
Intelligibility Evaluation and Speech Enhancement 
based on Deep Learning (Part II)

Yu Tsao
Research Center for Information Technology Innovation

Academia Sinica
yu.tsao@citi.sinica.edu.tw



– Education
- Ph.D. in ECE, Georgia Institute of Technology, 2003-2008
- M.S.  in EE, National Taiwan University, 1999-2001
- B.S.   in EE, National Taiwan University, 1995-1999

– Work Experience
- Research Fellow (Professor) and Deputy Director Research Center for Information 
Technology Innovation (2020/9-present)

- Researcher, National Institute of Information and Communications
Technology, Spoken Language Communication Group, Japan (2009/4-2011/9)

- Summer Research Associate, Texas Instruments Incorporated, Speech Technologies   
Laboratory DSP Solutions R&D Center, United States (2004, 2005, 2006 summers)

– Academia Services
- Vice Chair, Speech, Language, and Audio (SLA) Technical Committee, APSIPA 
- Distinguished Lecturer, 2019-2020, APSIPA 
- Associate Editor of IEICE transactions on Information and Systems 
- Associate Editor of IEEE/ACM Transactions on Audio, Speech and Language Processing

– Lab at CITI (Academia Sinica)
Biomedical Acoustic Signal Processing (Bio-ASP) Lab

– Research Interests
Assisitve Speech Communication Technologies, Audio-coding, Deep Neural Networks, 
Biomedical Signal Processing, and Speech Signal Processing

Dr. Yu Tsao (曹昱), Research Fellow, Deputy Director 



Outline

3

• Deep Learning based Speech Enhancement
➢ System architecture
➢ Six factors need to consider  
✓ Feature types
✓Model types
✓Objective function  
✓ Auxiliary input 
✓Model compression
✓ Increasing adaptability  

• Assistive Voice Communication Technologies
• Summary 



Outline

4

• Deep Learning based Speech Enhancement
➢ System architecture
➢ Six factors need to consider  
✓ Feature types
✓Model types
✓Objective function  
✓ Auxiliary input 
✓Model compression
✓ Increasing adaptability  

• Assistive Voice Communication Technologies
• Summary 



Deep Learning Based SE System 
5

SE model Output

Objective 
function

Feature 
extraction

Feature 
extraction

eg. MSE (L2norm), 
L1norm,
SI-SDR

Training Phase

Noisy 
speech

Clean
speech

Waveform 
restoration

Testing Phase
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DL-based SE for Noisy Speech
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Clean speech Noise: 2baby Crying Noise: Siren

2baby
Crying

Original Noisy MMSE (Trandtional-1) KLT (Trandtional-2) DDAE

Siren Original Noisy MMSE (Trandtional-1) KLT (Trandtional-2) DDAE



DL-based SE for Bone-conducted Speech

Bone 1 B_1->MSI Ref MSI

Bone 2 B_2->MSI Ref MSI

The examples were based on [Liu et. al., Speech Comm. 2018]. 
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Evaluation Metrics

• Perceptual Evaluation of Speech Quality (PESQ): 
evaluating the quality of processed speech, with the 
score ranging from -0.5 to 4.5. 

• Short-Time Objective Intelligibility (STOI): evaluating the 
speech intelligibility, with the score ranging from 0 to 1.

9

The goal of SE is to improve the speech intelligibility and quality. 

• Segmental Signal-to-Noise Ratio (SSNR): the ratio of 
processed and noisy speech computed in a segment level.

• Log-Spectral-Distortion (LSD): the difference of log 
spectrums of processed speech and clean reference. 
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• Mel Log-power spectrum [Lu et al., Interspeech 2013, Meng et al., Interpseech 2018],

• Log-power spectrum [Xu et al., TASLP 2015, Fu et al., Interspeech 2016],

• Log1p [Chuang et al Interspeech 2020, and Lu et al., Interspeech 2020],

• Power spectrum [Fu et al., Interspeech 2016],

• Complex spectrum [Fu et al., MLSP 2017, Hu et al., arXiv 2020, Wang et al., TASLP 2020],

• Frame-wise waveform [Fu et al, APSIPA 2017], 

• Utterance-wise waveform 
[Fu et al, TASLP 2018, Kolbæ k et al., TASLP 2020, Luo et al., TASLP 2019, Pandey et al., 2019,

Luo et al., ICASSP 2020]……..
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1961

Traveling wave theory

Von Békésy, Georg (1960). 
Experiments in hearing. 
Ed. Ernest Glen Wever. 
Vol. 8. New York: 
McGraw-Hill.
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[Lu et al, Interpseech 2013]



(2) The real and imaginary (RI) spectrograms can be considered as R, G, 
B in a color image and processed by a CNN model.

Input Feature Types

• Complex spectrogram (CS) [Fu et. al., in MLSP, 2017] 

(1) The motivation is to obtain more accurate phase information.

RI spectrograms are processed by a CNN model. 
RI spectrograms are treated as different input channels.

14

Noisy Real and 
imaginary (RI) 
spectrograms 

Enhanced 
RI spectrograms  



• LSD, SSNR, STOI, and PESQ scores:

(2) RI with DNN outperforms LPS with DNN in terms of PESQ and STOI.
(3) CNN outperforms DNN when using RI spectral features.

