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Deep Learning Based SE System
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The first work of DL-based SE system: [Lu et al, Interpseech 2013].



DL-based SE for Noisy Speech

Clean speech

Noise: 2baby Crying

Noise: Siren
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conducted Speech

DL-based SE for Bone-

The examples were based on [Liu et. al., Speech Comm. 2018].



Deep Learning Based SE System
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Evaluation Metrics

Perceptual Evaluation of Speech Quality (PESQ):
evaluating the quality of processed speech, with the
score ranging from -0.5 to 4.5.

Short-Time Objective Intelligibility (STOI): evaluating the
speech intelligibility, with the score ranging from 0 to 1.

* Segmental Signal-to-Noise Ratio (SSNR): the ratio of
processed and noisy speech computed in a segment level.

e Log-Spectral-Distortion (LSD): the difference of log
spectrums of processed speech and clean reference.

The goal of SE is to improve the speech intelligibility and quality.
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Input Feature Types
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Mel Log-power spectrum [Lu et al., Interspeech 2013, Meng et al., Interpseech 2018],
Log-power spectrum [Xu et al., TASLP 2015, Fu et al., Interspeech 2016],

Loglp [Chuang et al Interspeech 2020, and Lu et al., Interspeech 2020],

Power spectrum [Fu et al., Interspeech2016],

Complex spectrum [Fu et al.,, MLSP 2017, Hu et al., arXiv2020, Wang et al., TASLP 2020],
Frame-wise waveform [Fu et al, APSIPA 2017],

Utterance-wise waveform

[Fuet al, TASLP 2018, Kolbzek et al., TASLP 2020, Luo et al., TASLP 2019, Pandey et al., 2019,
Luo et al., ICASSP 2020]........
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Input Feature Types

 Complex spectrogram (CS) [ruet. al., in MLSP, 2017]
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Noisy Real and e y,
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Rl spectrograms are processed by a CNN model.
Rl spectrograms are treated as different input channels.

(1) The motivation is to obtain more accurate phase information.

(2) The real and imaginary (RI) spectrograms can be considered as R, G,
B in a color image and processed by a CNN model.




Input Feature Types (CS)

e LSD, SSNR, STOI, and PESQ scores:

Performance comparisons of different models and input features in
terms of LSD (log spectral distortion), SSNR, STOI, and PESQ.

(1) Log-power-spectrum (LPS) with DNN gives lowest LSD.

DNN-haseline RI-DNN RI-CNN -
%{‘%g (=1, (a=1,4=0)
LSD | SSNR LSD | SSNR
3.761 2.149 3.604 | 3.042
3.936 1.113 3844 | 1.975
4200 | -0.454 4.150 | 0.450
4521 | -2.745 4491 | -1.911
4 838 | -5.604 4829 | -4.990
4251 | -1.108 4183 | -0.286

(2) Rl with DNN outperforms LPS with DNN in terms of PESQ and STOI.
(3) CNN outperforms DNN when using Rl spectral features.
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Input Feature Types

 Waveform as the input (Wav) [Fuet. AL, APsiPA, 2017]

Local connection in FCN Spectrograms of a TIMIT utterance:
=Y Y T W R e
r/; ._ ; S " ’2 g
(a) clea peech (b) n 0|sy speech
by CR ‘::‘: L j"-i i
HER e
TN T

(c) DNN(waveform) (d) FCN(waveform)

(1) Using waveform can address the issue of phase estimation.

(2) We observe that fully convolutional network (FCN) architecture
is more suitable than fully connected neural networks.
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Input Feature Types (Wave)

e Waveform versus LPS:

Comparison of different models and input features in terms of STOI,

and PESQ.
DNN-baseline DNN CNN FCN
(LPS) (waveform) (waveform) (waveform)

SNR (dB) STOI | PESQ PESQ

12 0.788 | 2.470 2.718

6 0.753 | 2.302 2.346

0 0.673 | 2.011 1.995

-6 0.561 | 1.707 1.719

-12 0.441 | 1453 1.535

Avg. 0.643 | 1.989 2.063

(1) Waveform with FCN achieves the highest STOI score.

(2) Waveform with DNN achieves the highest PESQ score.

3) LPS with DNN underperforms the waveform-based systems.
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Input Feature Types

e Utterance waveform (UWave) [fuet. al., TASLP, 2018]
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One layer

Utterance enhancement by fully convolutional networks (FCN).
The FCN model has multiple layers, each layer consisting of multiple filters.
The model can take inputs with arbitrary lengths.
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Input Feature Types (UWave)

* A comparison of utterance-based and frame-
based waveform as the inputs

Comparison of different models and input features in terms of STOIl and PESQ.

