Spoken Dialogue for Social Robots

Tatsuya Kawahara
(Kyoto University, Japan)

Kristiina Jokinen
(AIST AI Center, Japan)
Spoken Dialogue Systems (SDS) are prevailing

- Smartphone Assistants
- Smart Speakers

What about Social Robots?

- Social Robots
 Intended for interaction with human
A majority of Peppers are returned without renewing rental contracts

© Softbank
In successful cases, speech input is not used
Hen na Hotel with robot receptionists

Critical interaction such as check-in is done with touch panel

https://youtu.be/zx13fyz3UNg

©価格.com
Robots are in many nursing homes, but do not make speech interaction (effectively)

© Daiwa House

© Fuji soft
One of the decade’s most hyped robots sends its farewell message

“Thank you very, very much for having me around,” the social robot Jibo told its users this week.

Still 5 Robots are Chosen in TIME Magazine 100 Best Inventions 2019

- Tutor
- Delivery
- Porter in Hospital
- Companion for Elderly
- Home Robot
Under COVID-19
Robots Became Essential Workers (IEEE Spectrum)

Delivering goods
Checking patients (online)
Monitoring visitors
Agenda (Research Questions)

0. Why social robots are not prevailing in society?
1. What kind of tasks are social robots expected to conduct?
2. What kind of social robots are suitable for the tasks?
3. Why spoken dialogue is not working well with robots?
4. What kind of non-verbal and other modalities are useful?
5. What kind of system architectures are suitable?
6. What kind of ethical issues must be considered?
Agenda (Research Questions)

0. Why social robots are not prevailing in society?
1. What kind of tasks are social robots expected to conduct?
2. What kind of social robots are suitable for the tasks?
3. Why spoken dialogue is not working with robots?
 1. ASR and TTS
 2. SLU+DM (end-to-end?)

4. What kind of non-verbal and other modalities are useful?
 1. Backchannel, turn-taking
 2. Eye-gaze

5. What kind of system architectures are suitable?
6. What kind of ethical issues must be considered?

break

Kawahara

Jokinen
0. Why social robots are not prevailing in society?

• Basically cost issue
 • Hardware expensive & fragile → maintenance
 • Much more expensive (>10 times) than smart speakers

• Benefit does NOT meet the cost

 • Tasks (=what robots can do) are limited or irrelevant
 • Many tasks can be done via smartphones and smart speakers

 • Spoken Language Interaction experience is poor
 • Compared with smartphones and smart speakers

• While expectation is high
1. What kind of tasks are social robots expected to conduct?
Expected Roles by Robots

- **Receptionist**: receive=welcome
- **Attendant**: attend=care
- **Health care**: → Senior
- **Teaching**: → Children

Physical presence & Face-to-Face interaction matters
Still 5 Robots are Chosen in *TIME Magazine 100 Best Inventions 2019*

- Tutor
- Delivery
- Porter in Hospital
- Companion for Elderly
- Home Robot
Other Scenarios?

1. Who are typical users?
2. Where are they served?
Dialogue Category (Tasks)

<table>
<thead>
<tr>
<th>No Resource (Dialog is task)</th>
<th>Information Services</th>
<th>Physical Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal observable</td>
<td>Negotiation</td>
<td>Search, Order Receptionist</td>
</tr>
<tr>
<td>Content definite</td>
<td>Debate Interview</td>
<td>Newscaster Tutor, Guide</td>
</tr>
<tr>
<td>Objective shared</td>
<td>Counseling Speed dating</td>
<td>Attendant</td>
</tr>
<tr>
<td>No clear objective (socialization)</td>
<td>Chatting Companion</td>
<td></td>
</tr>
</tbody>
</table>

- Smartphone
- Smart speaker

20
Dialogue Category (Tasks)

<table>
<thead>
<tr>
<th>Goal observable</th>
<th>Negotiation</th>
<th>Search, Order Receptionist</th>
<th>Manipulation Porter, Cleaner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content definite</td>
<td>Debate Interview</td>
<td>Newscaster Tutor, Guide</td>
<td></td>
</tr>
<tr>
<td>Objective shared</td>
<td>Counseling Speed dating</td>
<td>Attendant</td>
<td>Helper</td>
</tr>
<tr>
<td>No clear objective (socialization)</td>
<td>Chatting Companion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- User initiative
- System initiative
- Mixed initiative
Dialogue Category (Tasks)

<table>
<thead>
<tr>
<th>Goal observable</th>
<th>No Resource (Dialog is task)</th>
<th>Information Services</th>
<th>Physical Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negotiation</td>
<td>Search, Order Receptionist</td>
<td>Manipulation Porter, Cleaner</td>
<td></td>
</tr>
<tr>
<td>Content definite</td>
<td>Debate Interview</td>
<td>Newscaster Tutor, Guide</td>
<td></td>
</tr>
<tr>
<td>Objective shared</td>
<td>Counseling Speed dating</td>
<td>Attendant</td>
<td></td>
</tr>
<tr>
<td>No clear objective</td>
<td>Chatting Companion</td>
<td>Helper</td>
<td></td>
</tr>
</tbody>
</table>

- **Agent is OK?**
- **Android effective?**
- **Mechanical Robot**
Dialogue Roles of Adult Androids

- **Counseling**
 - Long & deep interaction
 - Role of Listening
 - One person

- **Interview**
 - Short and shallow interaction
 - Role of Listening
 - Several persons

- **Receptionist, Attendant**
 - Long but no interaction
 - Role of Talking (to)
 - Many people

- **Guide**
- **Newscaster**
Chatting function

• Desired in many cases (most of the tasks)
 • Ice-breaking in the first meeting
 • Relaxing during a long interaction
 • Keeping engagement

• Can be done without robots/agents (cf.) chatbot
• Will be more engaging with robots/agents
2. What kind of robots are suitable for the tasks?
Robot’s Appearance ➔ Affordance

People assume robot's capabilities based on its appearance
• Looks like a human ➔ expected to act like a human
• Has eyes ➔ expected to see
• Speaks ➔ expected to understand human language and converse
 • Speaks fluently ➔ expected to communicate smoothly
• Expresses emotion with facial expressions ➔ expected to read emotions

Animal (Non-Humanoid) Robots
Stuffed Animals Talking (some listening)

- Aibo
- Paro
- ???

Substitute of a pet
Child-like or Child-size Humanoid Robots

• CommU

• Nao

• Palro

Substitute of a grandchild

©VSTONE, Osaka U

© Softbank robotics

© Fuji soft
Adult-size Humanoid Robots

- Robovie
- Asimo
- Pepper

Expected to do something
But still child-like! → Implying not so intelligent
Adult Androids

• ERICA

Debut in 2015
How long can you keep talking?

