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Abstract

The intra-utterance code-switching (CS) is defined as the
alternation between two or more languages within the same ut-
terance. Despite the fact that spoken dialectal code-switching
(DCS) is more challenging than CS, it remains largely unex-
plored. In this study, we describe a method to build the first
spoken DCS corpus. The corpus is annotated at the token-level
minding both linguistic and acoustic cues for dialectal Ara-
bic. For detailed analysis, we study Arabic automatic speech
recognition (ASR), Arabic dialect identification (ADI), and nat-
ural language processing (NLP) modules for the DCS corpus.
Our results highlight the importance of lexical information for
discriminating the DCS labels. We observe that the perfor-
mance of different models is highly dependent on the degree
of code-mixing at the token-level as well as its complexity at
the utterance-level.

Index Terms: code-switching, dialect identification, corpus,
code mixing index

1. Introduction

With the advent of globalization, code-switching (CS) is in-
creasingly becoming more pervasive in social media and
audio/visual media. The phenomena of switching be-
tween two or more languages or its varieties is a wide-
spread linguistic phenomenon, analyzed from different inter-
actions, grammatical structures and sociolinguistic perspec-
tives. From the grammatical perspective, CS is categorised
into three groups based on its nature of occurrence [1]. The
groups are inter-sentential/utterance (between utterance), intra-
sentential/utterance (within utterance) and tag switching (a
phrase borrowed from another language entity). Among the
three, intra-utterance switching is the most problematic for
many speech and language processing systems.

Code-switching in spontaneous speech is highly unpre-
dictable and difficult to model. The English-Mandarin lan-
guage pair has been studied most extensively [2, 3, 4] along
with other pairs such as Frisian-Dutch [5], Hindi-English [6, 7]
and French-Arabic [8] for CS.

Dialectal code-switching (DCS) remains largely unex-
plored, especially for spontaneous speech. Even though the re-
cent deep learning models, including automatic speech recog-
nition (ASR) and dialect identification (DI) systems, have
achieved groundbreaking results, the presence of dialect switch-
ing in the dataset can affect the performance of these speech
models. The reason behind such performance degradation can
be attributed to the unpredictability of CS points in an utterance,
along with the challenge presented by the infusion of the native
dialect pronunciation to some non-native words.

From a linguistic and socio-linguistic perspective, the gen-
eral models for describing CS [9] and the conditions that trigger
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CS are well researched. Researches have studied CS phenom-
ena in textual datasets for question-answering (QA) [10, 11],
language identification [12], name entity recognition (NER)
[13] among others. Language modelling is one of the rich
researched areas for CS and used most notably to handle CS
in machine translation (MT) and automatic speech recogniser
(ASR). For processing CS in speech, a variety of approaches
have proven to be successful, ranging from applying linguis-
tic knowledge to language-independent methods. Studies such
as [14] applied recurrent neural network (RNN) on language
models and factored language models to the task of identifying
code-switching in speech. To build a better model, the authors
in [15] augmented their CS model with syntactic and semantic
features. A similar study is done by authors in [2, 16, 17]. For
a detailed account of CS in speech, refer to [18].

Because of the scarcity of CS linguistic resources and the
prevalence of monolingual data, authors in [19] trained two sep-
arate models for the host-guest languages and combined them
with a probabilistic model for CS between the two languages.
Similarly, authors in [20] proposed to adapt the RNN language
model to different CS behaviors and use them to generate ar-
tificial code-switching text data. This illustrates the bound-
aries set to research approaches due to the lack of adequate CS
speech datasets, and thus making these challenges hard to ex-
plore and address. To the best of our knowledge, there are no
studies for dialectal-Arabic code-switching (DACS) in sponta-
neous speech.

Therefore, we design and develop the first DACS corpus for
broadcast speech, annotated at the token-level, considering both
the linguistic and the acoustic cues. The dataset contains the
following four classes: (i) modern standard Arabic (MSA); (ii)
Egyptian dialect (EGY); (iii) MSA in Egyptian accent (MIX)
(iv) non-Arabic (foreign - FRN) words within a spoken utter-
ance. This dataset is a potential benchmark for DCS in sponta-
neous speech.