Frame-based Utterance-based
FCN FCN FCN
(0bj=MSE) (obj=MSE) (obj= STOT)
(S;Bf;‘ STOI | PESQ | STOI | PESQ | sTOI | PESQ

(1) Utterance-based waveform outperforms frame-based counterpart.
(2) Utterance-based waveform combines better with STOI (correlation).
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Output Feature Types

* Mapping vs. masking based SE: [Wangand Chen, TASLP 2018]
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Model Types
N T

Feature
extraction
Noisy  Feature (2) o
speech extraction Objective
function

Model types:

DNN [Wang et al. NIPS2012; Xu et al., SPL2014], DDAE [Lu et al., Interspeech 2013], RNN
(LSTM) [Chen et al., Interspeech 2015; Weninger et al., LVA/ICA2015],CNN [Fu et al.,
Interspeech 2016], CRNN [Zhao et al., ICASSP 2018], FCN [Fu et al, TASLP 2018], HELM
[Hussain et al., [EEE Access 2017], Vector2Vector [Qi et al., TASLP 2020], Tensor2Vector [Qi
et al., ICASSP 2020], Teacher-Student [Tu et al., TASLP 2019].

Advanced architecture:

Skip connection [Tuand Zhang ICASSP 2017], Highway [Santos and Falk, NIPS workshop
2018], Densely connectied [Zhen et al., ICASSP 2019], Attention mechanism [Hao et al.,
ICASSP 2019], U-Net architecture [Pascualet al., Interspeech 2017], Complex parameters
[Y.-S. Lee et al., ICASSP 2017]. Transformer [Kim et al., ICASSP 2020, Fu et al., APSIPA 2020],
Ensemble learning [Le Roux, WASPAA 2013, ICASSP 2017, Chazanet al., WASPAA 2017,
Zhang et al., TASLP2016, Yu et al., TASLP 2020].
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Model Types (Ensemble Learning)
 DAE Multibranched Encoder (DAEME) (vuet. al., TASLP, 2020]
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“ | Imperfect results
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Based on the study in [Kolbaek et al., TASLP 2017], three major factors

that affect the SE performance notably:
(1) Speaker (2) Noise type; (3) Signal-to-noise ratio (SNR).
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Model Types (Ensemble Learning)

* DAEME [vuet. al., TASLP, 2020]

(1) Training a gigantic SE model can be a potential solution.

(2) Such approach may not be suitable/feasible for the conditions where
computation resources and data are limited.
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Model Types (Ensemble Learning)

* DAEME [vuet. al., TASLP, 2020]

The proposed DAEME is based on the ensemble learning criterion.
When training ensemble models, we intend to implement a
“conditional overfitting” strategy, which aims to train each component
model to overfit to (or perfectly match) its training data.
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Model Types (Ensemble Learning)

* DAEME [vuet. al., TASLP, 2020]

(1) Good flexibility and interpretability to combine
different types of Encoder and Decoder.

(2) An utterance-attribute tree (UAT) can be used to
guide the design of the multi-branched encoders.
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Model Types (Ensemble Learning)

* DAEME [vuet. al., TASLP, 2020]
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(1) As compared to the SE model with a single encoder (original BLSTM system),
DAEME achieves better performance

(2) When we have more SE models in the encoders (2, 4, 6), higher PESQ/STOI
scores can be obtained*.

*STOl results are reported in [Yu et. al., TASLP, 2020]
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Objective Function
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Mean squared error (MSE) and L1 losses aim to minimize the

differences of enhanced and target and do not directly consider
human perception and ASR performance.




31

Objective Function
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 We derived objective function based on STOI and PESQ.

* We have proposed two solutions: (1) Direct optimization on STOI%);
(2) Generative adversarial tainting (GAN) to optimize PESQ and STOI?),

> “End-to-end waveform utterance enhancement for direct evaluation metrics » “Metric GAN: Generative Adversarial Networks based Black-box Metric
optimization by fully convolutional neural networks” IEEE TASLP 2018. Scores Optimization for Speech Enhancement,” ICML 2019



Objective Function

STOIl-based Objective Function [Fu et al, TASLP 2018]
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Objective Function (STOI)

* Experimental Results (Human Listening Test)

Average character error rate (CCR) and quality scores (MQOS) of human

subjects for (a) -3 dB and (b) -6 dB SNR.
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Objective Function

 PESQ-based Objective Function [Fu et al, IEEE SPL 2019]

 However, when evaluation metrics are complicated and non-linear,
such as PESQ (with more than 2700 lines in Matlab codes), it is
difficult to directly derive an objective function using PESQ.

* We can apply reinforcementlearning (RL), where the PESQ scoreis
used to form the reward function, to optimize the SE model [Koizumi
et al, ICASSP 2017; Koizumi et al, TASLP 2018].

* We can use direction sampling [Zhanget al., ICASSP 2018].

* We can approximate the PESQ function and make it differentiable to
update the SE model [Martin-Donas et al, IEEE SPL 2018].

e Recently, we proposed a two-step strategy: (1) learn a deep learning
model, Quality-Net, that can predict PESQ scores; (2) train the SE
model based on the learned Quality-Net [Fu et al, IEEE SPL 2020].
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Objective Function

 PESQ-based Objective Function [Fu et al, IEEESPL 2020]
Stage 1: train a Quality-Net (input: paired clean and noisy speech; output: PESQ

score ) Clean spectrogram

PESQ

™ s -
= =
_,.—éﬁ.’z:-‘“‘—

Degraded spectrogram

True

Score

1/ MSE loss

: Predicted
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Stage 2: train the SE model based on the Quality-Net (input: paired clean and
noisy speech; output: PESQ score)

§
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Objective Function

* Generative Adversarial Networks (GAN) based Methods:
SEGAN [Pascual et al., Interspeech 2017]; Pix2Pix [Michelsanti et

al., Interpsech 2017]; Mask estimation[Pandey and Wang, ICASSP
2018; Neil et al., APSIPA 2018]

Feature
extraction

Real
or
Fake

Feature
extraction
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Objective Function

* MetricGAN [Fu et al., ICML 2019]

Feature
extraction

Feature
extraction
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Objective Function

* Conditional GAN (CGAN) versus MetricGAN

[Fu et al., ICML 2019]
Discriminator in CGAN (LSGAN):

Lp(CGAN) =Ey,,[(D(y,x) — 1D)* +(D(G(x),x) — 0)*]

where x and y are noisy and clean speech, respectively.