• Smart Speaker

• Virtual Agent

• Humanoid Robot

• Human
 (A person you meet for the first time)
How long can you keep talking (about one story)?

- Pet
- Kid (~10 year old)
- Baby
- Humanoid
- Android
Comparison of Dialogue Interfaces

<table>
<thead>
<tr>
<th>Smart Speaker</th>
<th>Virtual Agent</th>
<th>Pet Robot</th>
<th>Humanoid Robot</th>
<th>Adult Android</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Would like to have at home?
Would like to have at office?
Asking today’s schedule
Talking about your life
Companion for senior
Comparison of Dialogue Interfaces

<table>
<thead>
<tr>
<th>Smart Speaker</th>
<th>Virtual Agent</th>
<th>Pet Robot</th>
<th>Humanoid Robot</th>
<th>Adult Android</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Would you give a nickname?

- ???
- ???
- ???
- ???
- ???
Difference between Virtual Agents vs. Humanoid Robots/Androids?

• **Physical presence** + mobility
• **Multi-modality** + flexibility
 • Hard to make mutual gaze with virtual agents
• Robots are deemed to be more autonomous than agents
 • Move and act autonomously
 • Can be a partner
• ???

BUT
• Robots are expensive and difficult to install and maintain
Physical Presence of Robots

• Attract people
 • Can robots hand out flyers on the street better than human?
 • Can robots attract people to (izakaya) restaurant better than human?
 • Effective in the beginning
 • Especially for kids and senior people

• Attachment

• Bullying by group of kids
 (cf.) Virtual agents cursed
Physical Presence of Robots NOT NECESSARY

• When the task goal is information exchange and the user is collaborative

• Information exchange tasks
 • Must be done efficiently/ASAP
 • Short interaction (command, query) → smartphones, smart speakers
 • Long interaction (news, tutor) → virtual agents

• Not ‘collaborative’ users
 • Kids and senior people who do not understand the protocol
Dialogue Category (Tasks)

<table>
<thead>
<tr>
<th></th>
<th>No Resource (Dialog is task)</th>
<th>Information Services</th>
<th>Physical Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal observable</td>
<td>Negotiation</td>
<td>Search, Order</td>
<td>Manipulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receptionist</td>
<td>Porter, Cleaner</td>
</tr>
<tr>
<td>Content definite</td>
<td>Debate</td>
<td>Newscaster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interview</td>
<td>Tutor, Guide</td>
<td></td>
</tr>
<tr>
<td>Objective shared</td>
<td>Counseling</td>
<td>Attendant</td>
<td>Helper</td>
</tr>
<tr>
<td></td>
<td>Speed dating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No clear objective</td>
<td>Chatting</td>
<td></td>
<td>Mechanical Robot</td>
</tr>
<tr>
<td>(socialization)</td>
<td>Companion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agent is OK?

Android effective?
Face-to-Face Multimodal Interaction

• Necessary for long and deep interaction
 • Talk about troubles or life
 (ex.) counseling
 • To know communication skills and personality
 (ex.) job interview, speed dating

• Multimodality
 • Mutual gaze...possible only with adult androids (?)
 • Head/body orientation
 • Hand gesture
 • Nodding
Dialogue Roles of Adult Androids

- **Counseling**: Long & deep interaction, should be autonomous and multi-modal.
- **Interview**: Short and shallow interaction.
- **Receptionist, Attendant**: Long but no interaction.
- **Guide**: Agent is OK.
- **Newscaster**: Role of Listening (One person)

Role of Talking (to):
- One person
- Several persons
- Many people
Tool ↔ Companion, Partner

- Smartphone Assistants
- Smart Speakers
- Communicative Robots
3. Why spoken dialogue is NOT working well with robots?
Agenda (Research Questions)

0. Why social robots are not prevailing in society?
1. What kind of tasks are social robots expected to conduct?
2. What kind of social robots are suitable for the tasks?
3. Why spoken dialogue is not working with robots?
 1. ASR and TTS
 2. SLU+DM (end-to-end?)

4. What kind of non-verbal and other modalities are useful?
 1. Backchannel, turn-taking
 2. Eye-gaze

5. What kind of system architectures are suitable?
6. What kind of ethical issues must be considered?
Architecture of Spoken Dialogue System (SDS)

“What is the weather of Kyoto tomorrow?”

Ask_Weather(PLACE: kyoto, DAY: saturday)

“Kyoto will be fine on this Saturday”

DOMAIN: weather
PLACE: kyoto
DAY: saturday
Architecture of Spoken Dialogue System (SDS)

“How about Tokyo?”

??? (PLACE: tokyo)

DOMAIN: weather
PLACE: tokyo
DAY: saturday

“Tokyo will also be fine on this Saturday”
Automatic Speech Recognition (ASR)
Challenges for **Automatic Speech Recognition (ASR)** for Robots

- **Distant speech**
 - Speaker localization & identification
 - Detection of speech (addressed to the system)
 - Suppression of noise and reverberation
- **Conversational speech**
 - Speech similar to those uttered to human (pets, kids) rather than machines
 - Typical users are kids and senior people
- **Realtime response**
 - Cloud-based ASR servers have better accuracy, but large latency
 - Talking similar to international phone calls
Problems in Distant Speech

- Speaker localization & identification
- Detection of speech (addressed to the system)
- Suppression of noise and reverberation

Smart Speakers
- Don’t care
- Use magic words
- Implemented

Maybe applicable to small (personal) robots
- One person
- Not so distant
Problems in Distant Speech

• Speaker localization & identification
• Detection of speech (addressed to the system)
• Suppression of noise and reverberation

Adult humanoid robots
→ with camera
→ ???
→ Implemented

Multi-modal processing
Detection of Speech addressed to the System

- Eye-gaze (head-pose)...most natural and reliable
- Content of speech
- Prosody of speech
- Machine learning
 - Not accurate enough ← must be close to 100%
- Incorporation of turn-taking model
 - Context is useful
Example Implementation for ERICA
Example Implementation for ERICA

Input

- Microphone array
- Depth camera (Kinect)

- Sound source localization
- Speech enhancement
- Speech recognition
- Prosody extraction
- Position & head-pose tracking

Output

- Dialogue Manager (incl. SLU&LG)
- Text-to-speech
- Lip movement

- Motor controller
- Motion information
- Utterance sentence
- Lip motion information
- Speech signal

