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Introduction,

Purpose of this Tutorial

• Overview of existing deep-learning frameworks for human language technology (HLT) related tasks
• Discuss core features of higher-level frameworks in context of sequence processing
• Discuss application oriented features in context of machine translation, speech recognition and other tasks
• Compare needs of researchers to requirements for production systems
• Compare our framework RETURNN to other frameworks

What this tutorial is not about:
• Designing full pipelines for HLT tasks
• Explaining how to write complete RETURNN setups

Introduction,
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Introduction,

Target Audience

This tutorial is mostly targeting:
• Active framework and toolkit contributors
• Developers working on HLT related software
• Researchers interested in flexible neural architecture design

Prerequisite knowledge:
• Being familiar with sequence tasks and HLT
• Basic knowledge about deep learning platforms and frameworks (e.g. TensorFlow, PyTorch, MXNet...)
• Experience with designing and training neural networks
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Introduction,

Terminology: Framework
Machine learning/deep learning software can have many different terms:

• TensorFlow:
– "end-to-end open source machine learning platform" (Homepage / README)
– "Open Source Machine Learning Framework" (GitHub description)
– "open source software library for numerical computation using data flow graphs" (README 2015-2018)

• PyTorch:
– "open source machine learning framework" (homepage)
– "open source machine learning library" (Wikipedia)

• Keras:
– "the Python deep learning API"

• OpenSeq2Seq, ESPNet, Fairseq:
– "... toolkit ..."

We will discuss the conceptual and implementation aspects, not specific tools or scripts:
→ In this presentation we will stick to the term "framework"

Introduction,
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Introduction,

Content and Speakers

Part 1: Implementation of Machine Learning for Sequence Processing
Frameworks Overview
Flexibility vs. Efficiency vs. Simplicity
Concepts
Recurrency
Training
Native Operations
Conclusion

Part 2: Specific Models & Applications
Introduction
Machine translation (RNN/Transformer-based encoder-decoder-attention)
Speech recognition (Hybrid HMM, Attention, other end-to-end approaches)
Language modeling (RNN/LSTM, Transformer)
End-to-end speech translation
Text-to-speech

Conclusion
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Introduction,

Content and Speakers

Part 1: Implementation of Machine Learning for Sequence Processing

Frameworks Overview (Speaker: Nick Rossenbach)
• Defining characteristics of deep-learning frameworks for HLT tasks
• Presenting a broad overview of existing frameworks and their differences

Framework Implementation (Speaker: Albert Zeyer)
• Introduction of RETURNN
• Core concepts of ML frameworks and RETURNN
• Requirements for sequence tasks
• Solutions and implementations

Introduction,
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Introduction,

Content and Speakers

Part 2: Applications (1)

Machine Translation (Speaker: Parnia Bahar)
• Recurrent attention model with attention expansions
• Layer-wise pretraining
• Transformer networks
• Hybrid MT

Automatic Speech Recognition (Speaker: André Merboldt)
• Hybrid HMM and end-to-end networks
• Framework interface (RETURNN ↔ RASR)
• Encoder pretraining
• Transducer model implementation details

Introduction,
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Introduction,

Content and Speakers

Part 2: Applications (2)

Language Modeling (Speaker: Parnia Bahar)
• LSTM and Transformer language modeling
• Language model fusion
• Sampled Softmax

Speech Translation (Speaker: Parnia Bahar)
• Cascade system
• End-to-end modeling
• Transfer learning
• Multi-task learning

Text-to-Speech (Speaker: Nick Rossenbach)
• Tacotron-2 with GST
• Attention extensions
• Vocoder Integration

Introduction,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Part 1: Implementation of Machine Learning for Sequence Processing
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview

Part 1: Implementation of Machine Learning for Sequence Processing
Frameworks Overview
RETURNN
Flexibility vs. Efficiency vs. Simplicity
Concepts
Recurrency
Training
Native Operations
Conclusion
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview

Deep Learning Backends

• Majority of ML applications implemented based on deep-learning platform / backend:
– e.g. TensorFlow, PyTorch or MXNet

• Core features:
– Providing mathematical operations with efficient hardware optimized implementations (CUDA, BLAS, ...)
– Automatic gradient computation

• Extended by large amount of new features:
– Neural network layer definitions
– Graph and parameter management
– Efficient data loading and processing
– Loss and optimizer implementations

• For each backend exist framework extensions or wrappers that reduce programming overhead
– Tensorflow: Keras/TF Addons (integrated), Sonnet
– PyTorch: torch.nn (integrated), Lightning, Ignite
– MXNet: Gluon (integrated)

Section 1.1,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview

Higher-Level Frameworks/APIs

• Features of higher-level frameworks
– Simplifying code structure with model abstraction
– Abstractions for data loading and training
– Pre-defined complex layer modules, e.g. self-attention layer
– Supporting multi-GPU / distributed training
– Encapsulated training process with predefined parameters:

� checkpoints, early stopping, profiling, etc...

• Frameworks designed for HLT tasks may have additional features
– Task specific data (pre-)processing pipelines
– Pre-defined model architectures, e.g. following encoder-decoder concepts
– Example configurations for common tasks, e.g. LibriSpeech or WMT tasks
– Pre-trained models to perform tasks on user-data

Section 1.1,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview

Example Sequence-to-Sequence Frameworks

• Include finished implementations for HLT tasks
• Example configurations for quick model reproduction with nearly no effort

Framework Name Backend Language Highlighted Features Application
Focus

OpenSeq2Seq TensorFlow Python distributed training, powerful config ASR/MT/TTS
Lingvo TensorFlow Python module interface, scalability ASR/IR/MT

Fairseq/Espresso PyTorch Python customizable user plug-ins MT/ASR
ESPNet PyTorch & Chainer Python KALDI integration, many architectures ASR/MT/TTS

Flashlight/Wav2letter++ ArrayFire/CUDA C++ fast training and decoding ASR
Sockeye MXNet Python SOTA MT Architectures MT

→ Differences in configuration flexibility
→ Some frameworks have modular components, some have rather fixed architectures
→ Frameworks may need internal code changes do add new models
→ Some frameworks (or toolkits) are designed for specific tasks, adding new tasks might require a lot of work.

Section 1.1,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview

Flexibility and Features
There are different features, that are not covered by all frameworks:

• Some frameworks are specifically made for providing flexibility
– OpenSeq2Seq, Lingvo, Fairseq: extendable classes for model, encoder, decoder, data, losses, etc...
– OpenSeq2Seq: Python style configuration with possible user code imports
– Lingvo: Everything is a class, even the actual experiment configuration
– Fairseq: Supports user-folder that can implement new tasks, architectures, etc...

• Other frameworks are more focused on specific implementations
– Wav2Letter++: Pre-defined Flashlight modules, simple sequential text-file format for S2S and CTC architectures
– Sockeye: Originally designed for 3 fixed NMT architectures, now extended by more flexible Gluon API

• Frameworks might bring their own implementations
– Flashlight/Wav2Letter++ implements its own functions based on C++, ArrayFire and CUDA
– Lingvo implements custom C++ operations that are accessible via Python

Section 1.1,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview: RETURNN

What is RETURNN
• RWTH extensible training framework for universal recurrent neural networks
• https://github.com/rwth-i6/returnn
• Python, based on TensorFlow, custom C++ / CUDA code
• Can be used as framework and a standalone tool
– Framework (import returnn ...):

� Similar: Keras, PyTorch Lightning
� Can be used to write e.g. custom decoders, server applications, custom train loop, ...
� Embed in existing software (e.g. RASR)

– Tool (rnn.py <config> ...):
� Similar: ESPNet, OpenSeq2Seq, Fairseq, ...
� Write config, run given tool for training, decoding, ... (predefined but flexible tasks)
� Arbitrary architectures and training schemes can be defined, just as flexible as framework

• Very generic, but some of our main applications are:
– Automatic speech recognition (ASR): hybrid HMM-NN models
– ASR / translation encoder-decoder-attention models, other end-to-end models
– Language modeling

• Goals: High flexibility & simplicity & high training speed & high decoding speed
Section 1.1,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview: RETURNN

History of RETURNN

• 2013: Start of project (Theano backend), by Patrick Doetsch and Paul Voigtlaender
• Dec 2016: Start of TensorFlow support (TF 0.12.0), Data class
• Mar 2017: "RETURNN: ...", ICASSP [Doetsch & Zeyer+ 17]
• May 2017: Flexible RecLayer, ChoiceLayer, encoder-decoder attention, beam search
• Jul 2018: "RETURNN as a Generic Flexible Neural Toolkit ...", ACL [Zeyer & Alkhouli+ 18]
• Sep 2018: "... Attention Models for Speech Recognition", Interspeech [Zeyer & Irie+ 18]
• Oct 2018: "Neural Speech Translation at AppTek", IWSLT [Matusov & Wilken+ 18]
• Dec 2018: "... Analysis on Attention Models", IRASL/NeurIPS [Zeyer & Merboldt+ 18]
• May 2019: "... 2D Sequence-to-Sequence Models ...", ICASSP [Bahar & Zeyer+ 19a]
• Sep 2019: "... Local Monotonic Attention Variants", Interspeech [Merboldt & Zeyer+ 19]
• Sep 2019: "Language Modeling with Deep Transformers", Interspeech [Irie & Zeyer+ 19]
• Nov 2019: "... SpecAugment for ... Speech Translation", IWSLT [Bahar & Zeyer+ 19b]
• Dec 2019: "... Transformer and LSTM ... for ASR", ASRU [Zeyer & Bahar+ 19]
• Oct 2020: "... Improved Neural Transducer", Interspeech [Zeyer & Merboldt+ 20]

Section 1.1,
page 7 of 8

RETURNN tutorial | RWTH i6 | 25 Oct



Part 1: Implementation of Machine Learning for Sequence Processing,

Frameworks Overview: RETURNN

Usage as a Tool

• Call rnn.py <config> [–other options]
• Training, forwarding, eval, beam search / decoding, etc (task option)
• Config formats: Python or JSON (with comments)

• Config and/or command line options define:
– Datasets including feature extraction (for train, cv, eval, ...)
– Batching / chunking
– Model/network topology (independent from search or training),
including losses (for eval or training), constraints (L2, ...)
and regularization (dropout, ...)

– Training optimizer (SGD, Adam, momentum, ...)
– Learning rate scheduling logic (Newbob, or constant decay, ...)
– Pretraining logic
– ... and many other things, lots of hooks

• Almost as flexible as framework usage

Section 1.1,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Flexibility vs. Efficiency vs. Simplicity

Part 1: Implementation of Machine Learning for Sequence Processing
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Flexibility vs. Efficiency vs. Simplicity
Concepts
Recurrency
Training
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Part 1: Implementation of Machine Learning for Sequence Processing,

Flexibility vs. Efficiency vs. Simplicity
Features:

• Simplicity
– Writing config / code is simple & straight-forward (setting up experiment, defining model)
– Debugging in case of problems is simple
– Reading config / code is simple (defined model, training, decoding all becomes clear)

• Flexibility
– Allow for many different kinds of experiments / models

• Efficiency
– Training speed
– Decoding speed

All items are important for research, decoding speed is esp. important for production.