In addition to the dataset design, we analyze the capability
of linguistic representation to discriminate between the anno-
tated CS labels. Furthermore, we investigate the effect of DCS
on the performance of monolingual state-of-the-art Arabic ASR
systems and Arabic dialect identification (ADI) models. We
evaluate the performance of the speech models based on the
level of code-mixing in utterances. We also analyze how the
presence of MIX token impact the models’ performance.

In summary, our contributions are: (i) define and label CS
categories in dialectal speech; (ii) release the corpus for the
community for further research;' (iii) analyze the capability of
the linguistic representation to discriminate DCS labels; (iv) in-
vestigate the effect of DCS and intra-word code-mixing on ASR

https://github.com/qcri/Arabic_speech_code_
switching
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Table 1: Data description for MGB-3 and DACS dataset. MSA:
modern standard Arabic, EGY: Egyptian dialect, MIX: MSA in
Egyptian accent, and FRN: foreign words.

MGB3-EGY H DACS dataset
Source MGB-3 dev # Utterances 1297
Audio Descripti 16KHz. 16 bit PCM Annot Unit word-level
udio Description z, i Vocab 5373
# Files 315 Avg Words/Utt. 11.2
Total Dur 2 hrs Avg Dur/Utt 5.3 sec
MSA/EGY
Annot. Labels EGY Annot. Labels /MIX/FRN
Transcription from ASR Transcription Manual

and ADI models.

2. Arabic Dialectal Code-Switching Dataset

In our study, we use the two-hours Egyptian data from the ADI-
5 development dataset in the MGB-3 challenge [21]. The re-
leased MGB-3 data includes speech features and textual fea-
tures extracted from ASR transcription.

Given that the aim is to study the CS between dialectal and
standard Arabic and its influence on the performance of other
speech models, the models should have access to the verba-
tim transcription. Consequently, we manually segment the au-
dio into smaller utterances (when there is 500 msec silence or
more) and transcribe the speech verbatim by a lay native Egyp-
tian speaker. We opt for the non-linguist transcriber to avoid
any bias to standard Arabic.

After transcribing the data, we annotate these segmented
utterances for word-level CS information (example of annota-
tion in Figure 1) using the guidelines mentioned in Section 2.1.
We then evaluate the annotation (see Section 2.2) to ensure the
quality of the dataset and discuss the aggregation technique and
distribution in Section 2.3. Details of the dataset is presented in
Table 1.

2.1. Annotation Scheme

Based on the observational analysis of the data, we design the

annotation guideline for labelling each word in the utterance,

while distinguishing between dialectal and standard Arabic.

The CS annotation guidelines include the following instruction:

* The corpus was segmented to smaller chunks whenever there
is 500 msec silence or more, followed by verbatim transcrip-
tion.

¢ Each word should be judged based on the context, and anno-
tators should listen to the audio clip for annotation decision
and removing any confusion.

* No modification of the transcription is allowed to be consis-
tent across all annotators.

¢ Code-switching should not be confused with borrowing [22].
If foreign words are included, the word should be annotated
as 'FRN’.

* A’NULL tag can be assigned in case the word is unintelligi-
ble or cannot be categorised to one of the four labels.

Using the above guidelines, the annotators were asked to
classify the words into one of the following four categories: (i)
MSA: MSA word with MSA pronunciations; (ii) EGY: Egyptian
word; (iii) MIX: MSA word with dialectal pronunciations and
(iv) FRN: Foreign word, i.e., not Arabic.

Three annotators performed the annotation task. As speci-
fied in the guidelines, they annotated each word in the manually
transcribed speech utterance.
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Utterance, U Utterance, U,

w ! TR Tl T Tl TS Wl i
(L LA ’ ! , b W | » v‘ ‘4:‘ i
Words: q AlHrb EA KAn | byqwl AHnA
Labels: | MIX MSA | MSA IMSA] EGY | MIX EGY _ |MSA.
Segments: MSA EGY EGY ]

qbl AlHirb THEA kAn byqwl Kk AHnA fy..
Utterance: fy.

QOIAIHD TbEA KAn byqwl K AHRA ..
MSA

Figure 1: An example of dialectal code-switching token-level
annotation within same utterance. The segments and utterance
level labels are inferred from the token-label annotation.