(1) Log-power-spectrum (LPS) with DNN gives lowest LSD.

Input Feature Types (CS)

Performance comparisons of different models and input features in 
terms of LSD (log spectral distortion), SSNR, STOI, and PESQ.
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(LPS)



(2) We observe that fully convolutional network (FCN) architecture 
is more suitable than fully connected neural networks. 

(1) Using waveform can address the issue of phase estimation.

• Waveform as the input (Wav) [Fu et. Al., APSIPA, 2017]

Local connection in FCN

Input Feature Types

16

Spectrograms of a TIMIT utterance: 

(a) clean speech (b) noisy speech

(c) DNN(waveform) (d) FCN(waveform)



• Waveform versus LPS:

Input Feature Types (Wave)

(1) Waveform with FCN achieves the highest STOI score.

Comparison of different models and input features in terms of STOI, 
and PESQ.

17

(2) Waveform with DNN achieves the highest PESQ score.

(3) LPS with DNN underperforms the waveform-based systems. 



• Utterance waveform (UWave) [Fu et. al., TASLP, 2018]

Input Feature Types

Utterance enhancement by fully convolutional networks (FCN). 
The FCN model has multiple layers, each layer consisting of multiple filters.
The model can take inputs with arbitrary lengths.  

18



• A comparison of utterance-based and frame-
based waveform as the inputs
Comparison of different models and input features in terms of STOI and PESQ.

Frame-based    

Input Feature Types (UWave)

(1) Utterance-based waveform outperforms frame-based counterpart.

19

(2) Utterance-based waveform combines better with STOI (correlation).



Output Feature Types

• Mapping vs. masking based SE: [Wang and  Chen, TASLP 2018]

20
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Model types:
DNN [Wang et al. NIPS 2012; Xu et al., SPL 2014], DDAE [Lu et al., Interspeech 2013], RNN 
(LSTM) [Chen et al., Interspeech 2015; Weninger et al., LVA/ICA 2015], CNN [Fu et al., 
Interspeech 2016], CRNN [Zhao et al., ICASSP 2018], FCN [Fu et al, TASLP 2018], HELM 
[Hussain et al., IEEE Access 2017], Vector2Vector [Qi et al., TASLP 2020], Tensor2Vector [Qi 
et al., ICASSP 2020], Teacher-Student [Tu et al., TASLP 2019].
Advanced architecture: 
Skip connection [Tu and Zhang ICASSP 2017], Highway [Santos and Falk, NIPS workshop 
2018], Densely connectied [Zhen et al., ICASSP 2019], Attention mechanism [Hao et al., 
ICASSP 2019],  U-Net architecture [Pascual et al., Interspeech 2017], Complex parameters 
[Y.-S. Lee et al., ICASSP 2017]. Transformer [Kim et al., ICASSP 2020, Fu et al., APSIPA 2020], 
Ensemble learning [Le Roux, WASPAA 2013, ICASSP 2017, Chazan et al., WASPAA 2017, 
Zhang et al., TASLP2016,  Yu et al., TASLP 2020].

Model Types
22
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SE1,2,3

Model Types (Ensemble Learning)
23

• DAE Multibranched Encoder (DAEME) [Yu et. al., TASLP, 2020] 

SE1,2,3

Based on the study in [Kolbæ k et al., TASLP 2017], three major factors 
that affect the SE performance notably:
(1) Speaker (2) Noise type; (3) Signal-to-noise ratio (SNR).

PCA analysis on noisy data

Imperfect results 



Model Types (Ensemble Learning)
24

• DAEME [Yu et. al., TASLP, 2020] 

SEW

(1) Training a gigantic SE model can be a potential solution.

(2)   Such approach may not be suitable/feasible for the conditions where 
computation resources and data are limited.



Model Types (Ensemble Learning)
25

• DAEME [Yu et. al., TASLP, 2020] 

SE1

SE2

SE3

SE4

Fusion

(1) The proposed DAEME is based on the ensemble learning criterion.
(2) When training ensemble models, we intend to implement a 

“conditional overfitting” strategy, which aims to train each component 
model to overfit to (or perfectly match) its training data.



Model Types (Ensemble Learning)
26

• DAEME [Yu et. al., TASLP, 2020] 

En1

En2

En3

En4

De

(1) Good flexibility and interpretability to combine 
different types of Encoder and Decoder.

(2) An utterance-attribute tree (UAT) can be used to 
guide the design of the multi-branched encoders.