Examples:
• CUDA/C++: Very flexible but not simple.
• Pure TensorFlow: Very flexible, not so simple, often not optimal efficiency
• ESPNet: Simple for supported models, needs extra effort for new models

Features imply trade-off.
Section 1.2,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts

Part 1: Implementation of Machine Learning for Sequence Processing
Frameworks Overview
Flexibility vs. Efficiency vs. Simplicity
Concepts
Tensors, Named Tensors, RETURNN Data
Layers
Network Topology & Construction
Dataset Pipeline
Training Execution Guide
Decoding / Beam Search
Recurrency
Training
Native Operations
Conclusion
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

Tensors

• Tensor ≡ N-D array, generalization of scalar (0D), vector (1D), matrix (2D)
• Tensor is the atomic unit of all modern ML frameworks

Example tensors are of shape / format:
• [Batch,Time, Feature]: audio, or any sequence, float32 (dense)
• [Time,Batch, Feature]: more efficient for RNNs
• [Batch,Time]: e.g. class indices for each frame, int32 (sparse)
• [Batch]: e.g. class indices for the whole seq (speaker id or so)
• [Batch,Width,Height, Feature|Channel]: image
• [Batch, Feature|Channel,Width|Time, (Height)]: more efficient for CNNs

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

Tensor Meta Properties
Meta properties about a tensor:

• Shape
– What axes are there, in what order
– What are their dimensions

• Identification of axes/dimensions (or: names / labels)
– Batch
– Input sequence / time
– Output / target sequence
– Feature dimension

• Sequence lengths
– Input
– Targets
– Width/height of an image, or any 2D data

• Data type (float, int, string, ...)
• Categorical data, i.e. class indices (int) (sparse ≡ one-hot vector) →
– How many classes (dimension)
– Maybe some vocabulary

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

Review of Previous Attempts: Named Tensors, Axes have Names

• 2008, Pandas for Python, DataFrame: Labelled tabular data
• May 2014, xarray for Python: N-D labeled arrays
• Feb 2015, AxisArrays.jl for Julia: Each dimension can have a named axis
• Nov 2016, LabeledTensor for TensorFlow: Semantically meaningful dimensions
• Dec 2016, RETURNN / TensorFlow backend, Data wraps tf.Tensor
• Oct 2018, Tensor Shape Annotation Library (tsalib) for TF/PyTorch/NumPy: Named dimensions, e.g. ’btd’
• Jan 2019, HarvardNLP / Alexander Rush, NamedTensor for PyTorch
• Oct 2019, PyTorch has official support for named tensors: E.g. torch.zeros(2, 3, names=(’N’, ’C’))
• Axes have names
– Just a string, e.g. "channel"
– Explicitly specified

• RETURNN Data axes and dimensions are similar but different:
– Predefined with special meaning (e.g. batch)
– Predefined by dataset & implicit by layers

• RETURNN Data contains much more meta information
Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

RETURNN Data Axes / Dimensions

• Dynamic axes have sequence lengths per batch-dim
• Batch axis (B) is special
• Optionally some default time / dynamic axis, and feature-dim axis

• Dynamic axes defined/stored as global unique tag (DimensionTag object)
• Usually no need to manually/explicitly define dimension tags:
• Dynamic axis tags are predefined by dataset
– E.g. input ("data") xT1 :

� Data x has shape [B,T|’time:var:extern_data:data’,F|40] (40 dim. MFCC)
� T ≡ DimensionTag ’time:var:extern_data:data’

– Targets ("classes") yN1 :
� Data y has shape [B,T|’time:var:extern_data:classes’] (int32 class indices)
� N ≡ DimensionTag ’time:var:extern_data:classes’

• Other dynamic axes results from resizing operations (pooling, rescaling, slicing, prefix/postfix, padding, ...)
– E.g. PoolLayer ’pool1’ with 1D pooling results in DimensionTag ’spatial:0:pool1’

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

RETURNN Data Examples

• Input: Data(name=’data’, shape=[B,T|’time:var:extern_data:data’,F|40])
• Targets: Data(name=’classes’, shape=[B,T|’time:var:extern_data:classes’],

dtype=’int32’, sparse=True, dim=1030, vocab=...,
available_for_inference=False)

• LSTM output: Data(name=’lstm0_fw_output’, shape=[T|’time:var:extern_data:data’,B,F|1024]
• Encoder output (downsampled):
Data(name=’encoder_output’, shape=[T|’spatial:0:lstm1_pool’,B,F|2048])

• Attention weights, 8 heads, on downsampled encoder:
– Inside decoder recurrent loop:
Data(name=’att_weights_output’, shape=[B,F|8,T|’spatial:0:lstm1_pool’])

– Outside decoder recurrent loop, in training (using target sequence lengths for decoder):
Data(... shape=[T|’time:var:extern_data:classes’,B,F|8,’spatial:0:lstm1_pool’])

Section 1.3,
page 6 of 23

RETURNN tutorial | RWTH i6 | 25 Oct



Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

RETURNN Data Object
The Data object contains:

• tf.Tensor reference (optional, we can just use Data as a template)
• (Batch) shape of tensor
• Marking of special axes:
– Batch-dim axis
– (Default) time-dim axis (or any spatial axis) (can be of variable length)
– (Default) feature-dim axis

• (Sequence) lengths of dynamic axes (e.g. time axis) (per batch, shape [Batch])
• DimensionTags (esp. for dynamic axes)
• Data type (dtype: float, int, any type supported by TF)
• Sparse → dtype is int, values are class indices (≡ one-hot vector)
• Dimension: number of classes, or feature dim.
• Vocabulary of classes
• Availability at decoding time
• Beam information from last choice in beam search

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

RETURNN Data Usage

• Used everywhere in RETURNN, since the very beginning of TensorFlow backend implementation
• Layer inputs / outputs are Data

• Most efficient tensor format depends on operation:
– Audio, or any sequence

� Standard format: [Batch,Time, Feature]
� More efficient for RNNs: [Time,Batch, Feature]

– Image
� Standard format: [Batch,Width,Height, Feature|Channel]
� More efficient for CNNs: [Batch, Feature|Channel,Width|Time, (Height)]

• Layers convert input to most efficient format, output as-is
• Difficult (or easy to get wrong) without named tensors / Data

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Tensors, Named Tensors, RETURNN Data

Example for Convolution: NHWC vs. NCHW

• 2D convolution / pooling in CUDA, TensorFlow, PyTorch allows input formats:
– NHWC: [Batch,Width,Height,Channel]
– NCHW: [Batch,Channel,Width,Height]

• RETURNN training efficiency (time for subepoch) on Switchboard ASR (300h) for Hybrid HMM ResNet model:
Fused

BatchNorm
Data
format

Final
pooling

Time
[H:MM]

no NHWC
pool

2:14

NCHW
0:54

yes 0:39
reduce_mean 0:37

– ∼ 2.5× faster with right tensor format

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Layers

• NN literature and most frameworks encapsulate common operations in layers (modules)
– Keras ("layers"): layers.Dense, layers.Conv1D, ...
– PyTorch torch.nn ("modules"): nn.Linear, nn.Conv1d, ...
– RETURNN ("layers"): LinearLayer, ConvLayer, ...

• NN / model defined by interconnected layers, as directed graph

• Example: Feed-forward (Linear) layer with (optional) (non-linear) activation function (f):
– Input: x ∈ R...×Nin

– Output: Linear(x) ∈ R...×Nout

– Parameters (trainable): Weight matrix W ∈ RNin×Nout, bias b ∈ RNout

– Operation: Linear(x) := f (xW + b)
– Configuration:

� f ∈ {identity, tanh, sigmoid, relu, ...}
� Nout ∈ N
� Nin ∈ N (often implicitly defined by input)
� Optional: Parameter initialization (random, ...)
� Optional: Regularization (dropout, L2, ...)
� Optional: Extra losses

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Layers

Layers in Frameworks

Layers are of different complexity
(RETURNN/PyTorch examples, similar in all frameworks)

• Lower level, very atomic:
– ReLU, Tanh, ...
– ReduceLayer: wraps tf.reduce_min|max|...
– ConstantLayer: wraps tf.constant
– VariableLayer: wraps tf.Variable (parameter)
– DotLayer: wraps tf.matmul
– Difference tf.matmul vs. DotLayer in RETURNN: Data, like einsum + named axes

• Higher level:
– LinearLayer: matmul, addition, params, activation
– ConvLayer: tf.nn.convolution, addition, params, activation
– DropoutLayer
– BatchNormLayer
– SelfAttentionLayer
– LSTM
– Transformer

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Layers

Problems with Higher Level Layers in Frameworks

• Details hidden, often users do not even know about them
– Might not be a problem, arguable

• Lots of variations exists (e.g. LSTM / Transformer)
– Already old (e.g. LSTM): mostly settled, not too much a problem, just use default / "standard" variant
– Under active research (e.g. Transformer): Will likely change, further options added, becomes messy

� Only support "standard" (clean, few config options), or lots of options, often not variant you want
• Research on new variations:
– Need to add further option to layer: my_custom_feature=..., becomes messy
– Need to edit internal framework code

� Own fork, diverges from main framework code, cannot easily collaborate anymore
– Reimplement (copy), add new custom layer: MyCustomTransformer, ok but extra effort later

� When should it be adopted in framework, and how?
– If it ends up in framework

� Lots of options / variations will not be used in future
→ Becomes complex and bloated
→ Rotten code, unmaintained code

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Layers

RETURNN Layer Conventions

• Should be generic / reusable in many different contexts (avoid rotten code)
• Simple functionality, only apply a single function (atomic) (ideally...)
– Avoid layers which becomes more and more complex over time (more and more options)
– Exception: Very common functions are also combined (linear/conv + activation, LSTM, ...)
– Historically grown, also some bad examples
– Good examples: LinearLayer, ConvLayer, PoolLayer, RecLayer, DropoutLayer, MergeDimsLayer, PadLayer, ReduceLayer, EvalLayer, DotLayer, ...
– Bad examples: AllophoneStateIdxParserLayer, NeuralTransducerLayer, NoiseEstimationByFirstTFramesLayer, ...

� SelfAttentionLayer: turned out as bad example as well...
• Should be flexible on input, e.g. LinearLayer accepts:
– Any shape: (B,T,F), (B,F), (T,B,F), (B,F,W,H), ...
– Multiple sources (common behavior: concatenate in feature dim.)
– Sparse (int, class indices): Lookup / embedding (num. classes needed here)
– Dense (input has feature dim): Matrix multiplication

• Automatically transforms input when more efficient for operation
– E.g. RecLayer converts to (T,B,F) and then outputs as (T,B,F)

• Used to define the model for training and recognition/decoding, including beam search

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Layers

Layer Usage Experience (e.g. to use Transformer Variant)

• Lingvo / Fairseq
– Base model often implemented in toolkit code
– User code often derives from base class, often multiple inheritances
– Details are only understandable by following class inheritance, reading framework code

• ESPNet
– Models implemented in toolkit code
– In config you just write e.g. encoder:transformer (very simple for supported models)
– Modification of Transformer requires to edit framework code
– Details are only understandable by reading framework code

• RETURNN
– Whole model defined in config, no derivation of base models

� Quite verbose
� Details becomes clear just from looking at config (model & training & recognition)
� No need to look at internal framework code / documentation (ideally...)

– Most layers well tested, often used (because atomic or very common)
– No rotten code in RETURNN (ideally..., at least for recommended layers)

Section 1.3,
page 14 of 23

RETURNN tutorial | RWTH i6 | 25 Oct



Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Layers

RETURNN Layer Definition
• Without calculation, resolve layer dependencies
– Can be optional, e.g. dep. only used at decoding → allows automatic optimization
– Classmethod transform_config_dict(...)

• Without calculation, get Data template (without tf.Tensor)
→ Needed e.g. for recurrency (RecLayer)
– Classmethod get_out_data_from_opts(**kwargs)

� kwargs: Inputs (other layers, or attribs / options)
– Return output (Data without tf.Tensor)

• Construct layer with calculation, get Data (with tf.Tensor)
– __init__(**kwargs)

� kwargs: Inputs (other layers, or attribs / options) (same as get_out_data_from_opts)
– Set self.output (Data with tf.Tensor)

• Optional:
– Parameters
– Losses
– Constraints (L2, ...)
– Sub layers, subnetwork (SubnetworkLayer, RecLayer, SplitLayer, ...)
– Hidden state (inside RecLayer)

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Network Topology & Construction

RETURNN Network Topology / Model Definition Example
Example of 2 layer BLSTM model:
network = {

"lstm0_fw": {"class":"rec", "unit":"lstm", "n_out":500, "direction":1, "from": "data"},
"lstm0_bw": {"class":"rec", "unit":"lstm", "n_out":500, "direction":−1, "from": "data"},

"lstm1_fw": {"class":"rec", "unit":"lstm", "n_out":500, "direction":1, "from": ["lstm0_fw", "lstm0_bw"]},
"lstm1_bw": {"class":"rec", "unit":"lstm", "n_out":500, "direction":−1, "from": ["lstm0_fw", "lstm0_bw"]},

"output": {"class": "softmax", "loss": "ce", "from": ["lstm1_fw", "lstm1_bw"]}
}

• Consists of layers which are interconnected in any possible way
• Defined in config as a dict
– key: (str) layer name
– value: (dict) kwargs for layer

• Some kwargs have special handling:
– "class": (str) Python layer class
– "from": (str|list[str]) source(s) as layer name(s)
– Layer classes can override/extend special handling

• Defines model for decoding, and also for training
– Also for more complex models: encoder-decoder, transducer, ...

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Network Topology & Construction

RETURNN Network Construction Example

Example:
network = {

"conv0": {"class": "conv", "filter_size": [5], "padding": "same", "n_out": 100, "from": "data"},
"lstm1": {"class": "rec", "unit": "lstm", "n_out": 500, "from": "conv0"},
"lstm2": {"class": "rec", "unit": "lstm", "n_out": 500, "from": "lstm1"},
"output": {"class": "softmax", "loss": "ce", "from": "lstm2"}

}

• Start constructing "output" layer
• Pop out "class" from the kwargs dict, get Python layer class (e.g. SoftmaxLayer, RecLayer, ...)
• Pop out "from", collect list of layers, or recursively construct them;
then add list of layers as "sources" back to kwargs dict;
"data" is implicit layer for input data by dataset

• Basically call layer_class(**kwargs)

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Dataset Pipeline

Dataset Aspects, and Dataset Pipeline

• Supervised / unsupervised training needs data
– Supervised: Input / output pairs
– Unsupervised (or self-supervised): Just input (e.g. text to train language model)
– Multiple losses might require extra information

� Speech: e.g. speaker id
• Generic interface:
– Multiple data streams (TF "feature columns") of different type / format
– Not all available during decoding

• Preprocessing / feature extraction (MFCC or so)
• Mini-batch preparation logic
– Shuffling the dataset (per epoch, or on-the-fly)
– Take whole sequences, or chunks
– Padding (try to minimize)

• (Reinforcement learning: Interactive environment + reward signal)

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Dataset Pipeline

Datasets in Frameworks

• TensorFlow: tf.data.Dataset, lots of batching/sorting logic in tf.data
• PyTorch: torch.utils.data.Dataset and torch.utils.data.DataLoader

• RETURNN generic Dataset interface:
– Data streams (e.g. source, target, ...)
– Get next utterance:

� Values for all data keys, matching to the shape/dtype
� Or end-of-epoch

– Initialize new epoch
� One epoch: arbitrarily defined by the dataset, also partition epoch

– Control sorting / shuffling of utterances

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Dataset Pipeline

RETURNN Dataset Usage Experience

• Existing implementations:
– ExternSprintDataset: RASR (Sprint) corpus & feature extraction
– HDFDataset: data stored in HDF files
– OggZipDataset: audio as Ogg in Zip files + transcriptions
– LibriSpeechCorpus: specific for LibriSpeech
– ...
– MetaDataset: combine multiple datasets
– Create artificial data on-the-fly...