Table 2: Inter-Rater Agreement between annotators E, K, and
S using Cohen’s Kappa Coefficient (CKC) and Fleiss’ Kappa
Coefficient (FKC).

[E&K E&S K&S E&K&S

CKC | 0.747 0914 0.802 -
FKC - - - 0.738

2.2. Annotation Evaluation

To assess the reliability of the annotations, we calculate the
inter-rater agreement using kappa measure, namely Cohen’s
Kappa Coefficient for the agreement between two annotators
and Fleiss’ Kappa to calculate the agreement among all three
annotators. We reported these different agreement values in
Table 2. Clearly, it is evident that there is a very high inter-
annotation agreement on the word-level labelling, which means
there is a pattern to model.

2.3. Data Distribution

As each word has 3 annotation labels, we assign the label agreed
by the majority (i.e. at least %) of the annotators as the final la-
bel of the word. Details of annotation distribution per annotator
(E, K, S) and majority voting (Maj) are presented in Table 3.
Our previous assumption that Egyptian devset in the ADI cor-
pus is based on 100% Egyptian tokens is clearly incorrect. We
can see that less than 40% of the words are Egyptian (after as-
suming MIX is Egyptian) and the rest is MSA. One plausible
explanation is that this data was collected in the broadcast do-
main where it is mainly dominated by formal speech (MSA).

The duration distribution of the tokens in MSA, EGY and
MIX are presented in Figure 2. From the figure, we observe that
the mean duration of MSA (379 msec) and MIX (384 msec) is
significantly more than that of EGY (338 msec). This observa-
tion, also including functional words, may indicate the differ-
ence in fluency and style of the speakers when speaking in their
native dialect than in standard Arabic.

Table 3: Number of words per annotator (E, K, S) and after
word-wise majority voting (Maj) for final labels with its corre-
sponding speech duration. Total given statistic is based on Maj.

| E K S || Maj H:M:S
EGY 2507 3061 2656 2657 00:14:57
MSA 9538 8484 9113 9307 00:58:49
MIX 2310 2780 2581 2387 00:15:16
FRN 91 114 96 95 00:00:47
Total || Token: 14446 and Duration: 01:29:50
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Figure 2: Word-Level duration distribution in milliseconds for MSA (Mean: 379 ms), EGY (338 ms) and MIX (384 ms).

3. Code-Switching and its Consequences

In this section, we provide details of the CS level measures. We
then investigate the effect of DCS on processing spontaneous
speech, particularly ASR and ADI. Furthermore, we explore the
NLP aspects of the DCS, mainly their lexical features: character
and word sequences using the verbatim transcription. Finally,
we discuss our findings and observations.

3.1. Code-switching Measures

To measure the amount of code-switching in the dataset, we
consider both the utterance and corpus level Code-Mixing In-
dex (CMI) [23]. We calculate utterance level CMI (C,) using
Equation 1.

* (N (z) — maxp, e {t,} (z)) + 3 P(x)
N(z)

=

Cu(z)

ey

where N is the number of tokens in utterance x. L; € L, the set
of all labels in the dataset; max {¢r, } represent the maximum
token in the majority label class, with 1 < max{tr,} < N;
and P is the number of code alternation points in z; 0 < P <
N. We utilize the CMI to evaluate how the increase in the level
of code-switching effects the performance of the model.

We report the corpus level CMI by simply averaging the
utterance level switching.”> The details of the level of code-
switching in DACS corpus are presented in Table 4.

Table 4: Details of code-switching level of DACS data using
CMI range. The statistics for dataset are after token-label ag-
gregation using majority voting. word/Utt. represents the aver-
age word count per utterance, CA is the mean number of code
alternation points in utterances, #. presents the number of ut-
terances that belong to that particular CMI range. The dataset
does not include examples for 30-45% CMI range.