Model Types (Ensemble Learning)
27

• DAEME [Yu et. al., TASLP, 2020] 

(1) As compared to the SE model with a single encoder (original BLSTM system), 
DAEME achieves better performance 

*STOI results are reported in [Yu et. al., TASLP, 2020] 

(2) When we have more SE models in the encoders (2, 4, 6), higher PESQ/STOI 
scores can be obtained*.
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大學曰：心不在焉，聽而不聞
Hear but pay no attention; listen but not hear

29

聽聞

Intelligibility and Quality are different 



Objective Function 
Noise

Communication

Speech perception
• Quality
• Intelligibility

Noise

Communication

Automatic speech recognition
• Recognition accuracy      

Mean squared error (MSE) and L1 losses aim to minimize the 
differences of enhanced and target and do not directly consider 
human perception and ASR performance.
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Noise

Communication

Speech perception
• Quality 
• Intelligibility

PESQ
STOI

Quality:3
Intelligibility: 0.72

Quality:3
Intelligibility: 0.72
Quality:2.5
Intelligibility: 0.72

Quality:3.13
Intelligibility: 0.75

Quality:2.8
Intelligibility: 0.72

Quality:31
Intelligibility: 0.72

Quality:4.1
Intelligibility: 0.89

Quality:16
Intelligibility: 0.72

Objective Function 

Quality: 3
Intelligibility: 0.8
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• We derived objective function based on STOI and PESQ.
• We have proposed two solutions: (1) Direct optimization on STOI(1); 

(2) Generative adversarial tainting (GAN) to optimize PESQ and STOI(2). 
➢ “Metric GAN: Generative Adversarial Networks based Black-box Metric 

Scores Optimization for Speech Enhancement,” ICML 2019

➢ “End-to-end waveform utterance enhancement for direct evaluation metrics 
optimization by fully convolutional neural networks” IEEE TASLP 2018.



Objective Function 

• STOI-based Objective Function [Fu et al, TASLP 2018]
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Average character error rate (CCR) and quality scores (MOS) of human 
subjects for (a) −3 dB and (b) −6 dB SNR.

(1) Intelligibility: FCN (MSE+STOI)> FCN (STOI)>FCN (MSE);
(2) Quality: FCN (MSE+STOI) performs the best.

Objective Function (STOI) 

• Experimental Results (Human Listening Test)

33



• However, when evaluation metrics are complicated and non-linear, 
such as PESQ (with more than 2700 lines in Matlab codes), it is 
difficult to directly derive an objective function using PESQ.

• We can apply reinforcement learning (RL), where the PESQ score is 
used to form the reward function, to optimize the SE model [Koizumi 

et al, ICASSP 2017; Koizumi et al, TASLP 2018].

• We can use direction sampling [Zhang et al., ICASSP 2018].

• We can approximate the PESQ function and make it differentiable to 
update the SE model [Martin-Donas et al, IEEE SPL 2018].

• Recently, we proposed a two-step strategy: (1) learn a deep learning 
model, Quality-Net, that can predict PESQ scores; (2) train the SE 
model based on the learned Quality-Net [Fu et al, IEEE SPL 2020].

Objective Function 

• PESQ-based Objective Function [Fu et al, IEEE SPL 2019]

34



Stage 1: train a Quality-Net (input: paired clean and noisy speech; output: PESQ 
score)

Stage 2: train the SE model based on the Quality-Net (input: paired clean and 
noisy speech; output: PESQ score)

Objective Function

• PESQ-based Objective Function [Fu et al, IEEE SPL 2020]

35

PESQ



• Generative Adversarial Networks (GAN) based Methods: 
SEGAN [Pascual et al., Interspeech 2017]; Pix2Pix [Michelsanti et 

al., Interpsech 2017]; Mask estimation[Pandey and Wang, ICASSP 
2018; Neil et al., APSIPA 2018]

Objective Function 
36
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• MetricGAN [Fu et al., ICML 2019]

Objective Function 

104
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• Conditional GAN (CGAN) versus MetricGAN

0 ≤ 𝑄′ 𝐺( ) 𝑦 < 1 is the normalized evaluation metric (1 represents 
the highest evaluation score).

Discriminator in CGAN (LSGAN):

Discriminator in MetricGAN:

where x and y are  noisy and clean speech, respectively.

𝐿𝐷(𝐶𝐺𝐴𝑁) = Ε𝑥 𝑦[ 𝐷 𝑦  − 1  ＋ 𝐷 𝐺( )  − 0  ]

𝐿𝐷(𝑀𝑒𝑡𝑟𝑖𝑐𝐺𝐴𝑁) = Ε𝑥 𝑦[ 𝐷 𝑦 𝑦 − 1  ＋ 𝐷 𝐺( ) 𝑦 − 𝑄′ 𝐺( ) 𝑦
 
]

(1) For CGAN, D tries to distinguish real and enhanced samples.
(2) For MetricGAN, D tries to learn the PESQ\STOI function.

Objective Function 
38

[Fu et al., ICML 2019]



• Conditional GAN (CGAN) versus MetricGAN

Generator in MetricGAN:

where x and y are  noisy and clean speech, respectively.

where s is the desired assigned score.

𝐿𝐺(𝐶𝐺𝐴𝑁) = Ε𝑥[𝜆 𝐷 𝐺( )  − 1  ]＋ 𝐺  − 𝑦  

𝐿𝐺(𝑀𝑒𝑡𝑟𝑖𝑐𝐺𝐴𝑁) = Ε𝑥[ 𝐷 𝐺( ) 𝑦 − 𝑠  ]

(1) We can specify any particular score s.
(2) With a large number s (e.g.,1), we get a speech enhancement model.
(3) With a small number s (e.g., 0), we get a speech degradation model.