Discriminator in MetricGAN:

Lp(MetricGAN) = E, ,[(D(y,y) — 1)* +(D(G (x),y) — Q’(G(x),y))z]

0<Q'(G(x),y) < 1isthe normalized evaluation metric (1 represents
the highest evaluation score).

(1) For CGAN, D tries to distinguish real and enhanced samples.
(2) For MetricGAN, D tries to learn the PESQ\STOI function.



Objective Function

* Conditional GAN (CGAN) versus MetricGAN

Generator in CGAN (LSGAN):

[Fu et al., ICML 2019]

Lg(CGAN) = Ex[A(D (G (x),x) — D?]+11G() —yllx

where x and y are noisy and clean speech, respectively.

Generator in MetricGAN:

L;(MetricGAN) =E,[(D(G(x),y) —

S|

where s is the desired assigned score.

(1) We can specify any particular score s.

(2) With alarge number s (e.g.,1), we get a speech enhancement model.
(3) With a small number s (e.g., 0), we get a speech degradation model.
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Objective Function (MetricGAN)

* MetricGAN (P) and MetricGAN (S) with related works

Performance comparisons on TIMIT of different methods in terms of PESQ & STOI

Noisy IRM (L1) IRM (CGAN) PE policy grad*(P) MetricGAN (P) MetricGAN (S)

SNR (dB) || PESQ | STOI PESQ STOI STOI PESQ
12 2.375 | 0.919 2.995 0.927 0.936 2.864

6 1.963 | 0.831 2.595 0.869 0.881 2.486

0 1.589 | 0.709 2.144 0.776 0.796 2.086

-6 1.242 | 0.576 1.634 0.644 0.668 1.599
-12 0.971 | 0.473 1.124 0.500 0.521 1.090
Avg 1.628 | 0.702 2.098 0.743 0.760 2.025

(P: PESQ) (S: STOI)

(1) GAN is not helpful for this task (TIMIT).

(2) MetricGAN (P) achieves the best PESQ (quality) scores.
(3) MetricGAN (S) achieves the best STOI (intelligibility) scores.
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Objective Function (MetricGAN)

* Arbitrary target scores

STOI=1.000. PESQ=4.500

STOI=0.778. PESQ=1.914

(a) noisy input

(b) clean target

STOI=0.808 STOI=0.609 STOI=0.237

(d) generated speech. s=1 (e) generated speech. s=0.6 (f) generated speech. s=0.2

PESQ=2.250 PESQ=1.523 PESQ=1.061

We can specify a metric
score to either increase

or decrease the speech
quality or ineligibility.

P g™

M 4. LY § 2
NS BUNE il 4 12 B ek
0 b B @

(h) generated speech. s=4.5 (1) generated speech. s=1.5 (j) generated speech. s=1.0

Results of assigning different scores (s) for the generator training.



Objective Function

* Reinforcement learning (RL) with ASR-based rewards [Shen
et al., ICASSP 2018]
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Objective Function

* Reinforcement learning (RL) with ASR-based rewards [Shen
et al., ICASSP 2018]
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Objective Function

* Reinforcement learning (RL) with ASR-based rewards [Shen
et al., ICASSP 2018]
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* Problem: complex correlation of acoustic features and recognition results
* Proposed solution: reinforcement learning based speech enhancement system
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Objective Function

* Reinforcement learning (RL) with ASR-based rewards [Shen
et al., ICASSP 2018]
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Objective Function

Noise
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* Problem: complex correlation of acoustic features and recognition results
* Proposed solution: reinforcement learning based speech enhancement system
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Objective Function (RLSE)
e Results on ASR and STOIl and PESQ

The average CERs of Noisy (the baseline), 1nnSE, RLSE,,
and RLSE,at 0 and 5 dB SNR conditions.

SNR | Noisy 1nnSE RLSE;

5dB | 56.14 73.09 55.60
0dB | 81.40 85.79 77.20

The average STOIl and PESQ of Noisy (the baseline), RLSE;,
and RLSE,at 0 and 5 dB SNR conditions.

STOI | PESQ
Noisy RLSE\| RLSE>[{Noisy RLSE,| RLSE,
5dB | 0.82 0.82 ‘ 1.85 1.67 1.96
0dB | 0.74 0.77 1.45 1.42 1.59




Deep Learning Based SE System
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Auxiliary input [Zhao et al., ICASSP 2018],
[Le Roux, et al. ICASSP 2019],

[Kolbaek et al., TASLP 2020],
[Kim et al., Arxiv 2019],

[Valin et al., Interspeech 2020],
[Xia et al., ICASSP 2020],.......
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[Germain et al., Interspeech 2019],
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Outline

* Deep Learning based Speech Enhancement
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v’ Feature types
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Clean Ill " l' " NM
speech [T 7R Feature

extraction
Noi Feature
oISy extraction Objective
speec ,
D function

LlS (4)

Vibration Auxiliary input

This is a...