Range word/Utt. CA #.
0% 8.98 0.00 121
0-15% 13.34 1.80 107
15-30% 11.44 3.13 260
45-100% 11.18 6.12 809
Corpus CMI 36.5

Given that the DACS corpus is annotated on the token-level,
mainly concerned with the MSA, EGY and MIX labels, this
will provide a unique opportunity to investigate the effect of
such mixed-code (MIX) token on different speech models. For
this study, we calculate the percentage of MIX token, Pmiz =
%, using frequency, f(.) of MIX token in the segment or
utterance of length N words.

2However, this does not account for the switches between the utter-
ances
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3.2. Speech Models

Data Preparation: We evaluate ASR based on the level of
code-switching in each utterance. As for the ADI, we evaluate
the model performance using utterance, segment and word-level
annotation.

For obtaining utterance-level dialect label, we opt for a

majority-based (Uns) approach. We simply consider the total
count of tokens labeled as either MSA or EGY? and then assign
the most frequent label. Using Ujas, we obtain 437 EGY and
856 MSA utterances.* For segments, we concatenate tokens
with the same label (shown in Figure 1).
Automatic Arabic Speech Recognition System: We deploy a
grapheme-based acoustic model for the ASR trained using the
MGB-2 and MGB-3 data [21, 24]. The recognition experiments
are performed using the Kaldi ASR toolkit [25]. We train a con-
ventional context-dependent Gaussian mixture model-hidden
Markov model (GMM-HMM) system with 40k Gaussians us-
ing 39-dimensional Mel frequency cepstral coefficient (MFCC)
features including the deltas and delta-deltas to obtain the align-
ments. These alignments are used for training a time delay neu-
ral network TDNN [26] using sequence discriminative training
with the LF-MMI objective [27]. The input to the TDNN is
composed of 40-dimensional high-resolution MFCC extracted
from frames of 25 msec length and 10 msec shift along with
100-dimensional i-vectors computed from 1500 msec. Five
consecutive MFCC vectors and the chunk i-vector are concate-
nated, forming a 300-dimensional features vector each frame.

For the study, we used two 4-grams language models: (i)

ASR_MSA, trained using the MGB-2 data [24] with overall
word error rate (WER) 45.6% on the proposed DACS cor-
pus; (if) ASR_EGY, trained using the MGB-3 [21] and Egyptian
tweets [28] using transfer learning [29]. The overall WER for
ASR_EGY is 42.4% for the same corpus. We study the perfor-
mance of both ASR_.MSA and ASR_EGY and the results with
CS levels were comparable. Therefore, we only report the find-
ings of ASR_MSA system in this paper.
Arabic Dialect Identification Model: We deploy an end-to-
end acoustic classifier to distinguish between dialectal-EGY
vs standard-MSA on the utterance level. We adopt an end-
to-end architecture with four temporal convolution neural net-
works, followed by a global pooling, then passed to two fully-
connected layers (1500 and 600 neurons). Rectified Linear
Units (ReLUs) are used as activation functions, and the network
is trained with stochastic gradient descent (SGD), and 0.001
learning rate. For the training dataset, we use the MGB-2 [24]
for MSA instances and EGY validation and test subset from the
ADI17 dataset [30, 31]. The overall performance of the trained
ADI model using the 315 EGY and 283 MSA dataset’, is macro
F1 = 63%.

3MIX mapped to EGY; and other labels are ignored for the Upy.
44 utterances were ignored due to the presence of all FRN words.
SFrom the MGB-3 Dev



3.3. NLP Models

Unlike the previous experiments, using pre-trained speech mod-
els, for this task, we train and test the linguistic models using
the DACS corpus. We explore different neural architectures
including character (char) BiLSTM, word BiLSTM and char-
word BiLSTM models to establish strong CS classification re-
sults. Our finding is that the char model yielded the best result,
as shown in Table 5, similar to previous work in [32]. Therefore,
in this study, we only report the architecture for char-BiLSTM
model.

For the character based model, we randomly initialize the
input embeddings, with d-dimensional (d = 50) vectors. We
then passed the input embeddings to a bidirectional LSTM (100
units in each direction) layer, followed by a softmax output
layer. We train our models using SGD with momentum, op-
timizing the cross entropy objective function. For the experi-
ments, we use 5-fold cross-validation with identical folds for
all experiments.