Generator in CGAN (LSGAN):

Objective Function 
39

[Fu et al., ICML 2019]



• MetricGAN (P) and MetricGAN (S) with related works 

(1) GAN is not helpful for this task (TIMIT).  
(2) MetricGAN (P) achieves the best PESQ (quality) scores. 

(P: PESQ) (S: STOI)

Objective Function (MetricGAN) 
40

Performance comparisons on TIMIT of different methods in terms of PESQ & STOI

(3) MetricGAN (S) achieves the best STOI (intelligibility) scores. 



Results of assigning different scores (s) for the generator training. 

• Arbitrary target scores  

Objective Function (MetricGAN) 
41

We can specify a metric 
score to either increase 
or decrease the speech 
quality or ineligibility. 



• Reinforcement learning (RL) with ASR-based rewards [Shen 
et al., ICASSP 2018]
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update

IBM-SE

Objective Function 

• Problem: complex correlation of acoustic features and recognition results
• Proposed solution: reinforcement learning based speech enhancement system

42

(IBM: ideal binary mask)



• Reinforcement learning (RL) with ASR-based rewards [Shen 
et al., ICASSP 2018]
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• Reinforcement learning (RL) with ASR-based rewards [Shen 
et al., ICASSP 2018]
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• Reinforcement learning (RL) with ASR-based rewards [Shen 
et al., ICASSP 2018]
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• Problem: complex correlation of acoustic features and recognition results
• Proposed solution: reinforcement learning based speech enhancement system
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45

(1)

(2)

(C)

(1)

(2)

(C)

Training 



Noise

Communication

Automatic speech recognition

෡G

ASR

(3) Action estimation

• Problem: complex correlation of acoustic features and recognition results
• Proposed solution: reinforcement learning based speech enhancement system
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Objective Function 
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• Results on ASR and STOI and PESQ

recognition and objective measures (human listening). 
Speech recognition accuracy-based objective function improves ASR 
performance and objective measures (human listening). 

Objective Function (RLSE) 

The average CERs of Noisy (the baseline), 1nnSE, RLSE1, 
and RLSE2 at 0 and 5 dB SNR conditions. 

The average STOI and PESQ of Noisy (the baseline), RLSE1, 
and RLSE2 at 0 and 5 dB SNR conditions. 
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Deep Learning Based SE System 
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[Xia et al., ICASSP 2020] ,…….
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Auxiliary Input 
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• Audio-visual SE

Multimodal SE (Visual)
51

• Additional parts

– Lip images

– Visual Net

– FCv3

• Visual target: image

[Hou et al., TETCI 2018, Sadeghi et al. TASLP 2020]



• Audio-visual versus audio only [Hou et al., TETCI 2018]

The PESQ scores 

Multimodal SE (Visual)

Testing in the real-world conditions

The STOI scores 

(1) Visual information improves the 
SE performance.

52

(2) The performance is robust against 
recording conditions as long as lips 
can be recorded well. 



• Lite Audio-visual SE [Chuang et al., Interspeech 2020]

Multimodal SE (Visual)
53

• Issue (1): size of images 

• Issue (2): privacy issue

• LAVSE (Lite AVSE)

• EncoderAE replace visual net

• Qualatent further compress data



• Lite Audio-visual SE [Chuang et al., Interspeech 2020]

54

1. EncoderAE representation enhances the privacy.
2. Qualatent further compress data.

Multimodal SE (Visual)

Qualatent

EOFP (exponent-only 
floating point quantized)
[Hsu et al., SLT 2018]
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• Lite Audio-visual SE [Chuang et al., Interspeech 2020]

0.5

0.7

0.9

1.1

1.3

1.5

1.7

n10db n7db n4db n1db

PESQ

Noisy Audio-only AVSE LAVSE(AE) LAVSE(AE+EOFP)

1. Lite AVSE outperforms original AVSE.

Multimodal SE (Visual)

TMSV dataset: https://drive.google.com/drive/folders/1B-eJs1yYVf0qHrYOWrtxYs3a8inPHm1K

2. AVSE+EOFP slightly underperforms AVSE with a notable 
reduction of 48 times on the visual features.
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https://drive.google.com/drive/folders/1B-eJs1yYVf0qHrYOWrtxYs3a8inPHm1K


Multimodal SE (Bone-conducted)
56

BCM

Noisy ACM

Clean

SE model

Clean
FCNA

FCNB

SE model

➢ The input of FCNEF combines both noisy and BCM signals

➢ The input of the𝐹𝑢𝑠𝑖𝑜𝑛 function is processed noisy and BCM signals

FCNLF

𝑠𝐸𝐹 = 𝐹𝐶𝑁𝐸𝐹  (A) 𝑛   (B) 𝑛

 (B) 𝑛

 (A) 𝑛
FCNEF

𝑠𝐿𝐹 = 𝐹𝐶𝑁𝐿𝐹 𝑠(A) 𝑛  𝑠(B) 𝑛

𝑠(A) = 𝐹𝐶𝑁𝐴  (A) 𝑛

𝑠(B) = 𝐹𝐶𝑁𝐵  (A) 𝑛

BCM
 (B) 𝑛

 (A) 𝑛

• BCM-ACM versus BCM or ACM only [Yu et al., SPL 2020]