Texts

Multi-mics




Multimodal SE (Visual)

e Audio-visual SE[Hou et al., TETCI 2018, Sadeghi et al. TASLP 2020]

Additional parts

— Lip images

— Visual Net

— FCv3

Visual target: image

Batch Normalization Enhanced Waveform

Linear Activation
Sigmoid Activation

—_—_————— e e e e ——————————————————————

Data Reconstruction

Ak ERln ks
Clean Spectrogram

STFT

’-}—»}uﬂ —

Clean Waveform
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Reconstructed Lip Feature

3

FCv3

| SE Model!

|
|
|
|
| Moisy Spectrogram
|
|
|
|

STFT Data Preprocessing

Noisy Waveform

(T T o |
|

i

: : Enhanced Spectrogram

|

|

!

]

I FC2
|

I : Fusion :
1 Net ( FC1
|

Lip Images
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Multimodal SE (Visual)

* Audio-visual versus audio only [Hou et al., TETCI 2018]

1 I 1 1 1 1 1 I 1 | I | | 1 1 I I I >
o - 1 Wlinoisy WliNoisy
24 - = I MLog 0.7 WLogmm:
kLt d [0
[CJAVDNN M ’— M [ZJAvONN
[CJapchn - [CJancnn
22 [CJavoenn — 0.65 _ ~ n Cavoen
2
2 06 -
S
$18 @
055~
16- ;
05 -
14-
Il |
1.2 by ic ic  Siren = e = = = 045 Baby _ Music i Siren AT 2T 3T AT 2T 3T
OopYy Wuslc™ Musle " Shren " (TR (o) (onuin) (rom) (reom) (reom) ooy Music MUSS) SN onin (oain) (onain (room) (rdom) (room)
Noise types Noise types

Testing in the real-world conditions

e N

(1) Visual information improves the
SE performance.
(2) The performance is robust against

recording conditions as long as lips
can be recorded well.




Multimodal SE (Visual)

* Lite Audio-visual SE [Chuang et al., Interspeech 2020]

stance Normalization Enhanced Waveform
y o

53

i I S S u e ( 1 ) : S i Ze Of i m a ge S Enhanced Spectrogram F{eonstruced Lip Feéture

e Issue (2): privacy issue =3

e LAVSE (Lite AVSE)

_________________

* EncoderAE replace visual net SR
* Qualatentfurther compress data

__________________




Face images

lDIib Crop
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Multimodal SE (Visual)

* Lite Audio-visual SE [Chuang et al., Interspeech 2020]

% 2D Convolutional Layer

% 2D Transposed Convolutional Layer

+«» 2D Instance Normalization
LeakyRelLU Activation

=
Encoderae Decoderae
Compressed feature

|

(a) AE feature. (b) AE+EOFP feature.

Figure 6: Visual latent features of lips.

EOFP (exponent-only
floating point quantized)
[Hsu et al., SLT 2018]

1. EncoderAE representation enhances the privacy.

2. Qualatent further compress data.
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Multimodal SE (Visual)

* Lite Audio-visual SE [Chuang et al., Interspeech 2020]
PESQ

1.7

15

13

11

0.9

0.7

0.5
n10db n7db n4db nldb

mNoisy M Audio-only ®AVSE ®LAVSE(AE) = LAVSE(AE+EOFP)

1. Lite AVSE outperforms original AVSE.

2. AVSE+EOFP slightly underperforms AVSE with a notable
reduction of 48 times on the visual features.

TMSV dataset: https://drive.google.com/drive/folders/1B-els1yYVfOqHrYOWrtxYs3a8inPHmM1K



https://drive.google.com/drive/folders/1B-eJs1yYVf0qHrYOWrtxYs3a8inPHm1K

Multimodal SE (Bone-conducted)

* BCM-ACM versus BCM or ACM only [Yu et al., SPL 2020]
» The input of FCNgr combines both noisy and BCM signals

N0|sy ACM

@[

WMWW”«% SE model —»WW\“

Clean

*®[n .

» The input of the Fusion function is processed noisy and BCM signals

Noisy ACM
x®1n] @} FCNLF
. 7 s® = FCN{xP[n]}
WMWWWMW» FCNA SE model —»—WMH%

®) — @)
_ Clean s FCNg{x®[n]}

FCNpg @)

Pt

A

Sip = FCNLF{S(A)[TL],S(B)[TI]}
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Multimodal SE (Bone-conducted)

* BCM-ACM versus BCM or ACM only [Yu et al., SPL 2020]

1.74 _ | 082 =11 7| 0.60 =l (1) FONg
1.66 0.73 0.51 (2) FCN4
158 | _ |7 064 | | 0.42 (3) FCNgF
1.50 % ol 0.55 % o | 0.33 =211 (4) FCNLF
1) 2) 3) (4) 1) 2) 3) (4) 1) (2) 3) (4)
(a) PESQ (b) STO (c) ESTOI

(1) BCM information improves the SE
FCNy :

performance in terms of PESQ,
0 65.56 100 STOI, ESTOI and listening tests.