• New corpora, possible options:
– Convert such that e.g. HDFDataset or OggZipDataset can read it
– Write own dataset implementation

� Use it directly
� hdf_dump script can convert it to HDFDataset

→ Similar as other frameworks

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Training Execution Guide

Standard for most frameworks (including RETURNN):
1. Setup (load config, load/setup TF, ...)
2. Construct network for training (TF computation graph)
3. Construct optimizer for losses, gradients (TF computation graph)
4. Randomly initialize params (or partly import)
5. Maybe load model checkpoint file and load params
6. Train one epoch (epoch defined by dataset)
7. Cross validation
8. Learning rate scheduling update
9. Save model checkpoint
10. Repeat with next epoch

Variations:
• No epochs but just count train steps
• More complex train loops
– Multiple losses, decoupled loops (e.g. GAN)
– Reinforcement learning: rollouts, replay buffer, ...

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Decoding / Beam Search

Why Special Logic Needed for Decoding?

• Maybe not relevant for image object recognition, just use argmax

• Sequence tasks like ASR/MT need non-trivial search for recognition/translation
• Search space is too big (sequences: N, yN1 ) ⇒ pruning needed ⇒ beam search

Section 1.3,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Concepts: Decoding / Beam Search

Framework Properties of Beam Search

• Decoding/search can be external
– RETURNN: Interfaces on multiple levels, embedded in other frameworks (RASR decoder)

• Direct support for beam search
– RETURNN
– ESPNet
– Lingvo
– ... (all frameworks supporting "end-to-end" models)

• Generic: possibly multiple stochastic (maybe latent) variables to search over, custom dependency graphs
– RETURNN: Any number of stochastic variables, any dependency graph (unique feature)
– Most other frameworks: Single hardcoded stochastic variable

• How to define model with/for training vs. decoding?
– RETURNN: Single definition for training and decoding / beam search (unique feature)
– Most other frameworks: Separate implementation for training & decoding
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency

Part 1: Implementation of Machine Learning for Sequence Processing
Frameworks Overview
Flexibility vs. Efficiency vs. Simplicity
Concepts
Recurrency
Beam Search Decoding
Automatic Optimization
Example: Attention-based encoder-decoder model
Example: Decoupled LSTM and Transformer
Minimum Expected Risk Training
Multiple Stochastic Variables
Training
Native Operations
Conclusion
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency

Recurrency in RETURNN

Recurrency

==

Step-by-step execution,
where current step depends on previous step

• RNN, LSTM
• Beam search

• Any dynamic programming calculation
(e.g. forced alignment)

Section 1.4,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency

RETURNN RecLayer
• Some predefined units (LSTM, ...) (using efficient native implementation)
• Can define any possible recurrent formula, via subnetwork, applied frame by frame
• Generic wrapper for tf.while_loop (while loop: run some body iteratively while some condition is true)
• Use "prev:layer" to access layer output from previous frame
• Example (LSTM):
network = {
"lstm": {"class": "rec", "from": "data", "unit": {
"input": {"class": "copy", "from": ["prev:output", "data:source"]},
"input_gate":{"class":"linear","from":"input","activation":"sigmoid","n_out":10},
"forget_gate":{"class":"linear","from":"input","activation":"sigmoid","n_out":10},
"output_gate":{"class":"linear","from":"input","activation":"sigmoid","n_out":10},
"cell_in": {"class":"linear", "from":"input", "activation":"tanh", "n_out":10},
"c": {"class":"eval", "from":["input_gate", "cell_in", "forget_gate", "prev:c"],

"eval": "source(0) ∗ source(1) + source(2) ∗ source(3)"},
"output": {"class": "eval", "from": ["output_gate", "c"],

"eval": "source(0) ∗ source(1)"},
}},
"output": {"class": "softmax", "loss": "ce", "from": "lstm"}
}

• Automatic optimization (move independent layers outside of loop)
• Beam search and manage stochastic (latent) variables

Section 1.4,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Beam Search Decoding

RETURNN Beam Search Decoding

Example (simple encoder decoder model, no attention):
network = {
"input": {"class": "rec", "unit": "nativelstm2", "n_out": 20}, # encoder
"input_last": {"class": "get_last_hidden_state", "from": "input", "n_out":40},

"output": {"class": "rec", "from": [], "target": "classes", "unit": { # decoder
"embed": {"class":"linear", "activation":None, "from":"output", "n_out":10},
"s": {"class": "rec", "unit": "nativelstm2", "n_out": 20, "from": "prev:embed", "initial_state": "base:input_last"},
"p": {"class":"softmax", "from":"s", "target": "classes", "loss": "ce"},
"output": {"class":"choice", "from":"p", "target":"classes", "beam_size":8}

}}
}

ChoiceLayer ≡ stochastic (opt. latent) variable:
Search flag enabled:

• Select N best (in this frame) (tf.nn.top_k)
• Beam (N hyps) hidden in batch dim, Batch′ := Batch ·N
(all other layers just work as usual)

• Output shape (per frame): [Batch′], int32

Search flag disabled (default in training):
• Returns ground truth labels
• Output shape (per frame): [Batch], int32
• No dependency on "p" or anything in the rec layer

Section 1.4,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Beam Search Decoding

RETURNN Beam Search Decoding Internals

• SearchChoices:
– Stores scores of current hyps in the beam (beam_scores)
– Reference to layer where last choice was taken
– Indices of source beam hyps (src_beams)
– TFNetwork.get_search_choices(sources, ...)
– SearchChoices.translate_to_common_search_beam

• RecLayer remembers: src_beams for each frame, class indices, final beam scores
• RecLayer does another inverse tf.while_loop to backtrack the final beam

Section 1.4,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Automatic Optimization

RETURNN Network Construction, Mode Flags and RecLayer

• Mode flags: training, beam search, ...
• TF computation graph construction different depending on mode flags
– E.g. dropout used in training only

• Layer dependencies depending on mode flags:
– prev:output is ground truth label in training (no dependencies) or predicted at decoding
– Huge effect in RecLayer, e.g. Transformer training fully parallel via automatic optimization
– Example (encoder decoder, no attention), automatic optimization:

network = {
"input": {"class": "rec", "unit": "nativelstm2", "n_out": 20}, # encoder
"input_last": {"class": "get_last_hidden_state", "from": "input", "n_out":40},

"output": {"class": "rec", "from": [], "target": "classes", "unit": { # decoder
"embed": {"class":"linear", "activation":None, "from":"output", "n_out":10},
"s": {"class": "rec", "unit": "nativelstm2", "n_out": 20, "from": "prev:embed", "initial_state": "base:input_last"},
"p": {"class":"softmax", "from":"s", "target": "classes", "loss": "ce"},
"output": {"class":"choice", "from":"p", "target":"classes", "beam_size":8}

}}
}

� In training: all sub layers outside loop
� With opt.: 8 sec/epoch. Without: 14 sec/epoch.
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Automatic Optimization

User Model Definition for Training & Decoding

• Model defined as used at decoding time (single definition for training & decoding)
– Auto-regressive model: Predict next label (stochastic var.), given history
– Using ChoiceLayer (decoding, but then also training)

• No separate logic / code in user config of model for training vs. decoding needed
– Separate logic (training vs. decoding) would be more effort for a new model
– Separate logic can lead to bugs / inconsistencies

• Automatic optimization for training (e.g. teacher forcing: previous label ≡ ground truth)
– Still as efficient as possible

Section 1.4,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Example: Attention-based encoder-decoder model

Encoder-Decoder Attention Architecture

Encoder Decoder

x1..T yi-1

p(yi|...)

BLSTM

time max-pool

h1..T'

BLSTM
5x

Attention

ci

LSTM

MLP

softmax

operating on time axis t operating on label position i

[Zeyer & Irie+ 18]
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Example: Attention-based encoder-decoder model

Decoder
• Output yi and end-of-sentence condition:

"output": {’class’: ’choice’, ’target’: ’classes’, ’beam_size’: 12, ’from’: "output_prob", "initial_output": 0},
"end": {"class": "compare", "from": "output", "value": 0},

• Output prediction probability: p(yi|yi−1
1 , xT1 ) = softmax(linear ◦maxout ◦ linear(si, yi−1, ci))

"embed": {’class’: ’linear’, ’activation’: None, "with_bias": False, ’from’: "output", "n_out": 621, "initial_output": 0},
"readout_in": {"class": "linear", "from": ["s", "prev:embed", "att"], "activation": None, "n_out": 1000},
"readout": {"class": "reduce_out", "mode": "max", "num_pieces": 2, "from": "readout_in"},
"output_prob": {"class": "softmax", "from": "readout", "dropout": 0.3, "target": "classes", "loss": "ce", "loss_opts": {"label_smoothing": 0.1}}

• Decoder state: si = LSTMCell(si−1, yi−1, ci−1) ∈ RDdec

"s": {"class": "rec", "unit": "NativeLstm2", "from": ["prev:embed", "prev:att"], "n_out": 1000},

• Attention context vector: ci = ∑T ′
t=1 αi,tht ∈ RDenc

"att0": {"class": "generic_attention", "weights": "att_weights", "base": "base:encoder"}, # (B, H, V)
"att": {"class": "merge_dims", "axes": "static", "from": "att0"}, # (B, H∗V)

• Attention weights: αi = softmaxt(ei) ∈ RT ′, normalized over time
"att_weights": {"class": "softmax_over_spatial", "from": "energy"}, # (B, enc−T, H)

• Attention energies: ei,t = v> tanh(W [si, ht]) ∈ R
"enc_ctx": {"class": "linear", "activation": None, "from": "base:encoder", "n_out": EncKeyTotalDim}, # (B, enc−T, K)
"s_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": "s", "n_out": EncKeyTotalDim}, # (B, K)
"energy_in": {"class": "combine", "kind": "add", "from": ["enc_ctx", "s_transformed"], "n_out": EncKeyTotalDim}, # (B, enc−T, K)
"energy_tanh": {"class": "activation", "activation": "tanh", "from": "energy_in"},
"energy": {"class": "linear", "activation": None, "with_bias": False, "from": "energy_tanh", "n_out": AttNumHeads}, # (B, enc−T, H)
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Example: Attention-based encoder-decoder model

RecLayer Automatic Optimization in Training

• RecLayer represents while loop, iterating some calculation step-by-step
– Used to define decoder of an encoder-decoder model

• Some calculations do not need to be in the same loop → optimize out of loop
• Showing optimized layers, and shape of layers

Rec l a y e r sub net :
Input layers moved out of loop :

output −− ground t r u t h t a r g e t s , [B , T|’time:var:extern_data:classes’ ] , i n t32 , dim 1030
embed −− [B , T|’time:var:extern_data:classes’ ,F | 6 2 1 ]
enc_ctx −− [ T|’spatial:0:lstm1_pool’ ,B , F | 1 0 2 4 ]

Layers in loop :
s −− [B , F | 1 0 00 ]
s_t rans fo rmed −− [B , F | 1 0 24 ]
ene rgy_ in −− [T | ’ s p a t i a l : 0 : l s tm1_pool ’ ,B , F | 1 0 24 ]
energy_tanh −− [T | ’ s p a t i a l : 0 : l s tm1_pool ’ ,B , F | 1 0 24 ]
ene rgy −− [T | ’ s p a t i a l : 0 : l s tm1_pool ’ ,B , F | 1 ]
a t t_we i gh t s −− [B , F | 1 ,T| ’ s p a t i a l : 0 : l s tm1_pool ’ ]
a t t 0 −− [B, 1 , F | 2 0 48 ]
a t t −− [B , F | 2 0 48 ]

Output layers moved out of loop :
r eadout_ in −− [ T|’time:var:extern_data:classes’ ,B , F | 5 0 0 ]
r eadout −− [ T|’time:var:extern_data:classes’ ,B , F | 1 0 0 0 ]
output_prob −− [ T|’time:var:extern_data:classes’ ,B , F | 1 0 3 0 ]