- Audio speaker
- ERICA

ERICA
Real Problem in Distant Talking

• When people speak without microphone, speaking style becomes so casual that it is NOT easy to detect utterance units.
 • False starts, ambiguous ending and continuation

• Not addressed in conventional “challenges”

• Circumvented in conventional products
 • Smartphones: push-to-talk
 • Smart speakers: magic word “Alexa”, “OK Google”
 • Pepper: talk when flash

• Incorporation of turn-taking model
 • Context is useful
Distant & Conversational Speech Recognition

Accuracy is degraded with the synergy of two factors

Conversational Speaking-style

Query/command (one-sentence)

Lecture & Meeting
Parliament Switchboard

Human-Human Conversation

Smartphone
Voice search Apple Siri

Home appliance
Amazon Echo Google Home

Close-talk 82%
Gun-mic 72%
Distant 66%

Close-talking Input Distant

90%
90%
93%
95%
Review of ASR
Error Robustness and Recovery

• Task and interaction need to be designed to work with low ASR accuracy
 • Attentive listening

• Confirmation of critical words for actions
 • Command & control
 • Ordering

• Error recovery is difficult
 • Start-over is easier for users, too

• Use of GUI?

© Softbank
Review of ASR
Latency is Critical for Human-like Conversation

• Turn-switch interval in human dialogue
 • Average ~500msec
 • 700msec is too late
 → difficult for smooth conversation (cf.) oversea phone calls

• Many cloud-based ASR hardly meets requirement

• Recent Development of Streaming End-to-End ASR
• All downstream NLP modules must also be tuned
End-to-End Automatic Speech Recognition (ASR)
End-to-End Speech Understanding

Speech (acoustic sequence) → Enhance ment → Acoustic model → Phone model → Lexicon → Lang. model → Concept & Emotion model → Intention, Emotion

Acoustic-to-Concept/Emotion

How to define in open domain?

Prosody
Text-To-Speech Synthesis (TTS)
Requirements in **Text-To-Speech Synthesis (TTS)**

- Very high quality
 - Intelligibility
 - Naturalness *matched to the character* (pet, kid, mechanical, humanoid)

- **Conversational** style rather than text-reading
 - Questions (direct/indirect)

- A variety of non-lexical utterances with a variety of prosody
 - Backchannels
 - Fillers
 - Laughter

Hardly implemented in conventional TTS
End-to-End **Text-To-Speech Synthesis (TTS)**

Tacotron 2 (2017-)

- Seq2seq model: char. seq. \rightarrow acoustic features
- Wavenet: acoustic features \rightarrow waveform
- “Comparable-to-Human performance”
 - Mean Opinion Score (MOS) 4.53 vs. 4.58

https://google.github.io/tacotron/publications/tacotron2/

Turing Test: Tacotron 2 or Human?
Voice of Android ERICA

Conversation-oriented
• Backchannels
• Filler
• Laughter

http://voicetext.jp (ERICA)
Spoken Language Understanding (SLU) and Dialogue Management (DM)
Architecture of Spoken Dialogue System (SDS)

Analysis/Matching → seq2seq model

Automatic Speech Recognition
ASR engine

Text-To-Speech Synthesis
TTS engine

Spoken Language Understanding

Language Generation

Dialog Management

Architecture of Spoken Dialogue System (SDS)
Historical Shift of Methodology

Rule-based (1990s)
- Finite State Machine (FSM)
- Rule-based mapping (SQL)
- Prefixed flow

Statistical Model (2000s)
- Statistical LM (N-gram)
- Discriminative model (SVM/CRF)
- Reinforcement learning (POMDP)

Neural Model (2010s)
- Neural LM (RNN)
- Neural Classifier (RNN)
- Example-based model (VSM)
- Seq2Seq model (encoder-decoder)

Automatic Speech Recognition
Spoken Language Understanding
Dialogue Management
End-to-End model w/o SLU
Semantic Analysis for SLU

• **Domain**

 (ex.) weather, access, restaurant

• **Intent**

 • Many domains accept only one intent

 (ex.) weather, access

 • Some accepts many kinds of queries

 (ex.) scheduler...where, when

• **Slot/Entity**

 • Named Entity (NE) tagger

 • Numerical values

“play queen bohemian rhapsody”

DOMAIN: music_player

INTENT: start_music

SINGER: queen

SONG: bohemian rhapsody
Semantic Analysis for SLU

• **Domain**
 (ex.) weather, access, restaurant

• **Intent**
 • Many domains accept only one intent
 (ex.) weather, access
 • Some accepts many kinds of queries
 (ex.) scheduler...where, when

Classification problem, given entire sentence
• Statistical Discriminative Model: SVM, Logistic Regression
• Neural Classifier: CNN, RNN
Semantic Analysis for SLU

Sequence labeling problem
• Statistical Discriminative Model: CRF
• Neural Tagger: RNN

Domain-independent NE tagger

• Slot/Entity
 • Named Entity (NE) tagger
 • Numerical values

“play queen bohemian rhapsody”
O B-singer B-song I-song

SINGER: queen
SONG: bohemian rhapsody
Dialogue Management

• Decide proper **Action**
 • Make query/command
 • Present results

• Maintain **Context**

“**What is the weather of Kyoto tomorrow?**”

Ask_Weather(PLACE: kyoto, DAY: saturday)

“Kyoto will be fine on this Saturday”

“**How about Tokyo?**”

“Tokyo will be cloudy on this Saturday”
Dialogue Management

- Decide proper **Action**
 - Make query/command
 - Present results

- Prefixed (hand-crafted) flow
 - still pragmatic
 - Google Dialogflow, Microsoft LUIS..

- Reinforcement learning of stochastic model (POMDP)
 - Considers uncertainty/errors in input/processing
 - Difficult for maintenance, minor fix

- Neural model?

"What is the weather of Kyoto tomorrow?"

Ask_Weather(PLACE: kyoto, DAY: saturday)

"Kyoto will be fine on this Saturday"
Incomplete or Ambiguous Queries

• Majority of actions can be done with required slots
 (ex.) Weather ← place (date), Access ← destination, origin,
 Take_object ← object (place)

• If some slot is missing, or some entity is ambiguous, the system
 • needs to ask users
 OR
 • use a default value
 • current location/time
 • most frequently used one
 • present all in GUI

 “Tell me the weather?”
 “Weather in Cambridge?”

 “Which location?”
 “Cambridge in UK or MA, USA?”