The results (in percentage, %) for the AB (2) Lat? fusion outperforms early-
test that compares FCN; r and FCN,. fusion.

(p = 0.00088 < 0.01)
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Multimodal SE (Text)

* Broad Phone Classes (BPC) SE [Lu et al., Interspeech 2020]
» Main idea

In noisy conditions, knowing speech contents facilitates listeners to more
effectively retrieve pure speechsignals.

Phone recognizer can be used to obtain phonemes (text) information.
Recognized phonemes may be erroneous and thus misguide the SE process.

We used the broad phone class (BPC) instead, which is built by: place of
articulatory and manner of articulatory and data-drivencriterion

» Recognition results

N P

b N

X L 6

= =

. Z

5 &

o - }

> g 2|

w = 2 -

0 == e .

Reference dh ey m ey sii k ah Reference v ih n ih sil dh ih m f
BPCs Hyp fr \"/e] na \"/e] si st vo BPCsHyp fr vo na vo si SI NA vo na fr
Phone Hyp dh SIL ey m ey si P EH Phone Hyp  *  *x % *x *xx *xx AH * *

(a) SI]e('”-()graln and ’-()(-()g”i]i()’l result at 10dB SNR (b) S])(’(‘H‘()gl‘(ml and I‘(’('()glliti()ll result at 0dB SNR level
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Multimodal SE (Text)

* Broad Phone Classes (BPC)-SE [Lu et al., Interspeech 2020]

il M , = ‘
Place of articulation t Posteriorgram J

Enha.nced ‘

( P B PCS) Specu;ogram | [

Add & Norm Layer 2 Decoder
N | ’
stop Add & Norm - e /
S P F : .
Ty Manner of articulation ~ L. Encoder
! et / Layer 2
C lut | > .
(MBPCs) proomil - B /' /
' = : > L)
| Spectrogram Bottleneck " BPCs
S W?Ti——— Posteriorgram \

Data-driven BPCs
(DBPCs)

. Train an recognizer (BPC speech recognizer)

to estimate BPCs in each frame.
. Know which phone/BPC help the SE model
to generate better enhanced speech.




Multimodal SE (Text)

* Broad Phone Classes SE [Lu et al., Interspeech 2020]

The STOI scores

60

) Broad Phone Class Ground Truth

SNR || Noisy || LSTM | Transformer § PPG(Mono) F-po5=5 T RBPPGM) [ BPPGD) || GI-PPG(Mono) | GL.BPPG(M)

5 || 0595 || 0.548 0.620 0.616 0.629 0.627 0.628 0.679 0.708

0 0.701 || 0.686 0.755 0.759 0.765 0.765 0.763 0.796 0.808

5 0.800 || 0.815 0.851 0.859 0.860 0.861 0.859 0.876 0.879

10 || 0.880 || 0.900 0.912 0.917 0.918 0.918 0.917 0.924 0.925

15 || 0935 || 0.946 0.948 0.950 0.951 0.950 0.951 0.953 0.953
Ave || 0782 || 0.779 0.817 0.820 0.824 0.824 0.823 0.846 0.855

£

(a) baseline model and proposed method

The PESQ scores

Transformer PPG(Mono)

A‘SI I
::hr I I
2400 ﬁ

BPPG(P)

BPPG(M)

GT-PPG(Mono) GT-BPPG(M)

(b) ground truth

(1) Both Mono(phone) and BPC based
PPGs improve the SE performance.

(2) BPCis more robust against
different SNR ratios than Mono.




Noisy
speech
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Auxiliary Input

Feature
extraction

Texts

Multi-mics

This is a...

Auxiliary input

Clean

speech Feature
extraction
Objective
function

Text [Kinoshita et al., In terspeech 2015],
Symbolic [Liao et al., Interspeech 2019],
Speaker Identity [Koizumi et al., ICASSP 2020;
Chuang et al., Interspeech 2019],

Prosodic features [Lin et al., APSIPA 2019],
Noise token [Li et al., Interspeech 2020],
Multi-mic [Liu et al., TASLP 2020],

Pan [Du et al., ICASSP 2020],

Acceler. [Tagliasacchiet al, Interspeech 2020].
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* Deep Learning based Speech Enhancement
» System architecture
> Six factors need to consider
v’ Feature types
v’ Model types
v’ Objective function
v’ Auxiliary input
v’ Model compression
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https://www.vology.com/resource/benefits-of-edge-computing/
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https://www.vology.com/resource/benefits-of-edge-computing/

Model Compression

* Weight sharing (WS) based on K-means
— Clustering weights into ¢ clusters with K-means algorithm.