Noisy ACM



• BCM-ACM versus BCM or ACM only [Yu et al., SPL 2020]

Multimodal SE (Bone-conducted)

(1) BCM information improves the SE 
performance in terms of PESQ, 

STOI, ESTOI and listening tests.
(2) Late fusion outperforms early-

fusion.
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0.55

0.64

0.73

0.82

(1) (2) (3) (4)

1.50

1.58

1.66

1.74

(1) (2) (3) (4)

(a) PESQ (b) STOI (c) ESTOI

0.33

0.42

0.51

0.60

(1) (2) (3) (4)

(1) FCNB

(2) FCNA

(3) FCNEF

(4) FCNLF

FCNLF FCNA

0 10065.56

The results (in percentage, %) for the AB 
test that compares 𝐹𝐶𝑁𝐿𝐹 and 𝐹𝐶𝑁𝐴.

(𝑝 = 0.00088 < 0.01)



• Broad Phone Classes (BPC) SE [Lu et al., Interspeech 2020]

➢ Main idea 
– In noisy conditions, knowing speech contents facilitates listeners to more 

effectively retrieve pure speech signals.
– Phone recognizer can be used to obtain phonemes (text) information.
– Recognized phonemes may be erroneous and thus misguide the SE process.
– We used the broad phone class (BPC) instead, which is built by: place of 

articulatory and manner of articulatory and data-driven criterion

➢ Recognition results 

Clean A-CNN

AV-CNN

Multimodal SE (Text)
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• Broad Phone Classes (BPC)-SE [Lu et al., Interspeech 2020]

59

1. Train an recognizer (BPC speech recognizer) 
to estimate BPCs in each frame.

2. Know which phone/BPC help the SE model 
to generate better enhanced speech.

Place of articulation 
(PBPCs)

Manner of articulation
(MBPCs)

Data-driven BPCs
(DBPCs)

Stop

s Fricatives

Affricates
Nasal

s
Glide

s Liquids

Multimodal SE (Text)



• Broad Phone Classes SE [Lu et al., Interspeech 2020]

The PESQ scores 

The STOI scores 

(1) Both Mono(phone) and BPC based 
PPGs improve the SE performance.

60

Multimodal SE (Text)

(2)   BPC is more robust against 
different SNR ratios than Mono. 



Auxiliary Input 
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SE model Output

Feature 
extraction

Noisy 
speech

Clean
speech

Feature 
extraction Objective 

function

Auxiliary input

This is a...

Multi-mics

Texts

Vibration

Lips
Text [Kinoshita et al., In terspeech 2015],
Symbolic [Liao et al., Interspeech 2019],
Speaker Identity [Koizumi et al., ICASSP 2020; 
Chuang et al., Interspeech 2019],  
Prosodic features [Lin et al., APSIPA 2019],
Noise token [Li et al., Interspeech 2020], 
Multi-mic [Liu et al., TASLP 2020],
Pan [Du et al., ICASSP 2020],
Acceler. [Tagliasacchi et al, Interspeech 2020].



Outline

• Deep Learning based Speech Enhancement
➢ System architecture
➢ Six factors need to consider  
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✓Model types
✓Objective function  
✓ Auxiliary input 
✓Model compression  

Assistive Voice Communication Technologies
Conclusion 
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https://www.vology.com/resource/benefits-of-edge-computing/

https://www.vology.com/resource/benefits-of-edge-computing/


• Weight sharing (WS) based on K-means
– Clustering weights into 𝒄 clusters with K-means algorithm.

– Replacing 32-bit weights with (log 𝑐)-bit cluster index; 
each index represent a specific cluster centroid; the same 
cluster share the same centroid.

16× 32-bit 4× 32-bit 16× 2-bit=(512) bits =(160) bits+

2
2

Model Compression 
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Cluster: 64, 32, 16, 8, 4, 2; 
cluster = 0 is original model.

cluster PESQ STOI

Original 1.85385 0.70231

64C 1.8063 0.6941

32C 1.7967 0.6927

16C 1.8088 0.6896

8C 1.7606 0.6786

4C 1.5852 0.6269

2C 1.4558 0.5568

Noisy 1.63713 0.66977

1.4
1.45

1.5
1.55

1.6
1.65

1.7
1.75

1.8
1.85

1.9

0 64C 32C 16C 8C 4C 2C

ST
O

I

cluster

Quality

0.53
0.555

0.58
0.605

0.63
0.655

0.68
0.705

0.73

0 64C 32C 16C 8C 4C 2C
ST

O
I

cluster

Intelligibility

(1) Performance does not change much when the  cluster number 
increases from 0 to 16.

(2) However, the performance drops significantly when K> 16.

• WS for SE model [Wu et al., IEEE SPL Accepted]

Model Compression (WS-SE) 
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Model Compression 
66

• Parameter Pruning (PP)
– The goal is to removing redundant parameters in an SE model.

– Computing a sparsity score for each channel.