Unused layers :
end
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Example: Attention-based encoder-decoder model

RecLayer Automatic Optimization in Decoding
• RecLayer represents while loop, iterating some calculation step-by-step
– Used to define decoder of an encoder-decoder model

• Some calculations do not need to be in the same loop → optimize out of loop
• Showing optimized layers, and shape of layers

Rec l a y e r sub net :
I npu t l a y e r s moved out o f l oop :

enc_ctx −− [T | ’ s p a t i a l : 0 : l s tm1_pool ’ ,B , F | 1 0 24 ]
Layers in loop :

s −− [B , F | 1 0 0 0 ] , beam ’prev:output’ , beam s i z e 12
s_t rans fo rmed −− [B , F | 1 0 2 4 ] , beam ’prev:output’ , beam s i z e 12
ene rgy_ in −− [B ,T| ’ s p a t i a l : 0 : l s tm1_pool ’ , F | 1 0 2 4 ] , beam ’prev:output’ , beam s i z e 12
energy_tanh −− [B ,T| ’ s p a t i a l : 0 : l s tm1_pool ’ , F | 1 0 2 4 ] , beam ’prev:output’ , beam s i z e 12
ene rgy −− [B ,T| ’ s p a t i a l : 0 : l s tm1_pool ’ , F | 1 ] , beam ’prev:output’ , beam s i z e 12
a t t_we i gh t s −− [B , F | 1 ,T| ’ s p a t i a l : 0 : l s tm1_pool ’ ] , beam ’prev:output’ , beam s i z e 12
a t t 0 −− [B, 1 , F | 2 0 4 8 ] , beam ’prev:output’ , beam s i z e 12
a t t −− [B , F | 2 0 4 8 ] , beam ’prev:output’ , beam s i z e 12
r eadout_ in −− [B , F | 1 0 0 0 ] , beam ’prev:output’ , beam s i z e 12
r eadout −− [B , F | 5 0 0 ] , beam ’prev:output’ , beam s i z e 12
output_prob −− [B, 1 0 3 0 ] , beam ’prev:output’ , beam s i z e 12
output −− [B ] , i n t32 , dim 1030 , beam ’output’ , beam s i z e 12
end −− [B ] , bool , beam ’output’ , beam s i z e 12
embed −− [B , F | 6 2 1 ] , beam ’output’ , beam s i z e 12

Output l a y e r s moved out o f l oop :
None

Unused l a y e r s :
None
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Example: Decoupled LSTM and Transformer

Decoupled decoder LSTM [Hannun & Lee+ 19, Zeyer & Bahar+ 19, Pham & Xu+ 20]:
• Model like standard LSTM-based encoder-decoder as before,
very simple variation, decoder LSTM does not depend on attention context:
"s": {"class": "rec", "unit": "nativelstm2", "from": ["prev:embed", "prev:att"], "n_out": 1000}

• What recurrency is there in the layers?
– Only prev:output, nothing else (ground truth in training)
– LSTM s has internal hidden state, but this layer can be calculated independently now

• Automatic optimization → All layers moved out of loop, much faster

Transformer [Vaswani & Shazeer+ 17]:
• Remember: model definition like used at decoding, i.e. auto-regressively, same def. then also used for training
• What recurrency is there in the layers?
– Only prev:output, nothing else (ground truth in training)
– Self-attention can be interpreted as layer with hidden state during decoding

• Automatic optimization → All layers moved out of loop, much faster
– Results in the standard training recipe for Transformers
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Minimum Expected Risk Training
• Before: ChoiceLayer returns ground-truth in training
• This is flexible. Can use beam search during training.
⇒ Simple & flexible to implement all kinds of training variants

– Minimum Expected Risk Training
� Min. expected WER training [Prabhavalkar & Sainath+ 17]
� Max. expected BLEU training [Edunov & Ott+ 17]

– Optimal completion distillation (OCD) [Sabour & Chan+ 18]
– Maximum mutual information (MMI) [Michel & Schlüter+ 20]
– Scheduled sampling [Bengio & Vinyals+ 15]

• Example for min. expected WER training:
"encoder": ...,

"output": {"class": "rec", "unit": { ...
"output_prob": {"class": "softmax", "from": "readout", "target": "classes"},
’output’: {’class’: ’choice’, ’target’: ’classes’, ’beam_size’: 12, ’from’: "output_prob", "initial_output": 0},

} ...}, # [T|’time:var:extern_data:classes’,B], int32, dim 1030, beam ’output’, beam size 12

"min_wer": {
"class": "copy", "from": "output",
"loss": "expected_loss", # expect beam search results with beam scores
"target": "classes",
"loss_opts": {"loss": {"class": "edit_distance"}, "loss_kind": "error"}

},
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Multiple Stochastic Variables

• Example: Hard attention, segmental model:
– Input seq. xT1 , output seq. yN1
– New stochastic latent variable ti

p(yN1 | xT1 ) = ∑
tN1

p(yN1 , tN1 | xT1 )

= ∑
tN1

N∏
i=1

p(yi, ti | yi−1
1 , ti−1

1 , xT1 )

= ∑
tN1

N∏
i=1

p(yi | yi−1
1 , ti1, x

T
1 ) · p(ti | yi−1

1 , ti−1
1 , xT1 )

– Approximation: ∑ can be replaced by max
• Tasks:
– Forced alignment: Keep y fixed, search over t
– Free search over both y and t

• RETURNN: One ChoiceLayer for yi (as before), second ChoiceLayer for ti
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Part 1: Implementation of Machine Learning for Sequence Processing,

Recurrency: Multiple Stochastic Variables

Hard Attention Model

i - 1

c

β

base:encoder

t

y embed

s

t + 1

t prob

y prob

c

t

y

energy

t
prev:y

t

prev:t

prev:y

prev:t
prev:t

prev:t

prev:y

prev:y

i

∅

∅

• Stochastic vars.: t, y
– Dependencies:
ti−1 → yi−1 → ti → yi
(prev:t, prev:y, t, y)

– Different beams:
∅, prev:t, prev:y, t, y

• Need to combine sources
from different beams
– s: prev:t, prev:y
– energy: ∅, prev:t, prev:y
– t prob: prev:t, prev:y
– c: ∅, t
– y prob: prev:y, t

→ RETURNN translate_to_common_search_beam
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Part 1: Implementation of Machine Learning for Sequence Processing,

Training

Part 1: Implementation of Machine Learning for Sequence Processing
Frameworks Overview
Flexibility vs. Efficiency vs. Simplicity
Concepts
Recurrency
Training
Pre-training
Custom Training Pipeline
Regularization
Multi-GPU Training
Native Operations
Conclusion
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Part 1: Implementation of Machine Learning for Sequence Processing,

Training

Training in RETURNN

• Minimize some loss
– Defined within the network, attached to a layer, based on the layer output
– Not used at decoding time
– Use some predefined losses

� Cross Entropy
� Min. expected WER

– As many losses as you want
– Loss scales as you want
– Define any custom calculation as a loss (layer output itself is loss)

• Regularization
• Optimizer: Gradient descent, Adam, ...
• Scheduling (learning rate, regularization, ...)
• Pretraining (supervised, unsupervised, bootstrap alignment, ...)

Section 1.5,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Training: Pre-training

Pre-training in RETURNN

• Loss / training: Supervised / unsupervised / custom
• Different network topology every epoch, e.g. start with one layer, add more and more
• Automatically copies over parameters from one epoch to the next as far as possible
– Configurable
– New weights are newly initialized (e.g. randomly)
– If dimension increased, can copy over existing weights (grow in width / dim.)

• More generic support:
– Write custom Python function in config which returns network topology for each pretrain epoch
– Overwrite anything (loss, hyper params) for each epoch
– Freeze some parameters (e.g. only train newly added layer)
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Part 1: Implementation of Machine Learning for Sequence Processing,

Training: Custom Training Pipeline

Custom Training Pipeline in RETURNN

• Generalization of pretraining

• Example:
1. Train small NN using frame-wise cross-entropy with linear alignment
2. Calculate new alignment
3. Train NN using frame-wise cross-entropy with new alignment
4. Repeat with calculating new alignment (maybe increase NN size)

• Example:
1. Train CTC model with CTC loss
2. Calculate new alignment
3. Train NN (e.g. transducer) using frame-wise cross-entropy with new alignment
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Part 1: Implementation of Machine Learning for Sequence Processing,

Training: Regularization

Regularization in RETURNN

• Extra loss terms
– L2
– Other auxilary losses (supervised or unsupervised)

• Model variations
– Dropout
– Variational param noise [Graves 11, Watanabe & Hori+ 17]
– Stochastic depth [Huang & Sun+ 16]
– Data augmentation (e.g. SpecAugment) ≡ extra layers on input

• Directly in the network definition
• Used in training only, or flexible / configurable
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Part 1: Implementation of Machine Learning for Sequence Processing,

Training: Multi-GPU Training
• Implementations in RETURNN:
– Custom engine (Theano)
– Horovod (TF)
– Distributed TF

• Dataset distribution
– Sharded: slice of dataset

� Load data centralized and distribute it (might be bottleneck)
� All workers independent: Load all data and take slice (wasted IO, might be bottleneck)
� All workers independent: Load slice directly (not easily possible)

– Different random seed
� All workers independent (no slicing, so no wasted IO)

• Parameter reduction
– Collect and sum all gradients (needs sync for every update step)
– Average parameters after N steps (needs sync only every N steps)

� As fast as the slowest worker
– Average parameters after T secs

� Mix different hardware (GPU types) wich different speed
� Variance in the data results in different speed
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Part 1: Implementation of Machine Learning for Sequence Processing,

Native Operations: Framework

Motivation
• Speed up some important common calculations
– LSTM [Hochreiter & Schmidhuber 97]
– CTC loss [Graves & Fernández+ 06]

• Pure TensorFlow implementations can be suboptimal
– TF ops almost always create copies, even SplitOp etc

� Not a memory problem, as input tensor will get freed if not used further
� Performance problem

– Gradient might be suboptimal
� Require too much memory (see automatic gradient checkpointing for a solution)
� No automatic optimization
� (Could be solved by custom TF gradient)

– Memory can be too much distributed
� Esp. problematic in loop: Separate tensor for every iteration
� Much better to allocate it as consecutive / contiguous block

– Overhead (calling individual TF ops, etc) (minor compared to the other points)

→ Write native (C++/CUDA) code
Section 1.6,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Native Operations: Framework

Native Code

Why is native code faster?
• Operate inplace on tensors
– Solves all problems mentioned, no unnecessary copies
– Can use consecutive tensor / memory

• Enforces custom gradient implementation

Problems with native code:
• Can be difficult, memory unsafe, needs more debugging
• Need multiple implementations: CPU (C++), GPU (CUDA)

Section 1.6,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Native Operations: Framework

Our Approach in RETURNN
• Some wrapper / helper code to simplify writing custom native op
• Abstractions to allow single code for CPU & GPU
– Write kernel CUDA style, using threadIdx, blockIdx, etc

� Kernel code must be flexible for amount of threads
� Example, LSTM kernel, loop over dimensions, executed per time-frame:
int idx = threadIdx.x + blockDim.x ∗ blockIdx.x;
while (idx < n_cells ∗ n_batch) {

int batch_idx = idx / n_cells;
int cell_idx = idx % n_cells;
...
idx += gridDim.x ∗ blockDim.x;

}

– On CPU
� Custom gridDim, blockDim
� Other CUDA-like wrappers

→ NativeOp framework
– Already available for the Theano backend
– Ported to TensorFlow

� Directly support for all already prev. implemented ops (LSTM, Baum Welch aligner, ...)
– Easy to port to other frameworks

Section 1.6,
page 4 of 6

RETURNN tutorial | RWTH i6 | 25 Oct



Part 1: Implementation of Machine Learning for Sequence Processing,

Native Operations: LSTM

RETURNN Native LSTM, CUDA Implementation

• Initial CUDA implementation by Paul Voigtlaender for Theano
• Theano NativeOp: general framework to write code both for CPU/GPU
• Theano NativeLstm based on NativeOp (CPU + GPU)
• TF TFNativeOp: porting NativeOp to TF, including NativeLstm
• NativeLstm2: rewrite, faster, more flexible, more options

TF LSTM implementations, can all be used in RecLayer:
• TF official: LSTMCell (StandardLSTM), BasicLSTMCell (BasicLSTM)
• TF contrib: LSTMBlockCell, LSTMBlockFusedCell
• TF contrib: CudnnLSTM (GPU only)
• Our natives: NativeLstm, NativeLstm2

Cell vs. fused:
• ...Cell does a single time-step, needs tf.while_loop, input (B,D)
– input can be recurrent itself, e.g. attention context

• ...FusedCell, Cudnn, NativeLstm operate on the whole sequence
– whole input sequence must be defined in advance, input (T,B,D)
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page 5 of 6

RETURNN tutorial | RWTH i6 | 25 Oct



Part 1: Implementation of Machine Learning for Sequence Processing,

Native Operations: LSTM

LSTM Benchmark

• RETURNN native LSTM vs. CuDNN vs. TF LSTMBlock vs. pure TF
• 5 layer BLSTM, 500 dimensionin each direction,
framewise CE training,
GeForce GTX 1080 Ti, 8 CPU threads

Device kernel time
GPU NativeLSTM 0:00:05.2728
GPU CudnnLSTM 0:00:05.3645
GPU LSTMBlockFused 0:00:09.3915
GPU LSTMBlock 0:00:15.3071
GPU StandardLSTM 0:00:17.8279
GPU BasicLSTM 0:00:22.3976
CPU NativeLSTM 0:05:09.6268
CPU LSTMBlockFused 0:07:45.5984
CPU StandardLSTM 0:08:02.5465
CPU BasicLSTM 0:08:16.3543
CPU LSTMBlock 0:08:18.1589

https://returnn.readthedocs.io/en/latest/tf_lstm_benchmark.html
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Conclusion
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Part 1: Implementation of Machine Learning for Sequence Processing,

Conclusion

How do we get flexibility & simplicity & efficiency?
Important features of RETURNN:

• Data, dimension tags (aka. named tensor)
→ Simpler to read & write code
→ Simpler debugging
→ Faster due to most efficient tensor format

• Generic RecLayer to define recurrent operations & ChoiceLayer (auto-regressive models, iterative ops, ...)
→ Flexible and simple to define any possible model, operation, decision process (beam search), ...