— Replacing 32-bit weights with (log, ¢)-bit cluster index;
each index represent a specific cluster centroid; the same
cluster share the same centroid.

weights Cluster index
32-bit float cluster 2-bit -

2-bit value

-2.743 | -1.536 | -0.401 1.229 0 0.334 3 3 2 1

1.008 -0.705 0.474 -0.401 1 2 0 2
1 1.383

K-means

-0.910 1.589 0.813 -1.894 2 1 0 3
2 -0.597

0.351 -0.887 0.958 0.315 0 2 1 0
3 -1.690

16x32-bit =(512) bits 4X32-bit + 16X%2-bit =(160) bits



Model Compression (WS-SE)

WS for SE model [wu et al., IEEE SPL Accepted]

Cluster: 64,32, 16, 8, 4, 2; Quality
cluster = 0 is original model. ﬁi;z .t
cluster PESQ STO| o ﬁig s\
Original 1.85385 0.70231 148
64C 1.8063 0.6941 0 64C 32C C|$iier 8C 4c 2C
32C 1.7967 0.6927
16C 1.8088 0.6896
8C 1.7606 0.6786 Intelligibility
4C 1.5852 0.6269 0,703 t
2¢ 1.4558 0.5568 S b >\
Noisy 1.63713 0.66977 03555

0
cluster

(1) Performance does not change much when the cluster number
increases from O to 16.
(2) However, the performance drops significantly when K> 16.




Model Compression

Parameter Pruning (PP)

— The goal is to removing redundant parameters in an SE model.

— Computing a sparsity score for each channel.

— Removing channels with high sparsity scores.

(a) (b)
e Conv. Output | Regeptive Conv. Output
Filter Output SUM Filter Output SUM
4 g4
z 5 o q a T E; o\ ]
r ( ) s 1. { \ 4.
o | 8P|l Ple | ) 1
e \»/ - ' \B¥/ <
Flﬂﬂ E ]»f.' F; H g
: : E

— v

Retrain )

g ——

il

|Pruned|
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Model Compression

e PP performs channel pruning to reduce the SE model size
and online computational costs [Wu et al., IEEE SPL 2019].

e Three stepsin PP:

(1) For a specific channel cin a conv. layer, the mean value
of all absolute filter weights at that channel is computed:

Ynwlknwl N: number of channels
T TNXW W: number of weights

(2) Compute the sparsity of the n-th channel:

 Zwolky) (Lifx<M
Sn) = wo o(x) = { 0,otherwise

(3) A threshold O is specified. If sparsity > 0, the channel will
be removed.

With a lower threshold, more parameters will be pruned.



Model Compression (PP-SE)

e The results of PP

A Threshold O is specified
If sparsity > O, the channel will be removed

Threshold Remc?val PESQ STOI
ratio
1.0 0 1.85385 0.70231
0.95 0.027 1.83 0.6995
0.9 0.043 1.8215 0.6975
0.85 0.068 1.8197 0.697
0.8 0.087 1.8147 0.6957
0.75 0.14 1.8034 0.6941
0.7 0.198 1.805 0.6943
0.65 0.271 1.7558 0.673
0.6 0.301 1.7687 0.6683
Noisy 1.63713 0.66977

1.89

o 18 TSN
%)

Quality

L
e 1.79

1.74

— o

0 0.027 0.043 0.068 0.087 0.14 0.198 0.271 0.301

Removal ratio

Intelligibility

0.71

S 0.69
& 0.68
0.67
0.66

R

0 0.027 0.043 0.068 0.087 0.14 0.198 0.271 0.301

Removal ratio

A notable performance drop when Threshold <0.7.
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Model Compression (PP+WS SE)
* The results of PP+WS

* We first define the expected performance loss ratio(=0.95)
* Gradually reducing the Threshold (removal ratio = 20%)
* Gradually decreasing the number of clusters (C = 16)

Quality Intelligibility

1.: PP WS 0.71 PP WS
1'82 0.7 S——— _ R R

.18 — 0.69 ¢ = ‘

. (@]

1.78 ; 0.68
1.76 0.67
1.74 0.66

0 0.027 0.043 0.068 0.087 0.14 0.198 64C 32C 16C 8C 4C 2C 0 0.027 0.043 0.068 0.087 0.14 0.198 64C 32C 16C 8C 4C 2C

Removal ratio Cluster number Removal ratio Cluster number

(1) The model size of the compressed model is only 9.76%

as compared to the original model.
(2) The computation cost is reduced by 20%.
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Model adaptation
I (1) supervised: w/ paired noisy/clean
(2) unsupervised: wo/ paired noisy/clean

|




Model Adaptation

e SE using Regularized Incremental Learning
(SERIL) [Lee et al., Interspeech 2020]

» For supervised model adaptation:

g i«

Source © Ta rget

Good

NG
SE,

Noise/speaker mismatch may cause poor SE performance.
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Model Adaptation

e SE using Regularized Incremental Learning
(SERIL) [Lee et al., Interspeech 2020]

» For supervised model adaptation:

Adaptation

(1) A direct adaptation may cause a catastrophic forgetting issue.
(2) The SERIL approach is proposed for SE adaptation.
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Model Adaptation

e SERIL [Lee et al., Interspeech 2020]

Rather then direct adaptation, SERIL adopts proper constraints.
L(H) — Lold(e) + Lnew(e)

Not available  From target data
Constraints
Solution 1 Curvature strategy [Kirkpatrick et al., PNAS 2017,
Schwarz et al., ICML 2018]
Solution 2: Path optimization approach [Zenke et al., ICML2017]
SERIL uses a combined approach [Chaudhry et al., 2018]

74



N: Unprocessed

P: Original Model.
F: Direct adaptation
R: SERIL

Model Adaptation

e SERIL [Lee et al., Interspeech 2020]

Original: training set

Metric

door foot-
moving | steps

PESQ

“F | 2 406 2204 | 2. 332 2.948
"R 12461 1 2375 | 2581 1 2.381 | 2.036 .

