents across all PCAs. Variables are only included if
|Loading| > 0.32. Italics indicate additional variables that
were present on a component for a subset of talkers (i.e., an
alternative but related configuration). N indicates the number
of times a component occurred (out of 34), and Var. % gives the
range of percent variance accounted for by the component.

Cantonese English
Variables N Var. % N Var. %

H4*–H2kHz*,
H2kHz*–H5kHz*, F2,
F3, F4

34 9.3–15.5 32 9.2–16.7

H4*–H2kHz* s.d.,
H2kHz*–H5kHz* s.d. 32 6.3–8.3 34 4.1–5.0

Energy, Energy s.d, F0 31 5.8–9.4 33 6.3–9.1

CPP s.d. 29 4.1–5.0 31 4.1–4.9

SHR, SHR s.d. 30 3.8–7.5 29 5.4–7.3

F3, F4, F2 26 6.0–8.5 29 5.8–8.5

F3 s.d., F4 s.d., F2 s.d. 26 5.3–8.6 29 4.7–8.6

H2*–H4* s.d.,
H1*–H2* s.d. 26 4.2–6.5 28 4.2–6.8

3.3. Within-talker analysis

A slight majority of talkers had the same number of compo-
nents for each of their languages (18/34). Of the remainder,
most talkers had a difference of one in the number components
(14/34), and far fewer differed by two (2/34). Redundancy in-
dices for within-talker comparisons ranged from 0.82 to 0.99,
(Mdn = 0.93, M = 0.92, SD = 0.04), and are displayed in Fig-
ure 3, with the two redundancy indices for a given pair plot-
ted against one another. Comparisons across talkers within-
language (range: 0.63–0.98, Mdn = 0.84, M = 0.84, SD = 0.6)
and across-language (range: 0.66–0.98, Mdn = 0.83, M = 0.84,
SD = 0.6) are generally lower, but still relatively high. Within-
talker values were confirmed to be higher than across-talker
comparisons [Welch’s t(71.36) = –17.83, p < 0.001, d = 1.76].

The high values are not unexpected. As PCA is a dimen-
sionality reduction technique, the discarded components almost
certainly contain idiosyncratic variation. Moreover, and follow-
ing from Section 3.2, there were a substantial number of com-
monly occurring patterns across talkers and languages.

4. Discussion and conclusion
This study examines spectral properties and structural similar-
ities in an individual’s voice in two languages. A clear result

Figure 3: The relationship between the two redundancy indices
for three different types of comparisons. Within-talker compar-
isons are clustered at the top right.

is that most of the bilinguals studied here exhibit similar spec-
tral properties, and similar lower-dimensional structure in voice
variation, despite substantial segmental and suprasegmental dif-
ferences across English and Cantonese [26]. In this sense, a ma-
jority appear to have the same “voice” across languages, which
renders voice-as-an-auditory-face an apt comparison.

The comparison of these 34 Cantonese-English bilinguals’
voices across languages suggest more similarity for an individ-
ual across languages than found within a more tightly controlled
group of monolingual English speakers [2, 3]—several analysis
decisions may have contributed to this. We compared similar
components independent of order, which ignores the fact that
similar components may account for different amounts of vari-
ance, but ensures that any comparisons made are among like
items. Any downside to this methodological decision is miti-
gated by the fact that most components made relatively small
contributions, accounting for 4.2–10.3% (95% highest density
interval) of the PCA’s total variance.

While statistical choices may have affected these results,
the data differences between the current and previous studies
are also important to note. This study uses substantially longer
passages than the short samples in [2] and [3]. The larger speech
sample may allow for a more stable underlying structure to
showcase itself, as opposed to the potential for ephemeral vari-
ation in a shorter sample. This possibility is easily testable by
manipulating the length of the speech sample in the analysis.

Ultimately, the goal is to understand how the acoustic vari-
ability and structure of talkers’ voices maps onto listeners’ or-
ganization of a voice space for use in talker recognition and
discrimination. Turning to listener and behavioural data will
help in deciphering what is meaningful variation within a voice
from low level noise that cannot be attributed to a particular vo-
cal signature. Verification from listener performance will help
adjudicate which statistical choices present an acoustic voice
space that matches listener organization.
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