← Widely used in smartphone assistants, but not necessarily applicable to robots working in a real world (w/o GUI)
Disambiguation by Dialogue

SHRDLU [Winograd1972]

Operating blocks in virtual world

U: PICK UP A BIG RED BLOCK.

S: OK. (does it)

U: GRASP THE PYRAMID.

S: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

U: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX.

S: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.

U: OK. (does it)
Review of Orthodox SLU+DM

• Show intelligent behaviors
• Complex and not easy to implement

• Hand-crafted rules
 • Easy and practical solution
 • Not flexible and scalable

• Machine learning (Statistical & Neural)
 • Needs a lot of data with annotation
 • Not pragmatic for each task domain
 • Except for standard benchmark datasets and big companies
 • Artificial data generation? or Simulation?

→ Only works for small tasks
→ Only possible for big companies
Alternatives of Orthodox SLU+DM

• End-to-End Dialogue Model w/o SLU
 • Example-Based Dialogue Model
 • Neural Conversation (Seq2Seq) model
Dialogue based on Pattern Matching
ELIZA [Weizenbaum1966]

Counseling

User: Men are all alike.
ELIZA: In what way?
User: They’re always bugging us about something or other.
ELIZA: Can you think of a specific example?
User: Well, my boyfriend made me come here.
ELIZA: Your boyfriend made you come here.
Dialogue based on Pattern Matching
ELIZA [Weizenbaum1966]

<table>
<thead>
<tr>
<th>Word:Rank</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>alike:10</td>
<td>In what way?</td>
</tr>
<tr>
<td></td>
<td>What resemblance do you see?</td>
</tr>
<tr>
<td>always:5</td>
<td>Can you think of a specific example?</td>
</tr>
<tr>
<td></td>
<td>Really, always?</td>
</tr>
<tr>
<td>what:2</td>
<td>Why do you ask?</td>
</tr>
<tr>
<td></td>
<td>Does that interest you?</td>
</tr>
</tbody>
</table>
Example-Based Dialogue Model

Human input:

- "We are going to Tokyo for a meeting"
- "we are going to PLACE for a meeting"

Table:

<table>
<thead>
<tr>
<th>Input (example template)</th>
<th>Action / Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>what is the weather of PLACE</td>
<td>Weather(PLACE, today)</td>
</tr>
<tr>
<td>is PLACE fine on DAY</td>
<td>Weather(PLACE, DAY)</td>
</tr>
<tr>
<td>I am going to PLACE</td>
<td>Access(current, PLACE)</td>
</tr>
<tr>
<td>Tell me how to get to PLACE</td>
<td>Access(current, PLACE)</td>
</tr>
<tr>
<td>It is hot today</td>
<td>turn_on_airconditioner</td>
</tr>
<tr>
<td></td>
<td>“Why don’t you have some beer?”</td>
</tr>
</tbody>
</table>

Human output:

- "Here is a direction to get to Tokyo"
Example-Based Dialogue Model

- Vector Space Model (VSM)
 - Feature: Bag-Of-Words model (1-hot vector \rightarrow word embedding)
 - Metric: cosine distance weighted on content words

- Neural model
 - Compute similarity between input text and example templates (in shortlist)
 - Elaborate matching by considering context
 - Needs a training data set
Incorporation of Information Retrieval (IR) and Question Answering (QA)

• Example database...limited & hand-crafted

• IR technology to search for relevant text
 • Large documents or Web
 • Manuals, recipe “How can I change the battery?”
 • Wikipedia “I want to visit Kinkakuji temple”
 • news articles “How was New York Yankees yesterday?”
 • Need to modify the text for response utterance

• QA technology to find an answer
 • Who, when, where...
 • When was Kinkakuji temple built?
 • How tall is Mt. Fuji?
 • Works only with limited cases
Review of Example-Based Dialogue Model

• Easy to implement and generate high-quality responses
 • Pragmatic solution for working systems and robots

• Applicable only to a limited domain and not scalable
 • ~hundreds of patterns

• Does not consider dialogue context
 • One query → One response
 • Need an anaphora resolution for “he/she/it”
 • Shallow interaction, Not so intelligent
Neural Conversation Model

Response:

```
i
am
fine
<eos>
```

Input:

```
how
are
you
<eos>
i
am
fine
```
Encoder-Decoder (Seq2Seq) Model with Attention Mechanism

Response Y_j

Distribute rep. H_t

Input X_t

I am fine and how about you

Decoder LSTM

(Σ $a_i h_i$)

weight

Attention mechanism

Encoder LSTM

Word embedding

hello how are you doing in these days

$a_i = f(s_i, h_i)$
Encoder-Decoder (Seq2Seq) Model with Attention Mechanism

- Encode input sequence via LSTM
- Decode with another LSTM
 - Asynchronous with input
- Weights on encoded LSTM output ($\Sigma a_i h_i$)
 - Weight a_i are computed based on decoder state and output
- End-to-end joint training
Review of Neural Seq2Seq Model

• Needs a huge amount of training data
 • Ubuntu [Lowe et al 15] software support
 • Reddit [Yang et al 2018] text on bulletin boards

• Consider dialogue context (by encoding)
• Do NOT explicitly conduct SLU to infer intent and slot values
• NOT straightforward to integrate with external DB & KB
• Converge to generic responses with little diversity
 • Frequent and acceptable in many cases
 “I see”, “really?”, “how about you?”
Ground-truth in Dialogue (?)

• Many choices in response given a user input

• Trade-off
 • Safe (boring)
 • Elaborate (challenging)

• Simple retrieval or machine learning from human conversations is NOT sufficient

 • Filter golden samples

 • Need a model of emotions, desire and characters

I like cheese.
(a) That’s good. (Reaction)
(b) I like blue cheese. (Statement)
(c) What kind of cheese? (Question)
(Summary) Review of Dialogue Models

- SLU + Dialog Flow
 - Suitable for goal-oriented (complex) dialogue
 - Provide appropriate interactions for limited scenarios

- Example-Based Dialogue and QA
 - Suitable for simple tasks and conversations
 - One response per one query

- Chatting based on Neural Seq2Seq Model
 - Very shallow but wide coverage
 - Useful for ice-breaking, relaxing and keeping engagement

Hybrid Combination
4. What kind of non-verbal and other modalities are useful for human-robot interaction?
Non-verbal Issues in Dialogue
Protocol of Spoken Dialogue

- **Human-Machine Interface**
 - Command & Control
 - Database/Information Retrieval
 - One command/query → One response
 - No user utterance → No response

- **Human-Human Dialogue**
 - Task goals are not definite
 - Many sentences per one turn
 - Backchannels

Half duplex

Full duplex
Non-lexical utterances
--“Voice” beyond “Speech”--

• Continuer Backchannels: “right”, “はい”
 • listening, understanding, agreeing to the speaker

• Assessment Backchannels: “wow”, “へー”
 • Surprise, interest and empathy

• Fillers: “well”, “えーと”
 • Attention, politeness

• Laughter
 • Funny, socializing, self-pity
Comparison of Dialogue Interfaces

<table>
<thead>
<tr>
<th>Smart Speaker</th>
<th>Virtual Agent</th>
<th>Pet Robot</th>
<th>Child Robot</th>
<th>Adult Android</th>
</tr>
</thead>
</table>

- Continuer BC “right”
- Assessment BC “wow”
- Filler “well”
- laughter
- ???