– Removing channels with high sparsity scores. 



𝑁: 𝑓𝑖𝑙𝑡𝑒𝑟 𝑛𝑢𝑚 𝑒𝑟
 :𝑤𝑒𝑖𝑔ℎ𝑡 𝑛𝑢𝑚 𝑒𝑟

⚫ PP performs channel pruning to reduce the SE model size 
and online computational costs [Wu et al., IEEE SPL 2019].

⚫ Three steps in PP:
(1) For a specific channel c in a conv. layer, the mean value 

of all absolute filter weights at that channel is computed:

(2) Compute the 𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚 of the n-th channel:

𝑆 𝑛 =
σ𝑤𝜎 𝑘𝑤

𝑊
,      𝜎  = ቊ

1 𝑖𝑓  < 𝑀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) A threshold Θ is specified. If 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 > Θ, the channel will 
be removed. 

𝑀 =
σ𝑛 𝑤 𝑘𝑛𝑤
𝑁 × 

Model Compression 
67

N: number of channels

W: number of weights

With a lower threshold, more parameters will be pruned. 



1.74

1.79

1.84

1.89

0 0.027 0.043 0.068 0.087 0.14 0.198 0.271 0.301

P
ES

Q

Removal ratio

Quality

0.66

0.67

0.68

0.69

0.7

0.71

0 0.027 0.043 0.068 0.087 0.14 0.198 0.271 0.301

ST
O

I

Removal ratio

Intelligibility

Threshold
Removal

ratio
PESQ STOI

1.0 0 1.85385 0.70231
0.95 0.027 1.83 0.6995
0.9 0.043 1.8215 0.6975

0.85 0.068 1.8197 0.697
0.8 0.087 1.8147 0.6957

0.75 0.14 1.8034 0.6941
0.7 0.198 1.805 0.6943

0.65 0.271 1.7558 0.673
0.6 0.301 1.7687 0.6683

Noisy 1.63713 0.66977

A notable performance drop when Threshold <0.7.

Model Compression (PP-SE) 

• The results of PP
A Threshold Θ is specified 
If 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 > Θ, the channel will be removed
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• We first define the expected performance loss ratio

• Gradually reducing the Threshold

• Gradually decreasing the number of clusters 

1.74

1.76

1.78

1.8

1.82

1.84

1.86

0 0.027 0.043 0.068 0.087 0.14 0.198 64C 32C 16C 8C 4C 2C

P
ES

Q

removal ratio

Quality

PP WS

0.66

0.67

0.68

0.69

0.7

0.71

0 0.027 0.043 0.068 0.087 0.14 0.198 64C 32C 16C 8C 4C 2C

ST
O

I
removal ratio

Intelligibility

PP WS

Removal ratioRemoval ratio Cluster number Cluster number

(1) The model size of the compressed model is only 9.76% 
as compared to the original model.

(2) The computation cost is reduced by 20%.

(C = 16)

(removal ratio = 20%)

(=0.95)

Model Compression (PP+WS SE) 

• The results of PP+WS 
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Outline
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➢ System architecture
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✓ Feature types
✓Model types
✓Objective function  
✓ Auxiliary input 
✓Model compression
✓ Increasing adaptability   

Assistive Voice Communication Technologies
Conclusion 
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SE1,2,3

SE1,2,3

SE1,2,3

SE4

SE4

Model adaptation 
(1) supervised: w/ paired noisy/clean
(2) unsupervised: wo/ paired noisy/clean

Imperfect results 



• SE using Regularized Incremental Learning  
(SERIL) [Lee et al., Interspeech 2020]

Noise/speaker mismatch may cause poor SE performance.

Model Adaptation

SEA

Good
NG

TargetSource

➢ For supervised model adaptation:
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• SE using Regularized Incremental Learning  
(SERIL) [Lee et al., Interspeech 2020]

(1) A direct adaptation may cause a catastrophic forgetting issue.

Model Adaptation

SEA SEC

Adaptation

GoodNG

TargetSource

(2) The SERIL approach is proposed for SE adaptation.

➢ For supervised model adaptation:
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• SERIL [Lee et al., Interspeech 2020]

Model Adaptation

𝐿 𝜃 = 𝐿𝑜𝑙𝑑 𝜃 + 𝐿𝑛𝑒𝑤(𝜃)
Not available From target data

Solution 1 Curvature strategy [Kirkpatrick et al., PNAS 2017, 

Schwarz et al., ICML 2018]
Solution 2: Path optimization approach [Zenke et al., ICML2017]
SERIL uses a combined approach [Chaudhry et al., 2018] 

Rather then direct adaptation, SERIL adopts proper constraints.

Constraints
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• SERIL [Lee et al., Interspeech 2020]

Model Adaptation

N: Unprocessed
P: Original Model.
F: Direct adaptation
R: SERIL

(1) Original model achieves the best in the original testing set.