• Single config / code / model definition for beam search, forwarding, training
→ Simpler to read & write code, needs less debugging (no inconsistencies)

• Automatic optimization for recurrent definition
→ Necessary such that single code for training & decoding is efficient
→ Also more efficient in many other cases
→ Simpler to read & write code (needs less tricks / simpler code to make it fast)

• Native ops, e.g. LSTM
→ More efficient
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Part 1: Implementation of Machine Learning for Sequence Processing,

Conclusion

Negative Experiences with RETURNN

Many aspects have historically grown
• Leads to strange / inconsistent APIs
• We try to keep backward compatibility to older setups
– Might rely on strange behavior on some edge cases
– Must keep behavior, makes code more complicated
– Lots of test cases (but this is also a good thing)

• New ideas & concepts for TensorFlow backend
– No intention to keep Theano and TF backend compatible, to allow for new possibilities
– use_tensorflow = True in config to enable, i.e. old setups stay compatible
– Only backend interface, datasets and other logic is still shared
→ Can be helpful to introduce new interface, while not breaking old setups

Section 1.7,
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Part 1: Implementation of Machine Learning for Sequence Processing,

Conclusion

Negative Historically Grown Examples of RETURNN

• Data
– Some of its features have grown:

� Explicit dimension tags (although we distinguished them before, but more heuristically)
� Beam information

– Some design choices turned out not so helpful
� shape is always without batch-dim, batch_shape is with (optional) batch-dim
� Constructor is slightly unintuitive

– (Complaints on high level. After all, very important feature.)

• Dataset
– Originally only HDFDataset, API derived from single instance, then generalized

� Next dataset: Total num sequences not known in advance, iterable-style dataset
– API / behavior of functions was not well defined in all cases

� Behavior defined later, but not consistent / correct in all cases
– (Complaints on high level. Very useful concept & powerful API.)
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Part 1: Implementation of Machine Learning for Sequence Processing,

Conclusion

Negative Historically Grown Examples of RETURNN (II)

• Automatic Data inference tricky with recursive dependencies
– Example:

{"a": {"class": "linear", "activation": "relu", "from": "prev:b", "n_out": 10},
"b": {"class": "linear", "activation": "relu", "from": "prev:a", "n_out": 20},
"output": {"class": "copy", "from": "a"}}

– Feature-dims are clear here (a: 10, b: 20)
– What other axes/dimensions are there?
– What DType?
– (Maybe mostly resolved now.)

• SelfAttentionLayer too specific
– Current options: n_out, num_heads, total_key_dim, key_shift, forward_weights_init, attention_dropout,
attention_left_only, initial_state, restrict_state_to_last_seq, state_var_lengths

– Too many already, and people want to add more for their special need, have their own forks
– Some of these are not obvious, need to look at documentation & code to understand
– Solution: Split up into more atomic buildings blocks
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Part 1: Implementation of Machine Learning for Sequence Processing,

Conclusion

Future Plans and Ideas for RETURNN

• New more PyTorch / Keras like Python syntax instead of defining net dict
– Just syntactic but might be more familiar, also auto-completion support by IDEs
– Could introduce more clean behavior, solve some mentioned problems

� Change some inconsistent names or defaults (or remove bad defaults)
� Enforce more consistent explicit dimension tag usage

• Easy mechanism to reuse common parts (e.g. Transformer, SpecAugment, ...)
– Not supposed to be part of main framework (yet), as they are under active research
– Still common enough that you easily want to use them
– One solution: E.g. imports like in Go, from other Git repos, fixed version

• More support for RETURNN as a framework
– Usage similar to PyTorch or Keras, or maybe PyTorch Lightning

• More dynamic support for reinforcement learning
– Interactive environment, extended dataset
– Replay buffer / generic auxiliary database

Section 1.7,
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Part 2: Specific Models & Applications,

Introduction

Purpose of this Part

• Machine learning implementation using RETURNN as exemplary case
• Discuss application oriented features
– Machine translation (MT)
– Automatic speech recognition (ASR)
– Language modeling (LM)
– Speech to text translation (ST)
– Text to speech (TTS)

• Examples of different methods and the ease of their configuration
• Comparison to other frameworks

Section 2.1,
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MT
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Part 2: Specific Models & Applications,

MT

Introduction
Machine translation = translating text from one natural language into another

• Utilize neural networks, encoder-decoder attention architecture
– Recurrent neural networks (RNNs)/Long Short-Term Memory (LSTM) [Bahdanau & Cho+ 15]
– Self-attention [Vaswani & Shazeer+ 17]
– Convolution [Gehring & Auli+ 17]
– Combination of networks [Chen & Firat+ 18]

• From phrase based system to neural based approaches in the production
• Frameworks:
– Tensor2Tensor [Vaswani & Bengio+ 18]
– Sockeye [Hieber & Domhan+ 17, Domhan & Denkowski+ 20]
– Fairseq [Ott & Edunov+ 19]
– OpenNMT [Klein & Kim+ 17]
– ...
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Part 2: Specific Models & Applications,

MT

What MT requires from a framework:
• Flexibility, simplicity, scalability and extensibility as mentioned before
• Easy architecture setup to enable different models
– Diverse architectures, recurrent, convolution, Transformer
– Easy combination of provided building blocks (encoder, decoder, losses)
– Different attention components, different positional encodings, etc.

• Data pipeline, preprocessing e.g. filtering, tokenization as well as postprocessing
• Model units: subwords, sentence pieces
• Fine-tuning, resume training
• Attention visualization for better explainability
• Generating synthetic data, back-translation
• ...
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page 3 of 18

RETURNN tutorial | RWTH i6 | 25 Oct



Part 2: Specific Models & Applications,

MT: Recurrent Attention Model

• Source sentence of J words fJ1 , target sentence of I words eI1
• Bidirectional LSTM in the encoder hj, unidirectional LSTM in the decoder si

• Unnormalized weights: α′i,j = fscore(K,Q) = fscore(hj, si−1)
= v> tanh(W [hj, si−1, ei−1]) ∈ R

• Attention weights: αi,j = softmaxt(α′i,j) ∈ RJ

• Weighted average: ci = ∑J
j=1 αi,jhj

• Decoder state:
si = LSTM (si−1, ei, ci) or
si = LSTM (si−1, ei−1, ci)

• Probability distribution:
p(ei|ei−1

1 , fJ1 ) = softmax (linear(si−1, ei−1, ci)) or
p(ei|ei−1

1 , fJ1 ) = softmax (linear(si, ei−1, ci))

h1 hj hJ

←−
h1 . . .

←−
hj . . .

←−
hJ

−→
h1 . . .

−→
hj . . .

−→
hJ

f1 . . . fj . . . fJ

Attention Mechanism, fscore

< s > e1 . . . ei . . . eI

s0 s1 . . . si . . . sI
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Part 2: Specific Models & Applications,

MT: Recurrent Attention Model

Network Construction
network = {
# encoder
"source_embed": {"class": "linear", "activation": None, "with_bias": False, "n_out": 512},
"lstm0_fw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": 1, "from": ["source_embed"], "dropout": 0.3},
"lstm0_bw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": −1, "from": ["source_embed"], "dropout": 0.3},
"encoder": {"class": "copy", "from": ["lstm0_fw", "lstm0_bw"]}, # dim: 2048
"enc_ctx": {"class": "linear", "activation": None, "with_bias": True, "from": ["encoder"], "n_out": 1024},
# decoder using recLayer
"output": {"class": "rec", "from": [], "unit": {

"output": {"class": "choice", "target": "classes", "beam_size": 12, "from": ["output_prob"], "initial_output": 0},
"end": {"class": "compare", "from": ["output"], "value": 0}, #end−of−sentence condition
"target_embed": {"class": "linear", "activation": None, "with_bias": False, "from": ["output"], "n_out": 512, "initial_output": 0},
"prev_s_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": ["prev:s"], "n_out": 1024, "dropout": 0.3},
# additive attention mechanism
"energy_in": {"class": "combine", "kind": "add", "from": ["base:enc_ctx", "prev_s_transformed"], "n_out": 1024},
"energy_tanh": {"class": "activation", "activation": "tanh", "from": ["energy_in"]},
"energy": {"class": "linear", "activation": None, "with_bias": False, "from": ["energy_tanh"], "n_out": 1},
"att_weights": {"class": "softmax_over_spatial", "from": ["energy"]},
"context_att": {"class": "generic_attention", "weights": "att_weights", "base": "base:enc_ctx"},
"s": {"class": "rnn_cell", "unit": "LSTMBlock", "from": ["target_embed", "context_att"], "n_out": 1024, "dropout": 0.3},
"readout": {"class": "linear", "from": ["prev:s", "prev:target_embed", "context_att"], "activation": None, "n_out": 1024, "dropout": 0.3},
# output layer using crossentropy loss
"output_prob": {"class": "softmax", "from": ["readout"], "dropout": 0.3,

"target": "classes", "loss": "ce", "loss_opts": {"label_smoothing": 0.1}}
}, "target": "classes", "max_seq_len": "max_len_from("base:encoder")∗3"},}
Section 2.2,
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Part 2: Specific Models & Applications,

MT: Recurrent Attention Model

Network Construction
• First update decoder state, then predict output word

network = {
... # encoder the same
"output": {"class": "rec", "from": [], "unit": {

...
"prev_s_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": ["prev:s"], "n_out": 1024, "dropout": 0.3},
"energy_in": {"class": "combine", "kind": "add", "from": ["base:enc_ctx","prev_s_transformed", "prev:target_embed"], "n_out": 1024},
...
"s": {"class": "rnn_cell", "unit": "LSTMBlock", "from": ["prev:target_embed", "context_att"], "n_out": 1024, "dropout": 0.3},
"readout": {"class": "linear", "from": ["s", "prev:target_embed", "context_att"], "activation": None, "n_out": 1024, "dropout": 0.3},

Section 2.2,
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Part 2: Specific Models & Applications,

MT: Attention Extension

• Easy construction via config file
• Extensions over previous attention weights [Tu & Lu+ 16, Cohn & Hoang+ 16]
• Past alignments information as coverage β

α′i,j = υ> tanh
(
hj, si−1, β

)

• E.g. fertility concept with N = 2 , β = sigmoid(υ>φ hj)
N

∑i−1
k=1 αi,j

network = {
...
"inv_fertility": {"class": "linear", "activation": "sigmoid", "with_bias": False, "from": ["encoder"], "n_out": 1},

"output": {"class": "rec", "from": [], "unit": {
...
"weight_feedback": {"class": "linear", "activation": None, "with_bias": False, "from": ["prev:accum_att_weights"], "n_out": 1024, "dropout": 0.3},

"energy_in": {"class": "combine", "kind": "add", "from": ["base:enc_ctx", "prev_s_transformed", "weight_feedback"], "n_out": 1},
...
"accum_att_weights": {"class": "eval", "from": ["prev:accum_att_weights", "att_weights", "base:inv_fertility"],
"eval": "(source(0)+ source(1))∗source(2)∗0.5", "out_type": {"dim": 1, "shape": (None, 1)}},
...
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Part 2: Specific Models & Applications,

MT: Attention Extension

• Past alignments information as a linguistic coverage β

α′i,j = υ>a tanh
(
si−1, hj, β

)
• E.g. past context vector

β = ci−1

"context_att_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": ["prev:context_att"], "n_out": 1024},
"energy_in": {"class": "combine", "kind": "add", "from": ["base:enc_ctx", "prev_s_transformed", "context_att_transformed"], "n_out": 1024},

• E.g. past context vector in the decoder
si = LSTM (si−1, ei, ci, ci−1)