95
Role of Backchannels

• Feedback for smooth communication
 • Indicate that the listener is listening, understanding, agreeing to the speaker
 “right”, “はい”, “うん”
• Express listener’s reactions
 • Surprise, interest and empathy
 “wow”, “あー”, “へー”
• Produce a sense of rhythm and feelings of synchrony, contingency and rapport
Factors in Backchannel Generation

• Timing (when)
 • Usually at the end of speaker’s utterances
 • Should predict before end-point detection

• Lexical form (what)
 • Machine learning using prosodic and linguistic features

• Prosody (how)
 • Adjust according to preceding user utterance

(cf.) Many systems use same recorded pattern, giving monotonous impression to users
Generating Backchannels

• Conventional: fixed patterns

• Random 4 kinds

• Machine learning: context-dependent (proposed)
Subjective Evaluation of Backchannels
[Kawahara:INTERSPEECH16]

<table>
<thead>
<tr>
<th></th>
<th>random</th>
<th>proposed</th>
<th>counselor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are backchannels natural?</td>
<td>-0.42</td>
<td>1.04</td>
<td>0.79</td>
</tr>
<tr>
<td>Are backchannels in good tempo?</td>
<td>0.25</td>
<td>1.29</td>
<td>1.00</td>
</tr>
<tr>
<td>Did the system understand well?</td>
<td>-0.13</td>
<td>1.17</td>
<td>0.79</td>
</tr>
<tr>
<td>Did the system show empathy?</td>
<td>0.13</td>
<td>1.04</td>
<td>0.46</td>
</tr>
<tr>
<td>Would like to talk to this system?</td>
<td>-0.33</td>
<td>0.96</td>
<td>0.29</td>
</tr>
</tbody>
</table>

• obtained higher rating than random generation
• even comparable to the counselor’s choice, though the scores are not sufficiently high
 • Same voice files are used for each backchannel form
 • Need to change the prosody as well
Role of Fillers

• Signals thinking & hesitation
• Improves comprehension
 • Provide time for comprehension
• Attracts attention & improves politeness
 • Mitigate abrupt speaking

• Smooth turn-taking
 • Hold the current turn, or Take a turn
Factors in Filler Generation

• Timing (when)
 • Usually at the beginning of speaker’s utterances

• Lexical form (what)
 • Machine learning using prosodic and linguistic features and also dialogue acts

• Prosody (how)
 ???

(cf.) frequent generation of fillers (at every pause) is annoying
Generating Fillers

• No filler

• Filler before moving to next question
Generating Laugher

• People laugh not necessarily because funny
• But to socialize and relax
 • Should laugh together (shared-laughter)
• Sometimes for masochistic
 • Should not respond to negative laugher
Detection of Laughter, Backchannels & Fillers

Detection result

Ground truth
Turn-taking
Protocol of Spoken Dialogue

• Human-Machine Interface
 • One command/query → One response
 • No user utterance → No response

• Human-Human Dialogue
 • Many sentences per one turn
 • Backchannels

Half duplex

Full duplex
Tool ↔ Companion, Partner

- Smartphone Assistants
- Smart Speakers
- Communicative Robots
Flexible Turn-taking

• Natural turn-taking ⇐ push-to-talk, magic words

• Avoid speech collision (of system utterance in user utterance) ⇒ required
 • Latency of robot’s response

• Allow barge-in (user utterance while system speaking)? ⇒ challenging
 • ASR and SLU errors

• Machine learning using human conversation is not easy
 • Behavior is different between human-human and human-robot
 • Turn-taking is arbitrary, no ground-truth
“What do you like to eat?”

Speaker A

Obvious?

Speaker B

“I like Sushi.”
Turn-keep/switch after Statement?

Speaker A: "I like Sushi very much."

Ambiguous

Speaker B: "Sushi is best in Japan."

Response: "I like Tempura."
Turn-keep/switch after Response?

“I like Sushi.”

“I like Tempura, too.”
“Sushi is best in Japan.”
“What do you like?”
“Sushi is best in Japan.”

“What do you like?”

“Have you tried Sushi?”
Turn-taking Prediction Model

- System needs to determine if the user keeps talking or the system can (or should) take a turn

- Turn-taking cue (features) \(\rightarrow\) can be different between human and robot
 - Prosody...pause, pitch, power
 - Eye-gaze

- Machine learning model \(\rightarrow\) ground truth? Turn-taking is arbitrary
 - Logistic regression...decision at each end of utterance
 - LSTM...frame-wise prediction, but decision at each end of utterance
Proactive Turn-taking System

- Fuzzy decision ← Binary decision
- Use fillers and backchannels when ambiguous

<table>
<thead>
<tr>
<th>User status</th>
<th>System action</th>
</tr>
</thead>
<tbody>
<tr>
<td>User definitely holds a turn</td>
<td>nothing</td>
</tr>
<tr>
<td>User maybe holds a turn</td>
<td>continuer backchannel</td>
</tr>
<tr>
<td>User maybe yields a turn</td>
<td>filler to take a turn</td>
</tr>
<tr>
<td>User definitely yields a turn</td>
<td>response</td>
</tr>
</tbody>
</table>
Turn-keep/switch after Statement?

“I like Sushi very much.”

“Sushi is best in Japan.”

Please go on!

“right.”
"I like Sushi very much."

"Well,"

"Sushi is best in Japan."