STOI

p 0.869 0.798 0.779 | 0.799 | 0.801
R [ 0.826 |

(1) Original model achieves the best in the original testing set.

(2) Direct adaptation suffers from the catastrophic forgetting issue.
(3) SERIL consistentlyimproves permeance for all noise types.

75



76

Model Adaptation
* Noise-adaptive DAT (NADAT) [Liao et al., Interspeech 2019]

» For unsupervised model adaptation:

e N —_-véj
Target 4—|_> N Source
<

<

av,
O « 0, — €0 Min reconstruction av,
Oc error Op < 0p —€
00k

Min reconstruction error



Model Adaptation

* NADAT [Liao et al., Interspeech 2019]

e —

T
Target <—I_> N7 N10 M Source

I

00001

Noise Type

h Classification
oV, Vz
0. <« 0. — e—% Min reconstruction oV,
G G ae y aVZ
G error Op < 0 — € 0. tasg
. E E
0, « 0 OVz  Maxdomain Min reconstruction error

—€
20y accuracy and Min domain accuracy
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Model Adaptation

e Adapting to new noise type (Baby cry)

3.1 = BLSTM-L
= BLSTM-60
= BLSTM-140

2.7 BLSTM-220
2.5
2.3
2.1
1.9 ‘
1.7
-3 3 6 9 12 Avg.

SNR(dB)

2.9

PESQ

(1) DAT achieves good unsupervised adaptation performance

(without paired noisy-clean adaptation data).
(2) More adaptation data gives higher scores.
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Speaker Adaptability

e Speaker-aware Deep Autoencoder (SaDAE)
[Chuang et al., Interspeech 2019]

Training Phase i Clean speech

Feature extraction

Noisy Feature ' .
speech extraction Obijective function

i Output | eg. MSE (L,norm), L,norm

SprEmbed

Testine Ph i Speaker-aware deep denoising autoencoder (SaDAE) i
esting Phase

Noisy Feature Waveform
speech extraction restoration

T —— speech

SprEmbed

Enhanced




Speaker Adaptability (SaDAE)
* The results of SaDAE

The averaged PESQ, STOI and SDI results over all noisy utterances in the test set.

Testing PESQ STOI SDI.
Noisy 2.0280 0.7493 1.1450
DDAE 2.1987 0.7225 0.7501

SaDAE 2.3715 0.7815 0.3228

The averaged PESQ and STOI results over noisy utterances with respect to
three noisy environments.

DDAE
2.75 0.86 SaDAE
2.5 0.79
2.25 0.72
2 0.65 — R e
Car Street Babble Car Street Babble
(a)PESQ (b)STOI

SaDAE outperforms conventional DDAE for both PESQ and STOI.
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Outline

* Deep Learning based Speech Enhancement
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v’ Objective function
v’ Auxiliary input
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v’ Increasing adaptability

* Assistive Voice Communication Technologies



Assistive Voice Communication

Assistive listening

AT System S;r‘:i‘e-:lr\ S‘egnu{

Process;aa

Seec\'\ Disovder

FAGL Sp’mm Seced\ Signa\
Processi 0g
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Cochlear Implant

Transmitter coil

Speech processor:
1. Microphone.
2. DSP chip.

3. Battery

4. Others...

Source from:
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cochlear-implant-surgery
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Cochlear Implant

Sound processor Electrodes

Cochlear with

Transmitt ;
e implant electrodes

Receiver

Travelingwave theory (Nobel Prize 1961)

Source from:
https://www.healthdirect.gov.au/cochlear-implant

http://www.yanthia.com/online/projlets/spear3/index.html
https://medium.com/@mosaicofminds/maps-in-the-brain-f236998d544f


https://www.healthdirect.gov.au/cochlear-implant

SE for Cochlear Implant

* The tremendous progress of Cl technologies in the past three

decades has enabled many Cl users to enjoy high level of speech
understanding in quiet.

For most Cl users, however, the performance of speech
understanding in noise still remains challenging.

» F. Chen, Y. Hu, and M. Yuan, “Evaluation of Noise Reduction Methods for Sentence Recognition by
Mandarin-Speaking Cochlear Implant Listeners,” Ear and hearing, vol. 36, no. 1, pp. 61-71, 2015.

Deep learning based speech enhancement (SE) for CI.
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SE for Cochlear Implant

Electricarray

Transmitter Receiver
Microphone
skin

Band-pass Envelope detection Compression Pulse.
; generation Electrodes
Noise reduction  filter
BPF1 p—| RECT. LPF >l COMP. H( > El
Microphone—>|—>| BPF2 || RECT LPF comr. |—0O E2
BPFn |>| RECT. LPF COMP. HO En
Mo [Ny N

oV

H s ,
= MW T
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NCM scores

Testing Results

0.30
(a) Cocktail
0.25 A
0.20 A B
[
0.15 - [ ]
0.10 .
' Noisy
— -0 — logMMSE
—————— Wiener
[ ] DDAE
0.00
Objective evaluation (NCM)
(a) Cocktail
40
— [ Noisy
NS logMMSE
~ N KI.T
"d 30 4 | BB Wiener
() E== DDAE
—
—
(@]
o
'E 20 4
(]
[}
—
()
o

Testing conditions

Vocoder results: 10 normal hearing subjects.