Original: training set

(3) SERIL consistently improves permeance for all noise types. 
(2) Direct adaptation suffers from the catastrophic forgetting issue. 
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N5 N5N4
N7 N9N10N12Target N11

𝒛

E G

𝑉𝑦

𝜃𝐺 ← 𝜃𝐺 − ϵ
𝜕𝑉𝑦

𝜕𝜃𝐺 𝜃𝐸 ← 𝜃𝐸 − ϵ
𝜕𝑉𝑦

𝜕𝜃𝐸

Min reconstruction 
error

Min reconstruction error 

Model Adaptation

• Noise-adaptive DAT (NADAT) [Liao et al., Interspeech 2019]

➢ For unsupervised model adaptation:

Source
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N5 N5N4
N7 N9N10N12N11

𝒛

E G

𝑉𝑦

D

𝑉𝑧
𝜃𝐺 ← 𝜃𝐺 − ϵ

𝜕𝑉𝑦

𝜕𝜃𝐺 𝜃𝐸 ← 𝜃𝐸 − ϵ
𝜕𝑉𝑦

𝜕𝜃𝐸
𝜃𝐷 ← 𝜃𝐷 − ϵ

𝜕𝑉𝑧
𝜕𝜃𝐷

Min reconstruction 
error

Max domain 
accuracy 

Min reconstruction error 

+𝛼
𝜕𝑉𝑧
𝜕𝜃𝐸

and Min domain accuracy

G
R

L

• NADAT [Liao et al., Interspeech 2019]

Noise Type
Classification 

Target Source

Model Adaptation
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• Adapting to new noise type (Baby cry)

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

-3 3 6 9 12 Avg.

P
E
SQ

SNR(dB)

BLSTM-L

BLSTM-60

BLSTM-140

BLSTM-220

(1) DAT achieves good unsupervised adaptation performance 
(without paired noisy-clean adaptation data).

(2) More adaptation data gives higher scores.

Model Adaptation
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Speaker Adaptability 

• Speaker-aware Deep Autoencoder (SaDAE) 
[Chuang et al., Interspeech 2019]

Denoiser Output

Objective function
Feature 

extraction

Feature extraction

Denoiser Output

Waveform 
restoration

Feature 
extraction

eg. MSE (L2norm), L1norm

Training Phase

Testing Phase

Noisy 
speech

Clean speech

Noisy 
speech

Enhanced 
speech

SprEmbed

SprEmbed

Speaker-aware deep denoising autoencoder (SaDAE)
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The averaged PESQ, STOI and SDI results over all noisy utterances in the test set.

The averaged PESQ and STOI results over noisy utterances with respect to

three noisy environments.

SaDAE outperforms conventional DDAE for both PESQ and STOI.

Speaker Adaptability (SaDAE) 

• The results of SaDAE

80



Outline

• Deep Learning based Speech Enhancement
➢ System architecture
➢ Five factors need to consider  
✓ Feature types
✓Model types
✓Objective function  
✓ Auxiliary input 
✓Model compression
✓ Increasing adaptability  

• Assistive Voice Communication Technologies
Conclusion 
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Assistive Voice Communication

• Assistive listening

• Assistive speaking  
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Transmitter coil

Speech processor:
1. Microphone.
2. DSP chip.
3. Battery
4. Others…

Source from:
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cochlear-implant-surgery
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Cochlear Implant 



Source from:
https://www.healthdirect.gov.au/cochlear-implant
http://www.yanthia.com/online/projlets/spear3/index.html
https://medium.com/@mosaicofminds/maps-in-the-brain-f236998d544f
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Cochlear Implant 

Traveling wave theory (Nobel Prize 1961) 

Electrodes 

https://www.healthdirect.gov.au/cochlear-implant


• The tremendous progress of CI technologies in the past three 
decades has enabled many CI users to enjoy high level of speech 
understanding in quiet.

• For most CI users, however, the performance of speech 
understanding in noise still remains challenging. 

• Deep learning based speech enhancement (SE) for CI. 

➢ F. Chen, Y. Hu, and M. Yuan, “Evaluation of Noise Reduction Methods for Sentence Recognition by 
Mandarin-Speaking Cochlear Implant Listeners,” Ear and hearing, vol. 36, no. 1, pp. 61-71, 2015.

SE for Cochlear Implant 
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Speech 
processor

Microphone

Transmitter

skin

Receiver

Electric array

BPF 1 RECT. LPF COMP.

BPF 2 RECT. LPF COMP.

BPF n RECT. LPF COMP.

E 1

Microphone

Band-pass 
filter

Envelope detection Compression
Pulse 

generation

E 2

E n

Electrodes
Noise reduction 

SE for Cochlear Implant 
86



Input SNR
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Clinical trial: 9 CI subjects.

Vocoder results: 10 normal hearing subjects.

Testing Results 
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➢ Y.-H. Lai, F. Chen, S.-S. Wang, X. Lu, Y. Tsao, and C.-H. Lee, "A Deep 
Denoising Autoencoder Approach to Improving the Intelligibility of 
Vocoded Speech in Cochlear Implant Simulation," IEEE 
Transactions on Biomedical Engineering.

➢ Y.-H. Lai, Y. Tsao, X. Lu, F. Chen, Y.-T. Su, K.-C. Chen, Y.-H. Chen, L.-C. 
Chen, P.-H. Li, and C.-H. Lee, "Deep Learning based Noise 
Reduction Approach to Improve Speech Intelligibility for Cochlear 
Implant Recipients,” Ear and Hearing.