Speaker A

- Statement

Speaker B

- filler

- Statement

Turn-keep/switch after Statement?
Use Filler (+Gaze Aversion) for Proactive Turn-taking
References

Agenda (Research Questions)

0. Why social robots are not prevalent in society?
1. What kind of tasks are social robots expected to perform?
2. What kind of social robots are suitable for the tasks?
3. Why spoken dialogue is not working with robots?
 1. ASR and TTS
 2. SLU+DM (end-to-end?) [optional]

4. What kind of non-verbal and other modalities are useful?
 1. Backchannel, turn-taking
 2. Eye-gaze, gestures
5. What kind of system architectures are suitable?
6. What kind of ethical issues must be considered?
Gaze and Attention

Attention: a process to select the information that enters working memory to be processed (Knudsen, 2007)

 - Global processing: long saccades and short fixations early in the viewing to get a gist of a scene and the main regions of interest
 - Local processing: short saccades and long fixations later in the viewing to examine the focus of attention in more details

- Eye-gaze in everyday activities (Land, 2006)
 - Proactive and preparatory information
 - Gaze and gesture coordination: look ahead before manipulating them

Visual Attention in Interaction

Primary gaze function is to get information. Also, gaze indicates one’s attention, engagement, and presence. It coordinates and organises interaction.

 - Focus of shared attention
 - Coordination of turn-taking (mutual gaze)
 - “Pointing device”
 - Conversational feedback
 - Building trust and rapport
Measurements

- **Frequency** of fixations on AOI (area of interest)
- **Duration** of individual fixations on the AOI
- **Accumulated fixations** time on the AOI
- **Average Gazing Ratio (GR):**

\[
Gazing Ratio = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{DG(i)}{\text{duration of } \text{window}} \right)
\]

Fixations (stops):
fixation length 80-120 ms, ave 3 fixations/sec

Saccades (jumps):
fast eye-movements, during which we’re practically blind

\begin{figure}
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{Diagram showing the time progression of a participant's utterance and fixations before, during, and after the utterance.}
\end{figure}
Eye-gaze in predicting turn-taking

• Spoken dialogues studies
 • Acoustic correlates at suitable turn-taking places
 • Pause length: usually about 0.2 second pause, but if longer than 0.5 seconds, the current speaker is likely to continue talking

• Eye-gaze in interactions
 • Speakers look at face area 99% of time
 • Mutual gaze to agree on the change of speaker
 • Gaze activity changes more at start of utterance than in middle or end of utterance
 • Gaze wanders off quickly after start of utterance, but fixates on partner a long time before end of utterance

• Eye-gaze helps to distinguish who will speak after pauses
 • Gaze aversion and longer pause signals hesitation
 => the current speaker wants to hold the turn
 • Gaze at the partner and longer pause signals end of utterance
 => the speaker wants to give turn to the partner

Gaze behavior in three-party conversations

- Interlocutors: speaker, active partner, silent partner
- More gazing to the active partner than to the silent one
- More gaze activity to both partners when speaking than when listening or backchannelling
 - When speaking, gaze is divided between partners
 - When listening, gaze is directed at the active partner

- Silent partner’s impact on the conversation:
 - If silent partner is passive (not moving), Subject gazes at the silent partner’s face less often but twice as long than when this is engaged (seems to listen actively)
 - If the silent partner passive, Subject gazes at the background more than engaged actively

Eye-gaze and unexpected dialogue breakdowns

Using the AICO corpus (Jokinen 2020) and gaze ratio measurement:

• Usually participants tend to gaze away from the robot after they finish speaking (up to 200ms) and start to gaze at the robot when the robot gives feedback (after 200ms) → Correctly understood or Misunderstood utterances

• Unexpected responses (robot gives no feedback or says something unexpected) produce a different gaze pattern: participants gaze at somewhere else than the robot (after 200ms)
→ Not-understood utterances

Cognitive processing demands are reflected in the eye-gaze behaviour

Gaze ratio: Ave. ratio between duration of looking at the partner within a window and length of the window

All utterances include Other and Backchannel

Comparison of Eye Gazes in HHI and HRI

- Participants tend to look at “face” in HHI and “body” in HRI.
- In HHI, humans monitor partner’s reactions expressed by face and eyes, which provide necessary information.
- In HRI, participants focus on the robot’s body rather than on its face, since the face does not provide “live” information about its internal state like its emotion or intention.
- Results concern Nao robotic face, may be different for Erica’s android face.

<table>
<thead>
<tr>
<th>Story-telling</th>
<th>Human-Human</th>
<th>Human-Robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>Face</td>
<td>Face, Body</td>
</tr>
</tbody>
</table>

Laohakangvalvit, T., Jokinen, K. (2019). Eye-gaze Behaviors between Human-Human and Human-Robot Interactions in Natural Scene. ERCEM, August 2019
Comparison of Eye Gazes in HHI and HRI (results)

Laohakangvalvit, T., Jokinen, K. (2019). Eye-gaze Behaviors between Human-Human and Human-Robot Interactions in Natural Scene. ERCEM, August 2019
Eye-gaze and perceived personality traits

Questionnaire (7-point Likert scale) composed on 10 questions on perceived personality, paired with Big5 personality scale:

- I believe the participant to be:
 - 1. Extraverted, enthusiastic
 - 2. Critical, quarrelsome
 - 3. Dependable, self-disciplined
 - 4. Anxious, easily upset
 - 5. Open to new experiences
 - 6. Reserved, quiet
 - 7. Sympathetic, warm
 - 8. Disorganized, careless
 - 9. Calm, emotionally stable
 - 10. Conventional, uncreative

Big 5 Model (McCrae 2002):
- Extraversion (1 & 6)
- Agreeableness (2 & 7)
- Conscientiousness (3 & 8)
- Emotional stability (4 & 9)
- Openness (5 & 10)

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Emotion stability</th>
<th>Openness to experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of all gaze-event in HHI (N = 10)</td>
<td>ρ = .69, p < .05</td>
<td>n/s</td>
</tr>
<tr>
<td>Number of gaze face event in HHI (N = 10)</td>
<td>ρ = .73, p < .05</td>
<td>n/s</td>
</tr>
<tr>
<td>Number of gaze body event in HHI (N = 10)</td>
<td>n/s</td>
<td>ρ = −.72, p < .05</td>
</tr>
<tr>
<td>Average duration of gaze body event in HRI (N = 10)</td>
<td>n/s</td>
<td>ρ = .69, p < .05</td>
</tr>
</tbody>
</table>

- Positive correlation between frequency of gaze to partner’s face in HHI & perceived emotional stability of the subject -> relaxed, interest in the partner, deals well with stress
- Positive correlation between average duration of gaze to partner’s body in HRI & perceived openness to experience of the subject -> curiosity towards the robot
- Other factors besides personality: social politeness, interest in robot gesturing, type of robot (Nao-robot)