"context_att_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": ["prev:context_att"], "n_out": 1024, "dropout": 0.3},
"s": {"class": "rnn_cell", "unit": "LSTMBlock", "from": ["target_embed", "context_att", "context_att_transformed"], "n_out": 1024},
"readout": {"class": "linear", "from": ["prev:s", "prev:target_embed", "context_att", "context_att_transformed"], "activation": None, "n_out": 1024},
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Part 2: Specific Models & Applications,

MT: Attention Extension

Other Attention Types

• Multiplicative: fscore(Q,K) = K>WQ = h>j Wsi−1
"energy": {"class": "dot", "red1": −1, "red2": −1, "var1": "T", "var2": "T?", "from": [’base:enc_ctx’, ’prev_s_transformed’]},
"att_weights": {"class": "softmax_over_spatial", "from": [’energy’],"energy_factor": 1024 ∗∗ −0.5},

• Multi-head additive attention instead of single-head attention [Chen & et al 18]
• Both additive and multiplicative attention
• SplitDimsLayer to split a vector
• MergeDimsLayer to flatten a dimension

AttNumHeads = 8
network = {
...
"enc_value": {"class": "split_dims", "axis":"F","dims":( AttNumHeads, 1024), "from":["encoder"]},

"output":{"class":"rec","from":[],"unit":{
...
"energy":{"class":"linear","activation":None,"with_bias":False,"from": ["energy_tanh"],"n_out":( AttNumHeads),
"att_weights": {"class":"softmax_over_spatial","from": ["energy"]}, # (B, J, H)
"context_att0": {"class": "generic_attention", "weights": "att_weights", "base": "base:enc_value"}, # (B, H, V)
"context_att": {"class": ( "merge_dims", "axes": "except_batch", "from": ["context_att0"]}, # (B, H∗V)
...
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Part 2: Specific Models & Applications,

MT: Attention Extension

Attention Extension in Other Frameworks
Sockeye NMT

• More specific to MT task via options
– –rnn-attention-type: attention types
– –rnn-attention-use-prev-word: include the previous target token in attention calculation
– –rnn-attention-coverage-type: model for updating coverage vectors and accumulate attention scores
– –rnn-attention-in-upper-layers: pass the attention to the upper layers of the RNN decoder, similar to GNMT paper
– –rnn-attention-mhdot-heads: enable multi-head dot attention inside RNN model

• Further extensions need to directly change the code
Fairseq

• More specific than RETURNN
• Many predefined architectures with hyperparameters, pretrained models
• Either use pre-written modules or extend it in the code
• Modification in class AttentionLayer and class LSTMDecoder
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Part 2: Specific Models & Applications,

MT: Layer-wise Pretraining

• Faster convergence for deep networks, proven to help MT a lot [Zeyer & Alkhouli+ 18]
• Iteratively starts with a small model and adds new layers in the process
• Using pretrain with number of iterations repetitions
• Customize your own construction_algo

def custom_algo(idx, net_dict):
orig_num_lstm_layers = 0
while "lstm%i_fw" % orig_num_lstm_layers in net_dict:

orig_num_lstm_layers += 1
num_lstm_layers = idx + 1 # idx starts at 0. start with 1 layer
if num_lstm_layers == orig_num_lstm_layers:

return net_dict
if num_lstm_layers >= orig_num_lstm_layers:

return None
# Leave the last layer as−is, but only modify its source.
net_dict["encoder"]["from"] = ["lstm%i_fw" % (num_lstm_layers − 1), "lstm%i_bw" % (num_lstm_layers − 1)]
return net_dict

pretrain = {"repetitions": 5, "construction_algo": custom_algo}
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Part 2: Specific Models & Applications,

MT: Transformer Model

Self-Attention Blocks
Three different inputs to attention block: key, value and query

• Self-attention in encoder
– Input and output: sequence of features of shape [B×] T × F
– This sequence is used as keys, values and queries: K = V = Q

• Masked self-attention in decoder
– In decoder key and value positions right from the query positions have to be
neglected (auto-regressive model)
� Practical implementation: corresponding positions are set to −∞ right
before softmax operation

• In RETURNN:
– Multi-headed self-attention: "class": "self_attention"
– This layer also works within the recurrent sublayer (class: "rec")
– In training it is optimized to work fully parallel and not step-by-step

Section 2.2,
page 12 of 18

RETURNN tutorial | RWTH i6 | 25 Oct



Part 2: Specific Models & Applications,

MT: Transformer Model

Feed-Forward Blocks

• FF(x) = max(0, xW1 + b1)W2 + b2
• In RETURNN:
– Just two linear layers: "class": "linear"

� First with "activation": "relu"
� Second with "activation": None

Section 2.2,
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Part 2: Specific Models & Applications,

MT: Transformer Model

Encoder Decoder Attention Block

• Keys and values (K = V ) are the encoder output of the last layer
• Queries Q come from corresponding decoder layer
• In RETURNN:
– In contrast to the multi-head self-attention the multi-head attention between
encoder and decoder has to be built from more basic layers
� "class": "linear"
� "class": "split_dims"
� "class": "merge_dims"
� "class": "dot"
� "class": "softmax_over_spatial"
� "class": "dropout"
� "class": "generic_attention"

– The layers transforming the encoder outputs (K = V ) should be put outside
the recurrent subnetwork
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Part 2: Specific Models & Applications,

MT: Transformer Model

Preprocessing and Postprocessing Blocks

• Preprocessing step: layer normalization
• Postprocessing step: dropout and residual connection
• In RETURNN:
– Layer normalization: "class": "layer_norm"
– Dropout: "class": "dropout"
– Residual connection: "class": "combine" with "kind": "add"

• Tensor2Tensor implementations
– Preprocessing step: layer normalization
– Postprocessing step: dropout and residual connection

• Fairseq implementations
– Postprocessing step: dropout, residual connection and layer normalization
– Tensor2Tensor setup activation: encoder_normalize_before
– Different order needs code change, however easy
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Part 2: Specific Models & Applications,

MT: Transformer Model

Positional Encoding

• Positional encoding is crucial for MT task
• An extension with relative positional encoding
– Resolve the sequence length problem [Rosendahl & Tran+ 19]

• in RETURNN:
– "class": "positional_encoding"
– "class": "relative_positional_encoding"

d[output + ’_rel_pos’] = {
"class": "relative_positional_encoding",
"from": [output + ’_att_laynorm’],
"n_out": 512 // 8,
"forward_weights_init": ff_init}

d[output + ’_att_att’] = {
"class": "_attention",
"num_heads": 8,
"total_key_dim": 512,
"n_out": 512, "from": [output + ’_att_laynorm’],
"attention_left_only": False, "attention_dropout": 0.1,
"forward_weights_init": ff_init, "key_shift": output + ’_rel_pos’}

Section 2.2,
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Part 2: Specific Models & Applications,

MT: Hybrid NMT

RNMT+ Network Configuration - Encoder

• Transformer model typically trains faster while slower in search
• Hybrid NMT, e.g. combination of RNN and Transformer [Chen & Firat+ 18]
– Receive information from different channels
– Best setup: Transformer encoder, RNN decoder equipped with layernorm

# layer 0 − wrap the layer as a function to call it N times
"source_embed": {"class": "linear", "activation": None, "with_bias": False, "n_out": 1024},
"source_embed_drop": {"class": "dropout", "from": ["source_embed"], "dropout": 0.1},
"lstm0_fw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": 1, "from": ["source_embed_drop"]},
"lstm0_bw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": −1, "from": ["source_embed_drop"]},
"concat0": {"class": "copy", "from": ["lstm0_fw", "lstm0_bw"]},
"concat0_drop": {"class": "dropout", "from": ["concat0"], "dropout": 0.1},
"res0" : {"class": "combine", "kind": "add", "from": ["concat0_drop", "source_embed_drop"], "n_out": 1024},
"project_res0": {"class": "linear", "activation": None, "with_bias": True, "from": ["res0"], "n_out": 1024},

Section 2.2,
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Part 2: Specific Models & Applications,

MT: Hybrid NMT

Hybrid NMT in Other Frameworks

Sockeye NMT
• –encoder
– Type of encoder
– rnn, rnn-with-conv-embed, transformer, transformer-with-conv-embed, cnn

• –decoder
– Type of decoder
– rnn, transformer,cnn

• Further modifications require direct changes to the code and therefore is deemed not flexible
Fairseq

• Slight modification to the code via transformer.py or lstm.py
• Instead use class LSTMEncoder or LSTMDecoder

Section 2.2,
page 18 of 18

RETURNN tutorial | RWTH i6 | 25 Oct



Part 2: Specific Models & Applications,

ASR

Part 2: Specific Models & Applications
Introduction
Machine translation (RNN/Transformer-based encoder-decoder-attention)
Speech recognition (Hybrid HMM, Attention, other end-to-end approaches)
Hybrid HMM-NN & CTC (on phonemes)
Attention-based encoder-decoder models
Pretraining
Transducer Models
Language modeling (RNN/LSTM, Transformer)
End-to-end speech translation
Text-to-speech
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Part 2: Specific Models & Applications,

ASR

Automatic Speech Recognition (ASR)
Task: Map speech sequence to corresponding word sequence
Evaluation: Word/Character Error Rate (WER/CER), latency, speed
Models:

• Hybrid HMM
• CTC/ASG, Lattice-free MMI
• Encoder-decoder attention approaches
• Transducer approaches
• Many more...

Frameworks:
• Mozilla DeepSpeech (15.2k Stars): CTC
• JHU ESPnet (2.9k Stars): CTC/Attention, Transducer, many more
• JHU Kaldi (9.5k Stars): GMM/DNN-HMM, seq. discr. training
• Facebook Wav2Letter++ (5.4k Stars): seq2seq with conv-nets
• Sequence processing frameworks discussed before

Section 2.3,
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Part 2: Specific Models & Applications,

ASR

How a framework can help researchers, especially for ASR:
• Enable fast iteration speed (mentioned in first part: flexibility, simplicity, etc.)
• Custom user configuration/code:
– Researchers can try out different ideas without touching stable code
– User code can be merged back into main branch

• Provide building blocks (encoder, decoder, losses, beam search)

Important aspects of ASR:
• Input features: MFCC, log-Mel, Gammatone, etc.
• Target features: Sub-word units, characters, phonemes
• Frontend, before encoder: convolutional layers, data augmentation (e.g. SpecAugment [Park & Chan+ 19])
• Acoustic Model
• Language Model
– How to integrate during training/recognition? (fusion techniques)

→ Dependency between all parts!

Section 2.3,
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Part 2: Specific Models & Applications,

ASR

Model aspects

• Network size w.r.t. parameters
– Mobile/Embedded or Server?
– Quantization, teacher-student

• Recurrency (→ Speed, Parallelizability)
Online capability:

• Model
– For BLSTM:

� Latency-controlled BLSTM (LC-BLSTM)
� Frame-chunking
� Unidirectional LSTM

– For Transformer
� Local context self-attention [Povey & Hadian+ 18]
� Block processing [Dong & Wang+ 19, Tsunoo & Kashiwagi+ 19]

– For attention/decoding: hard attention, MoChA[Chiu* & Raffel* 18], CTC-synchronous, triggered attention ...
• Framework support for production setting

Section 2.3,
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Part 2: Specific Models & Applications,

ASR

Models overview
Acoustic model / Encoder

• LSTM stack (bi-/unidirectional, GRU, variants)
• Transformer (maybe plus an LSTM stack)
• Convolutional (+variants)

Sequence model / Decoder
• Hybrid HMM-NN / CTC
• Attention-based encoder-decoder
– Global soft attention [Bahdanau & Cho+ 15]
– Self-attention (cf. Transformer) [Vaswani & Shazeer+ 17]
– Local soft attention [Luong & Pham+ 15, Hou & Zhang+ 17, Merboldt & Zeyer+ 19]
– Hard attention variants (MoChA, Latent attention [Bahar & Makarov+ 20])

• Transducer
– Recurrent Neural Aligner (RNA)
– Recurrent Neural Transducer (RNN-T)
– Generalized variant [Zeyer & Merboldt+ 20]

• New approach?
Section 2.3,
page 5 of 24
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Part 2: Specific Models & Applications,

ASR: Hybrid HMM-NN & CTC (on phonemes)

RWTH ASR (RASR), relevant features for hybrid HMM-NN

• RASR is the RWTH speech recognition toolkit [Rybach & Hahn+ 11]
• HMM-GMM
• Forced aligner
• Context-dep. phone clustering (CART)
• Complex decoder / search
• Python APIs/interfaces for different tasks:
– Various feature extraction modules (MFCC, Gammatone, ...)
– Discriminative sequence training (MMI / MPE)
– Hybrid HMM-NN (allows for plug-in any framework)
– TensorFlow C++: load graph and checkpoints

• Much more ...