➢ R.-Y. Tseng, T.-W. Wang, S.-W. Fu, C.-Y. Lee, and Y. Tsao, "A Study of 
Joint Effect on Denoising Techniques and Visual Cues to Improve 
Speech Intelligibility in Cochlear Implant Simulation," to appear in 
IEEE Transactions on Cognitive and Developmental Systems.
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SE for Speaking Disorder

Liberty Times Ltd..

• Task: improving the speech intelligibility of 
surgical patients.

Taipei Veterans General Hospital

• Target: oral cancer (top five cancer for male in 
Taiwan).
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Before After After Before 



SE for Speaking Disorder
• Proposed: joint training of source and target dictionaries 

with non-negative matrix factorization (NMF): 
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Before 
Surgery

After 
Surgery



After Conversion:

衛生紙給我 遙控器在哪裡

0 10 20 30 40 50 60 70
0.54

0.545

0.55

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

 number of sentences used for training

S
T

O
I

Speech samples were from 
[Fu et. al., TBME 2017]

Testing Results 

GAN-based solution
[Chen et. al., Interspeech 2019]
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Outline

• Deep Learning based Speech Enhancement
➢ System architecture
➢ Six factors need to consider  
✓ Feature types
✓Model types
✓Objective function  
✓ Auxiliary input 
✓Model compression
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• Assistive Voice Communication Technologies
• Summary
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Summary 
• Six Factors 
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• Assistive Voice Communication Technologies



Other Related Works 

• Unpaired Speech Enhancement 
➢ Adversarial training [Mimura et al., ASRU 2017, Meng et al., 

Interpseech 2018, Xiang and Bao, TASLP 2020]
➢ Variational autoencoder [Sadeghi et al, TASLP2020]
➢Noisy2Noisy [Alamdari et al., AC 2020]
➢ Self-supervised [Zezario et al., ICASSP 2020]  

• Post-filtering
• Other Modalities 
• Meta-learning   
• Mask-based Speech Enhancement 
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[1] https://bio-asplab.citi.sinica.edu.tw/Opensource.html#SE (Codes+Papers, from BioASP Lab)

[2] https://bio-asplab.citi.sinica.edu.tw/Opensource.html#Dataset (Dataset, from BioASP Lab)

[3] https://github.com/nanahou/Awesome-Speech-Enhancement (Codes+Papers)

[4] https://paperswithcode.com/task/speech-enhancement (Codes+Papers)

[5] https://github.com/mpariente/asteroid (Codes+Papers)

Resources
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https://bio-asp-lab.github.io/source-codes/
https://bio-asplab.citi.sinica.edu.tw/Opensource.html#Dataset
https://github.com/nanahou/Awesome-Speech-Enhancement
https://paperswithcode.com/task/speech-enhancement
https://github.com/mpariente/asteroid


CITISEN: A Deep Learning-Based Speech 
Signal-Processing Mobile Application
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GitHub: https://github.com/yuwchen/CITISEN

Paper: https://arxiv.org/pdf/2008.09264.pdf
Youtube: 
https://www.youtube.com/watch?v=BUfY64TCXi4&feature=youtu.be&fbclid=
IwAR0snLN2wBLi5aU8xTdtPJsU5z2ujvt3ow6jHMtTbKldJsBwoaNsAGoCKUM

https://l.facebook.com/l.php?u=https%3A%2F%2Fgithub.com%2Fyuwchen%2FCITISEN%3Ffbclid%3DIwAR1k2CEH5RbJZ3cWWZBJyy2UqcJGOHSays1d-r4IbO7jmNsL5185mLBGKNA&h=AT0X6v-i2Pu-x0YgPmFIpkObDXEalG3t8FAHWSTmPc8oVV3fGwyUslsJNb6zO1OGrOhL8DglQRY0DmS3dGvq2DSVfY2bZscezjiFZRbWIg1S0ilKBNYTWFt2At8HITYVqw&__tn__=R%5d-R&c%5b0%5d=AT3JjUwnLBUvHUkfuJFEps4LMlvs719KkgCv7N43k4YoCPba1axfmyn8kzVxKdy8Q1z-bYTdFsTkqz4RbYRYIeKcSOsO92MYHVN08VsSve-iigUIditv_FY0JHoAVahAgYVbfkZdSfRfVnS555e8ww
https://github.com/yuwchen/CITISEN
https://arxiv.org/pdf/2008.09264.pdf
https://www.youtube.com/watch?v=BUfY64TCXi4&feature=youtu.be&fbclid=IwAR0snLN2wBLi5aU8xTdtPJsU5z2ujvt3ow6jHMtTbKldJsBwoaNsAGoCKUM


Bio-ASP Lab in CITI, Academia Sinica
(中央研究院資訊科技創新研究中心) 

Contact: yu.tsao@citi.sinica.edu.tw
More Information: http://bio-
asplab.citi.sinica.edu.tw/
Publications: 
https://www.citi.sinica.edu.tw/page
s/yu.tsao/publications_en.html
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