Table 5: Reported F-measure with word-char-based features
using a simple BiLSTM architecture.

labels word | char | char-word
MSA 0.87 | 091 0.90
EGY 0.70 | 0.82 0.78

3.4. Model Performance and DCS
Effect on ASR Performance:

For observing how ASR perform with different CS level, we
evaluate DACS dataset with different C'M I and Pmix range.
From Figure 3(a), we observe that the WER increases consid-
erably with increasing CMI value range. A similar pattern is
found for sentence error rate.® Similarly, from Figure 3(b), we
observe that with increase in Pmzix in the utterance, WER in-
creases.

Effect on ADI Performance:

The obtained results from the ADI model, for the CMI ranges,
are given in Figure 3(a). From the figure, we observe that the
increase in CMI-value (i.e. from 15%- onwards), the reported
weighted F-measure (W.Avg) significantly decreases. More-
over, we also explore the effect of MIX token on these utter-
ances, segments and word-level performance of the ADI model.
In Figure 3(b) (orange and green), we notice that with the in-
crease in Pmix, the accuracy of EGY vs MSA recognition de-
creases. This effect is more visible in segment level than the
utterance level.

As for word level classification, we notice that even though
the MIX token has Egyptian dialectal pronunciation, most of
the time it is confused with MSA (76%), thus creating more
uncertainty to the ADI model.

Discriminating CS using NLP:

Table 5, reflects that the linguistic representation is highly in-
formative for detecting CS in broadcast dataset. Similar to our
studies using Pmaz, we observe MIX words (mapped as EGY
in this paper) are recognized more as MSA. From our manual
inspection of the words and its prediction, we found that the
most prominent reason for incorrect classification could be at-
tributed to the shared vocabulary between the MSA and MIX,

SFor brevity, we are not presenting SER in the paper.
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making it difficult for an NLP-based classifier to distinguish be-
tween them without the acoustic cues.

Key Observations:

We observe that with increasing code-mixing index score
(CMI), the performance of ASR and ADI become considerably
poorer. Our findings from Pmix suggest that in addition to
CS between words in an utterance, the mixed-code within a
word/token can also affect the overall performance of speech
processing modules. Our classification using lexical represen-
tation indicates its informative capability for predicting with the
CS points in an utterance. However, this requires verbatim tran-
scription which is not available in a typical dialectal speech pro-
cessing scenario.

—o—W.Avg WER
90%

76.0%

76.0%

70%

0% 54.5%

30%
ASR 30.4%

21.8% 21.4%

10%
0% 0-15% 15-30%

CMI VALUE RANGE
(a) ASR (WER) and ADI (W.Avg) performance with CMI
&~ ADI

~~~~~~~ 2 per. Mov. Avg. (ASR)
2 per. Mov. Avg. (ADI*)

45-100%

—e— ASR
=@ ADI*
2 per. Mov. Avg. (ADI)

80%

60%

Accuracy,

40%

T

N
Accuracy
20%
Pmix
0%
N S S0 ST SEEESEIE S
DA A M A S S S S SRS
B 464 1383 (247| 142 |43 |13 | 5 - - - | Utt
req.
4 4287 9 |78 | 122 | 21 |317| 89 15 2 |1221| Seg

(b) Pmix effects on ASR and ADI performance

Figure 3: Effects of DACS on ASR and ADI model. Figure 3(a)
Reported changes in WER for Arabic ASR model and weighted
F-measure (W.Avg) for ADI model with different code-mixing
index CMI range available in the DACS. Figure 3(b) shows the
effect of code-mixing in token-level (MIX) using Pmix on — ASR
Utterance level WER, ADI Utterance level and ADI Segment
level Accuracy. The number (Freq.) of utterances (Utt.) and
segments (Seg.) corresponding to Figure 3(b) is given in the
Table with the Figure.

4. Conclusion

In this study, we build the first spoken dialectal Arabic code-
switching (DACS) corpus. The dataset studies code-switching
between Egyptian and modern standard Arabic in broadcast do-
main. We analyze ASR and ADI performance minding the
code-mixing index (CMI). We also highlight the importance of
NLP information for discriminating dialectal code-switching la-
bels using DACS. For future work, we will increase the dataset
with additional dialects and different genres.
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