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Hybrid HMM-NN & CTC (on phonemes)

RETURNN ↔ RASR

RETURNN has many interfaces to RASR
• Feature extraction / dataset loading (including forced alignment) (ExternSprintDataset)
– Used for frame-wise CE training of hybrid HMM-NN

• RASR decoding / search for recognition
– RETURNN for acoustic model NN

� Via Python interface (SprintInterface)
� Or: Compile and store TF graph and use that directly (compile-tf-graph script)

– RETURNN for language model NN
� Compile and store TF graph and use in first-pass decoding (compile-tf-graph script)

• Discriminative sequence training
– Generic interface, RASR gets posteriors, calculates loss & gradient (error signal)

• Extract finite state automaton (FSA) using pronunciation lexicon
– Full-sum / CTC training (FastBaumWelch in RETURNN, accepts any FSA)

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Attention-based encoder-decoder models

Model

Encoder Decoder

BLSTM

time max-pool

BLSTM
5x

Attention LSTM

MLP

softmax

operating on time axis operating on label position 

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Attention-based encoder-decoder models

Training and recognition

• During training: minimize
L := − log p(yN1 |xT1 , θ) = −

N∑
i=1

log p(yi|yi−1
1 , xT1 )

w.r.t. model parameters θ.
– x, y input/target sequence from dataset
– → Cross entropy

In recognition:
• Given is only x, θ.
• Find y such that we maximize the log-posterior log p(yN1 |xT1 , θ)
• → Beam search
– Label synchronous
– Usually fixed, small beam size compared to hybrid models

RETURNN: Single config, straight-forward, using ChoiceLayer for yi

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Pretraining

Training
Improve convergence:

• Pretraining
– Grow encoder/decoder
– Learning rate warmup+scheduling
– Initialize parameters from different model

• Curriculum learning: easier part of training first

→ How can a toolkit/framework support this?
• Provide recipes/configs/examples for training on specific datasets
– Good starting point

• High flexibility

Section 2.3,
page 10 of 24
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

max-pool [6]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 2 

LSTM dim: 512 

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

max-pool [6]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 2 

Regularization: 
- Dropout 

LSTM dim: 512 
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

max-pool [3]

BLSTM

max-pool [2]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 3 

Regularization: 
- Dropout 

LSTM dim: 640 
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

BLSTM

max-pool [3]

BLSTM

max-pool [2]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 4 

Regularization: 
- Dropout 

LSTM dim: 768 
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

BLSTM

BLSTM

max-pool [3]

BLSTM

max-pool [2]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 5 

Regularization: 
- Dropout 

LSTM dim: 896 
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

BLSTM

BLSTM

BLSTM

max-pool [3]

BLSTM

max-pool [2]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 6 

Regularization: 
- Dropout 

LSTM dim: 1024 
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Part 2: Specific Models & Applications,

ASR: Pretraining

Pretraining scheme
Improved ASR pretraining scheme for the encoder [Zeyer & Merboldt+ 18]

Encoder

x1..T

BLSTM

h1..T'

BLSTM

BLSTM

BLSTM

max-pool [3]

BLSTM

max-pool [2]

BLSTM

Time reduction factor: 6 

Num. LSTM layers: 6 

Regularization: 
- Dropout 
- Label smoothing 

LSTM dim: 1024 
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Part 2: Specific Models & Applications,

ASR: Transducer Models

Encoder:
operating on

time-axis 

LSTM/
Transformer

softmax

Prediction net
/ SlowRNN:

operating on
label position 

time max-pool

last non-blank
symbol emission

Joint network

LSTM/
Transformer

embed

FastRNN:
operating on
alignment position 

• RNN transducer (RNN-T) [Graves 12],
Recurrent neural aligner (RNA) [Sak & Shannon+ 17],
Generalization & extension [Zeyer & Merboldt+ 20]

• Model: SlowRNN and FastRNN
• Label-topology: RNN-T, RNA, or CTC
• Training criteria:
– Full-sum (FS) over all possible alignments
L := − log ∑aU

1

∏U
j=1 p(aj|aj−1

1 , xT1 )
– Frame-wise cross-entropy (CE) using given alignment

• Recognition:
– Beam-search over alignment axis (time-sync for CTC/RNA)

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Transducer Models

Generalized / extended transducer model

Encodert

SlowRNNs

FastRNNu

Outputu
• Three different time axes:
T encoder time axis, downsampled from input
S label output axis
U alignment axis, e.g. for RNN-T: U = T + S

• FastRNN: runs over alignment axis
• SlowRNN: only updated when a non-blank
symbol is emitted

• For RNA/CTC: alignment axis ≡ encoder axis

Slow-/FastRNN does not necessarily need to be a RNN (Transformer, Conv, ...)

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Transducer Models

Implementation of extended transducer in a framework
Training pipeline: Full-sum training → Forced alignment → Viterbi training

• Full-sum training
– Existing open-source CUDA implementations for TF/PyTorch (warp-transducer, warp-rnnt, warp-rna)
→ Support for executing native code in framework

• Forced alignment: modify CUDA implementation or write custom backend code
– Exchange sum with maximum, then backtrack best path
– Save alignments to file for train/dev datasets

• Transducer with fixed path is simply cross-entropy (CE) training
– Use alignments from step 2 to compute CE on the path
– Train same or bigger model

• Recognition
– Needs custom beam search
→ Framework has to be extendable and flexible

→ Requires flexible framework
• RETURNN does not need any modification/extension, all possible via config

Section 2.3,
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RETURNN tutorial | RWTH i6 | 25 Oct

https://github.com/HawkAaron/warp-transducer
https://github.com/1ytic/warp-rnnt
https://github.com/1ytic/warp-rna


Part 2: Specific Models & Applications,

ASR: Transducer Models

Transducer in RETURNN

Model defined once, training and recognition share the same logic (explained in Part 1: Recurrency)

During training:
• All layers are moved outside the loop
• Loss computation:
– Full-sum: Dynamic programming on 4D tensor
(batch, encoder-len, target-len+1, vocab)
� Very memory and fairly computation expensive

– With fixed path: frame-wise cross-entropy criterion
� Fast compared to full-sum computation

During recognition/search:
• FastRNN is updated every frame
• SlowRNN is only updated for non-blank symbols
• Blank symbols are masked away for the output

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Transducer Models

Transducer: SlowRNN Implementation
In training:

• Operations running on different time axes
– Synchronization using scattering
– PyTorch: torch.Tensor.masked_scatter_, TF: tf.scatter_nd

In recognition:
• In each step, make a choice:
– mask=False: copy over last state
– mask=True: update state

Implementation in RETURNN using MaskedComputationLayer:
• supports both training and recognition without modifications

• mask: prev:output_emit =


True, if last output ∈ Σ (actual symbol)
False, if last output = ∅ (blank)

"slow": {"class": "masked_computation",
"mask": "prev:output_emit",
"from": "prev_out_non_blank", # in decoding
"unit": { "class": "subnetwork", "from": "data",
"subnetwork": {

"input_embed": {"class": "linear", "activation": None, "with_bias": False, "from": "data", "n_out": 621},
"lstm0": {"class": "rec", "unit": "nativelstm2", "n_out": LstmDim, "from": "input_embed"},
"output": {"class": "copy", "from": "lstm0"}

}}},

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Transducer Models

Transducer Model: Variant "explicit blank"
Readout(zfastu , zslowsu

) "readout_in": {"class": "linear", "from": ["fast", "slow"],
"activation": None, "n_out": 1000},

"readout": {"class": "reduce_out", "mode": "max", "num_pieces": 2, "from": "readout_in"}

p(yu | ...) :=
softmaxΣ′(FF(Readout(...))),
yu ∈ Σ′,
Σ′ = Σ ∪ {∅}

"output_log_prob": {"class": "linear", "from": ["readout"],
"activation": "log_softmax", "n_out": num_labels+1}

Section 2.3,
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Part 2: Specific Models & Applications,

ASR: Transducer Models

Transducer Model: Variant "separate emit model"
Readout(zfastu , zslowsu

) "readout_in": {"class": "linear", "from": ["fast", "slow"],
"activation": None, "n_out": 1000},

"readout": {"class": "reduce_out", "mode": "max", "num_pieces": 2, "from": "readout_in"}

pu(∆s=1 | ...) :=
σ( FFemit(zfast

u ))
"emit_prob0": {"class": "linear", "from": "fast", "activation": None, "n_out": 1},
"emit_log_prob": {"class": "activation", "from": "emit_prob0", "activation": "log_sigmoid"}

pu(∆s=0 | ...) :=
σ(−FFemit(zfast

u ))
"blank_log_prob": {"class": "eval", "from": "emit_prob0", "eval": "log_sigmoid(−source(0))"}

pu,Σ(yu | ...) :=
softmaxΣ(Readout(...))

"label_log_prob": {"class": "linear", "from": "readout", "activation": "log_softmax",
"n_out": num_labels},

p(yu | ...) =
pu(∆s=1|...) · pu,Σ(yu|...)

"label_emit_log_prob": {"class": "combine", "kind": "add", "from": ["label_log_prob", "emit_log_prob"]},
"output_log_prob": {"class": "copy", "from": ["blank_log_prob", "label_log_prob"]}

Both variants are equivalent (can be reformulated into each other; but different modelling).
Section 2.3,
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Part 2: Specific Models & Applications,

LM

Part 2: Specific Models & Applications
Introduction
Machine translation (RNN/Transformer-based encoder-decoder-attention)
Speech recognition (Hybrid HMM, Attention, other end-to-end approaches)
Language modeling (RNN/LSTM, Transformer)
Features in RETURNN
Language Model Integration
End-to-end speech translation
Text-to-speech
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Part 2: Specific Models & Applications,

LM

Introduction
Language modeling = estimating probability of sequence of words

• Training only requires texts, unsupervised task no labeling is needed
• Lots of data are available (typically unlimited!)

Scaling-up: a big part in recent advances in language modeling
• Training large scale neural language models
• Using large amount of data
– How to scale up? Software? Compute? Algorithm?
– How to make use of the relevant part of available data? How to benefit from large diversity in the data?

Applications
• Crucial component in ASR/MT especially in log-linear framework
– Limited for neural MT compared to back-translation
– An important component in ASR, for both conventional and end-to-end systems

Many available frameworks, count-based and neural

Section 2.4,
page 2 of 11
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Part 2: Specific Models & Applications,

LM

What LM requires from a framework:
• Scalability
• Easy architecture setup, e.g. LSTM and Transformer LM
• Proper perplexity evaluation, e.g. correctly normalized scores, per position scores
• Easy integration to ASR experiments, e.g. rescoring, reranking, various fusion techniques
• Support of different units, characters, subwords, words, etc.
• Easy sampling, e.g. for back-translation, corpus filtering
• Easy comparison and interpolation with count-based models
• Speedup methods
• ...

Section 2.4,
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Part 2: Specific Models & Applications,

LM

Models Overview

N-gram count based model = relative frequency + smoothing technique
Standard choice: LSTM-RNN model [Sundermeyer & Schlüter+ 12]
Many alternatives to LSTM-LM

• Gated convolution [Dauphin & Fan+ 17]
• WaveNet (dilated convolution) [Kurata & Sethy+ 17]
• Fixed-size ordinarily forgetting encoding (FOFE) [Zhang & Jiang+ 15]
• Recurrent highway network [Zilly & Srivastava+ 17]
• Recurrent memory network [Tran & Bisazza+ 16] and more

But did not clearly replace LSTM
More recently, Transformer model

• Transformer-XL [Dai & Yang+ 19, Irie & Zeyer+ 19]
• Deep (64-layer) Transformer LM [Al-Rfou & Choe+ 19]
• Universal Transformer [Dehghani & Gouws+ 18]

Section 2.4,
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Part 2: Specific Models & Applications,

LM: Features in RETURNN

Language Modeling with RETURNN - Feature Overview

RETURNN supports almost all crucial features
• Data
– Plain line-based text .txt /.txt.gz files can be directly used (LmDataset)
– For large texts, conversion to HDF format by tools/hdf_dump.py can reduce RAM requirement for training jobs (HDFDataset)

• Modern language modeling with neural networks on a large scale
– LSTM-RNN (based on our fast custom kernel, or multiplicative LSTM)
– Self-attention (Transformer decoder)

• Model units
– Characters, subwords, words, etc.
– For large vocabulary (e.g. > 100K), SamplingBasedLoss implements, efficiency of softmax:

� Sampled softmax tf.nn.sampled_softmax_loss
� Noise contrastive estimation (NCE) tf.nn.nce_loss

• Applications/combinations in speech, translation, and potentially other tasks
• Other features like training algorithms, batching, etc.

Section 2.4,
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Part 2: Specific Models & Applications,

LM: Features in RETURNN

Feature Overview: More

LM checkpoint inspection tool:
• N-gram count models help to obtain a good neural language models
– Reference perplexity without hyper-parameter tuning
– Detect the domain signal in the text data

• Easy comparison and interpolation with count-based models
• Evaluate perplexities, with and without context across sentence boundaries
• Token-wise probabilities in the good old SRILM format:

p( one | ... ) = [debug2] 0.00478558 [ -2.32007 ]
p( who | ... ) = [debug2] 0.00816807 [ -2.08788 ]
p( writes | ... ) = [debug2] 0.00140808 [ -2.85137 ]
p( of | ... ) = [debug2] 0.0511369 [ -1.29127 ]
p( such | ... ) = [debug2] 0.0143111 [ -1.84433 ]
p( an | ... ) = [debug2] 0.0365669 [ -1.43691 ]
p( era | ... ) = [debug2] 0.000853111 [ -3.06899 ]

...