Percentcorrect (%)

80

[ Noisy
logMMSE
KLT
BRXH NC+DDAE

CJ 5dB

Testing conditions
Clinical trial: 9 Cl subjects.

» Y.-H. Lai, F. Chen,S.-S. Wang, X. Lu, Y. Tsao, and C.-H. Lee, "A Deep
Denoising Autoencoder Approach to Improving the Intelligibility of
Vocoded Speech in CochlearImplant Simulation," IEEE
Transactions on Biomedical Engineering.

> Y.-H. Lai, Y. Tsao, X. Lu, F.Chen, Y.-T. Su, K.-C. Chen, Y.-H. Chen, L.-C.
Chen, P.-H. Li, and C.-H. Lee, "Deep Learning based Noise
Reduction Approach to Improve Speech Intelligibility for Cochlear
Implant Recipients,” Ear and Hearing.

» R.-Y.Tseng, T.-W. Wang, S.-W. Fu, C.-Y. Lee, and Y. Tsao, "A Study of
Joint Effect on Denoising Techniques and Visual Cuesto Improve
Speech Intelligibility in Cochlear Implant Simulation," toappearin
IEEE Transactions on Cognitive and Developmental Systems.

87



SE for Speaking Disorder

* Task: improving the speech intelligibility of
surgical patients.

e Target: oral cancer (top five cancer for male in
Taiwan).

Before

Liberty Times Ltd.. Taipei Veterans General Hospital
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SE for Speaking Disorder

Proposed: joint training of source and target dictionaries
with non-negative matrix factorization (NMF):

_____ Given, _ _ o= — —
I X ~ A I H
1 I
| Source spectrogram Source dictionary 1
(P> M) (p=T)
o 1 Activation matrix
a 1 (T < M)
! 1
! I
Y ! B 1<
Converted spectrogram | Target dictionary
(g= M) : (g=xT7) i
Y == e— |

After
Surgery

Before
Surgery

Basis index
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Testing Results

Original:

0.59

0.585

0.58

o Speech samples were from
0.57 [FU et. al., TBME 2017]

°’§ZZ GAN-based solution
oass| | [Chen et. al., Interspeech 2019]

0.55

0.545 m/
0.54
0

STOI

10 20 30 40 50 60 70
number of sentences used for trainina
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* Assistive Voice Communication Technologies
°* Summary



Summary

Clean

Six Factors . speecn [HORIMIY

extraction

Feature (3)
extraction (2) Objective

function

Lips Model compression
and computation
o+ Auxiliary input acceleration
Vibration Real-world
This is a... (6) applications
Texts Adaptability to new
o - speaker and
; ZI environments
Multi-mics

Assistive Voice Communication Technologies

ﬂg‘?\_“':“ I_‘I‘,E_‘}-‘_Y_Tffl . eec\‘\ Dtsovder

AT System Speech  Signol e AT System Speech  Signal
Protess.nﬁ | P\-‘a(esslna
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Other Related Works

Unpaired Speech Enhancement

» Adversarial training [Mimura et al., ASRU 2017, Meng et al.,
Interpseech 2018, Xiang and Bao, TASLP 2020]

» Variational autoencoder [Sadeghi et al, TASLP2020]

» Noisy2Noisy [Alamdari et al., AC 2020]

» Self-supervised [zezario et al., ICASSP 2020]

Post-filtering

Other Modalities

Meta-learning

Mask-based Speech Enhancement
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Resources

[1] https://bio-asplab.citi.sinica.edu.tw/Opensource.htmI#SE (Codes+Papers, from BioASP Lab)

[2] https://bio-asplab.citi.sinica.edu.tw/Opensource.html#Dataset (Dataset, from BioASP Lab)

[3] https://github.com/nanahou/Awesome-Speech-Enhancement (Codes+Papers)

[4] https://paperswithcode.com/task/speech-enhancement (Codes+Papers)

[5] https://github.com/mpariente/asteroid (Codes+Papers)



https://bio-asp-lab.github.io/source-codes/
https://bio-asplab.citi.sinica.edu.tw/Opensource.html#Dataset
https://github.com/nanahou/Awesome-Speech-Enhancement
https://paperswithcode.com/task/speech-enhancement
https://github.com/mpariente/asteroid

CITISEN: A Deep Learning-Based Speech
Signal-Processing Mobile Application

(5%} Oq;P Lot e

(@) Speech Enhancement

(b) Mode| qoiapmﬁon
() Acms‘ﬁc Scene (Conversion

GitHub: https://github.com/yuwchen/CITISEN

Paper: https://arxiv.org/pdf/2008.09264.pdf
Youtube:

https://www.youtube.com/watch?v=BUfY64TCXi4&feature=youtu.be&fbclid=

IWAROsnLN2wBLi5aU8xTdtPJsU5z2ujvt3ow6jHMtTbKIdJsBwoaNsAGoCKUM
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