Gesturing and intercultural aspects in HHI and HRI

- Hand, head and body gestures in
 - human-human interaction vs human-robot interaction
 - Japanese vs English interaction

- AICO Corpus (Jokinen, 2020)
 - 60 conversations (30 participants × 2 sessions)
 - 20 Japanese + 10 English speaking participants
 - 30 human-human (HH) + 30 human-robot (HR) interactions
 - Annotated with gesture form and function based on the MUMIN annotation scheme (Allwood et al. 2007)

- Hand gestures are 6 times more frequent in English than Japanese HHI, with more varied form and function, but the difference is not big in HRI
- Head gestures reduced significantly in HRI, but the difference between Japanese and English speakers is not big
- Body gestures increased in HRI, and English speakers produced more body gestures than Japanese

- Gesture detection and activity analysis are important for HRI, but it is important to elicit human gesturing in HRI first
Situational Awareness

Endsley (1995)

- Knowledge of the world, partner, “what is going on”
- States of knowledge (dialogue states)
- Perception, feedback, and action

→ Ability to communicate smoothly in a given situation
WikiTalk and WikiListen
Towards listening robots that can join in conversations with topically relevant contributions

WikiTalk: Wikipedia-based talking
- Robots can talk fluently about thousands of topics using Wikipedia information
- Robots make smooth shifts to related topics predicted from Wikipedia links
- Topics are disambiguated using the continuously changing dialogue context

WikiListen: Wikipedia-based listening
- Robots will listen to multiparty human conversations and track changing topics
- Wikification of speech to link mentioned entities and events to Wikipedia articles
- Later, robots will learn to join in with topically relevant dialogue contributions

Challenges
- Progress on multiparty speech recognition
- Progress on robust wikification of speech
- Ethical, legal & social issues of listening robots (saving/clearing short/long-term memories)

Agenda (Research Questions)

0. Why social robots are not prevalent in society?
1. What kind of tasks are social robots expected to perform?
2. What kind of social robots are suitable for the tasks?
3. Why spoken dialogue is not working with robots?
 1. ASR and TTS
 2. SLU+DM (end-to-end?)
 \[\text{optional}\]
4. What kind of non-verbal and other modalities are useful?
 1. Backchannel, turn-taking
 2. Eye-gaze
5. What kind of system architectures are suitable?
6. What kind of ethical issues must be considered?
Co-creating Interaction

Reaction
- Production of one’s own action
- Refinement and execution of the plan

Understanding
- Meaning creation for the symbols in the context
- Establish joint goals, plans

Perception
- Recognition of communicative signals (symbols)
- Build representation of concepts

Contact
- Hearing/seeing/touching (distance)
- Establish the communicative situation

Grounding and Mutual Context

Allwood (1976), Jokinen (2009)
Co-creating Interaction

Reaction
- Production of one’s own action
- Refinement and execution of the plan

Understanding
- Meaning creation for the symbols in the context
- Establish joint goals, plans

Perception
- Recognition of communicative signals (symbols)
- Build representation of concepts

Contact
- Hearing/seeing/touching (distance)
- Establish the communicative situation

Jokinen (2009)
Constructive Dialogue Modelling (CDM)

Sets of modules which correspond to the four communicative enablements

Jokinen (2009, 2019)
More modularised system architecture

Contact
- Signal Detection Module
- ASR Module
- Gaze Recognition Module
- Gesture Recognition Module

Perception
ASR+keyword spotting
- Attention
- ASR Module
- Gaze Recognition Module
- Gesture Recognition Module

Understanding
- Event-based semantics
 - TopicRec, "Proposals"
- NLP Module
- Interaction Module
- Decision Making Module
- Learning Module
- Context
- Ontology
- Digital Knowledge Base

Reaction
- Template Generation
 - "Autonomous Life"
- TTS Module
- Head Action Module
- Gesture Action Module

More end2end integration (deep learning)
Yoshua Bengio (IJCAI 2018)

• What’s Missing with Deep Learning?
• Answer: Deep Understanding

• Learning « How the world ticks »
 • So long as our machine learning models “cheat” by relying only on superficial statistical regularities, they remain vulnerable to out-of-distribution examples
 • Humans generalize better than other animals thanks to a more accurate internal model of the **underlying causal relationships**
 • To predict future situations (e.g., the effect of planned actions) far from anything seen before while involving known concepts, an essential component of reasoning, intelligence and science
 • Deep learning to expand from perception & system 1 cognition to reasoning & system 2 cognition (Kahneman (2011) *Thinking, Fast and Slow.*)
Subsumption Architecture for Autonomous Robots

Brooks (1986), Li et al. (2016)
Context-Aware Cognitive Agent Architecture

MULTIMODAL INPUTS

- Speech
- Gaze
- Gesturing
- Sensoring
- IoT data

DATA FUSION

Goals, reason to interact

Task plans, memories

Dialogue policy

Topic

Dialogue State

Reference

NLU, NLG

Attention

Signal detection

MULTIMODAL OUTPUTS

Dialogue Acts (Speech, Text)

Physical Acts (Gaze, Gesturing, Moving)

Jokinen (2020). Robotdial. IJCAI.

Subsumption architecture with a hierarchy of layers which relate to behavioural competences = communicative enablements
Agenda (Research Questions)

0. Why social robots are not prevalent in society?
1. What kind of tasks are social robots expected to perform?
2. What kind of social robots are suitable for the tasks?
3. Why spoken dialogue is not working with robots?
 1. ASR and TTS
 2. SLU+DM (end-to-end?)
 \[\text{optional}\]
4. What kind of non-verbal and other modalities are useful?
 1. Backchannel, turn-taking
 2. Eye-gaze
5. What kind of system architectures are suitable?
6. What kind of **ethical** issues must be considered?
Human-like, but not human communication

- Reeves and Nass: anthropomorphize inanimate objects
- Mori: Uncanny valley
- Moore 2012: Bayesian explanation of Uncanny Valley: Cognitive Dissonance between conflicting categories
- Jokinen and Watanabe (2019): Robots as boundary-crossing agents for new services
Robot’s Dual Characteristics

Robot as a smart computer
- Processing capability
- Accurate movement/mobility
- Information from Internet

Robot as a smart agent
- Dialogue capability
- Social awareness
Boundary Crossing Robots

• Facilitate interaction and mutual intelligibility between different perspectives
 • Novel ways to interact with social robots as cooperative agents

• Different boundaries to cross:
 • Conceptual categorization
 • Team membership
 • Expectations on understanding

• Experiments with various types of social robots
• Assigning a clear role to the robot agent in the context

• Goal
 • not only to increase user’s positive experience with robot
 • but to minimize differences between the user’s expectations and experience of social robot agents

• Symbiotic relation between humans and robots
Ethics, trust, and reliability

- **Data storing and privacy**
 - Encryption, secure identification, periodic deletion

- **Issues in the development of dialogue systems**
 - Unintentional biases in the data for the development of dialogue models
 - Data sharing, transfer learning, sensitive info, masking
 - Delivery of sensitive information: critical vs. less important info
 - System evaluation: new evaluation metrics, acceptance and suitability: what is conversational adequacy?

- **Legal issues**
 - Awareness and conscious agreement of recording, logging
 - Ownership of the dialogue data and its use
 - Access rights to interactive situations (family, friends, staff, passers-by, officials)
 - Responsibility for actions and information (inaccurate, unreliable, prejudiced, ...)
Ethical issues for social robot applications

- **Personalisation** and individual preferences
 - Embodiment, appearance, digital
 - True information vs. respecting the person’s view-point
- **Long-term interactions**
 - Affection and emotional support
 - Mutual trust
 - Learning interaction strategies through interaction
 - Recorded changes count towards long-term monitoring
 - Tradeoff between security & safety vs. privacy
- **Social norms** and general principles
 - Appropriate, trustworthy and acceptable behaviour
 - Different cultures, different social norms
- **Standards** and standardisation
 - Maximize compatibility, interoperability, safety, quality, explainability
 - Repeatability or creative variation
- **Participatory research**
 - Involving final users

Acceptance and impact

What kind of robot systems are desirable? (function, appearance)

Where can the social robot make a difference?
Future capabilities of social robots?

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can a robot be a counselor?</td>
<td></td>
</tr>
<tr>
<td>Can a robot assess a human?</td>
<td></td>
</tr>
<tr>
<td>Can AI assess a human?</td>
<td></td>
</tr>
<tr>
<td>Can robot have conflicting goals with humans?</td>
<td></td>
</tr>
<tr>
<td>Can a robot have a personality?</td>
<td></td>
</tr>
<tr>
<td>Can a robot be a soul mate of a senior person?</td>
<td></td>
</tr>
<tr>
<td>Can an AI agent be a soul mate (lover) of a young person?</td>
<td></td>
</tr>
</tbody>
</table>
Future capabilities of social robots?

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can a robot be a counselor?</td>
<td>yes</td>
</tr>
<tr>
<td>Can a robot assess a human?</td>
<td>yes</td>
</tr>
<tr>
<td>Can AI assess a human?</td>
<td>yes</td>
</tr>
<tr>
<td>Can robot have conflicting goals with humans?</td>
<td>yes</td>
</tr>
<tr>
<td>Can a robot have a personality?</td>
<td>yes</td>
</tr>
<tr>
<td>Can a robot be a soul mate of a senior person?</td>
<td>yes</td>
</tr>
<tr>
<td>Can an AI agent be a soul mate (lover) of a young person?</td>
<td>yes</td>
</tr>
</tbody>
</table>
Examples of the capabilities

<table>
<thead>
<tr>
<th>Question</th>
<th>Example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can a robot be a counselor?</td>
<td>Eliza (Weizenbaum 1966), Ellie (ICT, 2011, https://ict.usc.edu/prototypes/simsensei/)</td>
</tr>
<tr>
<td>Can AI assess a human?</td>
<td>Personality tests, job interviews, implicit assessment of articles by author information, ...</td>
</tr>
<tr>
<td>Can robot have conflicting goals with humans?</td>
<td>HAL2000, navigation obstacles, recommendations unacceptable</td>
</tr>
<tr>
<td>Can a robot have a personality?</td>
<td>Affection, humor, appearance, ...</td>
</tr>
<tr>
<td>Can a robot be a soul mate of a senior person?</td>
<td>Companion robots</td>
</tr>
<tr>
<td>Can an AI agent be a soul mate (lover) of a young person?</td>
<td>Companion robots</td>
</tr>
</tbody>
</table>
Future capabilities and ethics

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should a robot provide counseling?</td>
<td></td>
</tr>
<tr>
<td>Should a robot perform assessment of a human?</td>
<td></td>
</tr>
<tr>
<td>Should AI perform assessment a human?</td>
<td></td>
</tr>
<tr>
<td>Should robot be allowed to have conflicting goals with humans?</td>
<td></td>
</tr>
<tr>
<td>Should a robot have a personality?</td>
<td></td>
</tr>
<tr>
<td>Should a robot be a soul mate of a senior person?</td>
<td></td>
</tr>
<tr>
<td>Should an AI agent be a soul mate (lover) of a young person?</td>
<td></td>
</tr>
</tbody>
</table>
Future capabilities and ethics

“It is important to reflect how the capabilities and characteristics of current robot agents *can* shape the world and our reality (skills) and how such agents *should* shape the future societies and services (needs)”

Future capabilities and ethics

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should a robot provide counseling?</td>
<td>???</td>
</tr>
<tr>
<td>Should a robot perform assessment of a human?</td>
<td>???</td>
</tr>
<tr>
<td>Should AI perform assessment a human?</td>
<td>???</td>
</tr>
<tr>
<td>Should robot be allowed to have conflicting goals with humans?</td>
<td>???</td>
</tr>
<tr>
<td>Should a robot have a personality?</td>
<td>???</td>
</tr>
<tr>
<td>Should a robot be a soul mate of a senior person?</td>
<td>???</td>
</tr>
<tr>
<td>Should an AI agent be a soul mate (lover) of a young person?</td>
<td>???</td>
</tr>
</tbody>
</table>
Development of Interactive Agents

- Oeh Oeh !
- Oeh Oeh ha ?
- Oeh.

- Me hungry! You Food?
- Me Food! You water?
- Come! Me water!
Development of Interactive Agents

- Nice weather, isn't it?
- Yes, very nice.
 How is your wife?
- Fine, thank you.

- I just did the Turing test
 - And?
- Passed it, no problem!
Some References

Some References

• Mori, T., Jokinen, K., Den, Y. 2020. Analysis of Body Behaviours in Human-Human and Human-Robot Interactions *LREC ONION Workshop on peOple in laNguage, vlsiOn and the mind*.

• Nakano, Y., Conati, C., Bader, T. 2013. Eye Gaze in Intelligent User Interfaces, Springer