Section 2.4,
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Part 2: Specific Models & Applications,

LM: Features in RETURNN

Network Configuration - LSTM Model

• LSTM LM with two hidden layers
• Weight tying, e.g. embedding and softmax weight matrix using reuse_params
• Transpose by use_transposed_weights

network = {
’input’: {’class’: ’linear’,’activation’: ’identity’, ’n_out’: 256,’forward_weights_init’: ’random_normal_initializer(mean=0.0, stddev=0.1)’,’from’: [’data’]},

’lstm0’: {’class’: ’rec’,’unit’: ’lstm’, ’n_out’: 2048,’dropout’: 0.1,’L2’: 0.0,’direction’: 1,’from’: [’input’]},
’lstm1’: {’class’: ’rec’,’unit’: ’lstm’, ’n_out’: 2048,’dropout’: 0.1,’L2’: 0.0,’direction’: 1,’from’: [’lstm0’]},
’proj’:{’class’: ’linear’,’activation’: ’relu’,’dropout’: 0.1,’n_out’: 256,’from’: [’lstm1’]},

’output’:{’class’: ’softmax’,’dropout’: 0.1, ’reuse_params’: ’input’, ’use_transposed_weights’: True,
’forward_weights_init’: ’random_normal_initializer(mean=0.0, stddev=0.1)’,
’bias_init’: ’random_normal_initializer(mean=0.0, stddev=0.1)’,
’loss’: ’ce’,’target’: ’classes’,’from’: [’proj’]},
}

calculate_exp_loss = True

• By default, CrossEntropyLoss does not report exp loss values
• Activate calculate_exp_loss to get the perplexity in the default case

Section 2.4,
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Part 2: Specific Models & Applications,

LM: Features in RETURNN

Transformer Model

• Give large improvements over LSTM LM
• LM task automatically provides positional information, no need for extra signal [Irie & Zeyer+ 19]
• Network configuration similar to MT decoder
• Using provided building blocks, writing config file
– Stack L layers each consisting of self-attention and feed-forward modules
– Apply dropout, residual connections and layer normalization across module

• Use the same dimensionality across all layers reduce hyper-parameters

Section 2.4,
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Part 2: Specific Models & Applications,

LM: Language Model Integration

End-to-end (attention based) speech and translation models
• Setting up fusion techniques is a matter of writing a config
– Shallow fusion (inference) [Gülçehre & Firat+ 17]
– Deep fusion, cold fusion, so on (training and inference) [Gülçehre & Firat+ 17, Sriram & Jun+ 18, Michel & Schlüter+ 20]

• Loading pretrained LM parameters
• Same output vocabulary, but various model combination

Conventional speech recognition
• Lattice rescoring tool
– Part of RETURNN tools, TF C++ API
– Original rescoring code based on our rwthlm toolkit
– Take HTK standard lattice format as input

• Lattice rescoring and first pass decoding
– Part of RASR, TF C++ API.

Section 2.4,
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Part 2: Specific Models & Applications,

LM: Language Model Integration

Shallow fusion in Attention ASR Model
• Shallow fusion = beam search on log-linear combination of softmaxes
• load_on_init in subnetwork layer and lm_model_filename
• NativeLstm operating step by step
• eval layer for simple implementation of log-linear combination

lm_scale = 0.25
lm_model_filename = "lm_dir/net−model/network.020"
fusion_eval_str = "safe_log (source(0)) + %s ∗ safe_log (source (1)) " %str(lm_scale)
network = { ...
"output": {"class": "choice", "target": "bpe", "beam_size": beam_size,

"initial_output": 0,"input_type": "log_prob", "from":["combo_output_log_prob"], "initial_output": 0},
"combo_output_log_prob": {"class": "eval", "eval": fusion_eval_str, "from": ["am_output_prob", "lm_output_prob"]},
% ... Skipping E2E models layers ...
"am_output_prob": {"class": "softmax", "from": ["e2e_speech_model"], "dropout": 0.3, "target": "bpe", "loss": "ce"},
"lm_output": {
"class": "subnetwork", "from": ["prev:output"],
"load_on_init": lm_model_filename, "n_out": 1030,
"subnetwork": {"input": {"class": "linear", "n_out": 256, "activation": "identity"},

"lstm0": {"class": "rec", "unit": "nativelstm2", "n_out": 2048,"unit_opts": {"forget_bias": 0.0}, "from": ["input"]},
"lstm1": {"class": "rec", "unit": "nativelstm2", "n_out": 2048, "unit_opts": {"forget_bias": 0.0}, "from": ["lstm0"]},
"output": {"class": "linear", "from": ["lstm1"], "activation": "identity", "n_out": 1030}}},

"lm_output_prob" : {"class": "activation", "activation": "softmax","from": ["lm_output"], "target": "bpe"}}
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Part 2: Specific Models & Applications,

LM:

Sampled Softmax and NCE

• Sampled softmax to ease the computation of denominator
• NCE to replace the one-in-vocabulary classification with true-data/noisy-sample binary classification
• Configurable sampler and number of samples
• Easy activation of full softmax for proper perplexity calculation
• Speed-up without performance reduction

’output’:{
’class’: ’softmax’,
’dropout’: 0.1,
’use_transposed_weights’: True,
’forward_weights_init’: ’random_normal_initializer(mean=0.0, stddev=0.1)’,
’bias_init’: ’random_normal_initializer(mean=0.0, stddev=0.1)’,
’loss’: ’sampling_loss’,
’loss_opts’: {

’use_full_softmax’: False,
’sampler’: ’uniform’, # uniform, log_uniform, learned_unigram
’num_sampled’: 4096,
’nce_loss’: False,

},
’target’: ’data’,
’from’: [’projection’],

},
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Part 2: Specific Models & Applications,

ST

Part 2: Specific Models & Applications
Introduction
Machine translation (RNN/Transformer-based encoder-decoder-attention)
Speech recognition (Hybrid HMM, Attention, other end-to-end approaches)
Language modeling (RNN/LSTM, Transformer)
End-to-end speech translation
Direct Model
Transfer Learning
Multi-task Learning
Text-to-speech
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Part 2: Specific Models & Applications,

ST

Introduction
Speech to text translation = translating speech signal to target text
Models

• Cascade system (concatenation of ASR + MT models)
– Errors propagated from ASR
– Two-pass decoding, computational complexity, model size

• End-to-end models (trainable in an end-to-end fashion)
– Direct model, no dependence on the source transcriptions [Berard & Pietquin+ 16, Goldwater & Lopez+ 17]
– Transfer learning/pretraining [Bansal & Kamper+ 19, Stoian & Bansal+ 20]
– Multi-task learning, ASR or MT as co-trainer [Weiss & Chorowski+ 17]
– Two-stage models [Anastasopoulos & Chiang 18, Sung & Liu+ 19, Sperber & Neubig+ 19]

Frameworks (All support cascade, direct modeling):
• ESPNet-ST [Inaguma & Kiyono+ 20]
• Lingvo [Shen & Nguyen+ 19]
• SLT.KIT [Zenkel & Sperber+ 18]
• Fairseq S2T: in addition online/simultaneous ST [Wang & Tang+ 20]
• ...
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Part 2: Specific Models & Applications,

ST

What ST requires from a framework:
• Flexibility, simplicity, scalability and extensibility as mentioned before
• Easy architecture setup to enable different models
• Easy integration of ASR and MT models for cascading, e.g Hybrid HMM-NN (allows to plug-in other framework), also
LM integration

• Extendability, e.g. parameter freezing, transfer learning, multi-task learning
• Speech features: MFCC, log-Mel, Gammatone
• Model units: subwords, characters, etc.
• Data augmentation, e.g. SpecAugment [Park & Chan+ 19]
• Generating synthetic data both text and speech, knowledge distillation
• Enable use of presegmenting speech frames, e.g conventional alignments for time boundaries
• Online capability
• ...

Section 2.5,
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Part 2: Specific Models & Applications,

ST

Cascade Model
• Standard choice: write ASR output on disk and read it again as an input to MT
• All models in one config at once and conduct the search, limitation: same vocabulary
– Load all MT parameters with optional name like "mt_" prefix and ASR parameters with "asr_" prefix
– Use preload_from_files to load parameters from checkpoints
– Activate include_eos

preload_from_files = {}
if task == "search":
preload_from_files = {
"model0" : {"filename": "PATH_TO_CHECKPOINT", "prefix": "asr_"},
"model1" : {"filename": "PATH_TO_CHECKPOINT", "prefix": "mt_"}

network = {
# ASR encoder ...
"asr_lstm0_fw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": 1, "from": ["asr_source"] },
"asr_lstm0_bw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": −1, "from": ["asr_source"] },
... # so on
"asr_output": {"class": "rec", "from": [], "include_eos": True, "unit": {
... # so on

# Passing onehot vectors directly
"one_hot": {"class": "get_beamed_layer", "scores": " asr_output/output_prob_beam_scores", "beams": " asr_output/output_prob_src_beams",

"beam_size": 12, "mode": "best", "one_hot": True, "from": [" asr_output/output"], "only_on_search": True},
# MT encoder
" mt_source_embed": {"class": "linear", "activation": None, "with_bias": False, "n_out": 512, "from": ["one_hot"]},
... # so on
# MT decoder
"output": {"class": "rec", "from": [], "unit": {
... # so on
"mt_s_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": ["mt_s"], "n_out": 1024, "dropout": 0.3},}
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Part 2: Specific Models & Applications,

ST: Direct Model

• Allowing joint training of all model components
• Removing the need for explicit intermediate representations
• Challenge
– Fall short due to data scarcity

• In RETURNN
– All end-to-end models, RNN attention, Transformer, etc.
– MetaDataset to combine ASR and MT data, if needed

ST encoder

Bidir LSTM

Attention

ST decoder

Unidir LSTM

English Speech

French Text
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Part 2: Specific Models & Applications,

ST: Transfer Learning

• To overcome data scarcity problem
• Transfer knowledge from ASR and/or MT task
• Encoder and decoder networks have been separately
pretrained on ASR and MT tasks

• In RETURNN
– Flexible configuration
– Avoid pretraining some layers/parameters, add additional
layers (e.g adapter layer)

– Adapter component: to familiarize the pretrained decoder and
pretrained encoder

– Architecture combination, e.g. RNN ASR model and MT
Transformer

ASR encoder ST encoder MT encoder

ASR decoder ST decoder

adapter

MT decoder

English Speech

English Text

English Speech

French Text

English Text

French Text

copy

copy

Pre-train with ASR data Fine-tuned with ST data Pre-train with MT data
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Part 2: Specific Models & Applications,

ST: Transfer Learning

• Load pretrained ASR and MT models using a prefix
• Freezing parameters easily via "trainable":False

preload_from_files = {}
if not task == "search":
preload_from_files = {
"model0" : {"filename": "PATH_TO_CHECKPOINT", "prefix": "asr_", "init_for_train": True},
"model1" : {"filename": "PATH_TO_CHECKPOINT", "prefix": "mt_", "init_for_train": True},}

network = {
# ASR encoder first layer pretraining
"asr_lstm0_fw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": 1, "from": ["asr_source"] },
"asr_lstm0_bw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": −1, "from": ["asr_source"] },
"asr_lstm0_pool": {"class": "pool", "mode": "max", "padding": "same", "pool_size": (3,), "from": ["asr_lstm0_fw", "asr_lstm0_bw"], "trainable": False},
... # and so on
# MT decoder output layer pretraining
"output": {"class": "rec", "from": [], "unit": {
"output": {"class": "choice", "target": TargetVoc, "beam_size": 12, "from": ["mt_output_prob"], "initial_output": 0},
"end": {"class": "compare", "from": ["output"], "value": 0},
"mt_target_embed": {"class": "linear", "activation": None, "with_bias": False, "from": ["output"], "n_out": 512, "initial_output": 0, "trainable":False},
"mt_s_transformed": {"class": "linear", "activation": None, "with_bias": False, "from": ["mt_s"], "n_out": 1024, "dropout": 0.3},
... # and so on
}
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Part 2: Specific Models & Applications,

ST: Multi-task Learning

• Auxiliary model is co-trained with speech translation
• Sharing some parameters
• One-to-many
– ASR model is the auxiliary co-trainer
– Shared speech encoder
– Two independent decoders correspond to transcription and translation
– Independent of model architecture
– Transfer learning can be applied (blue blocks) ST encoder

Pre-trained ASR encoder

Bidir LSTM ×L

Attention

ASR decoder

Pre-trained ASR decoder

LSTM ×L

Attention

ST decoder

Pre-trained MT decoder

LSTM ×L

English Speech

French TextEnglish Text
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Part 2: Specific Models & Applications,

ST: Multi-task Learning

Multi-task Learning - One-to-Many

• Construct direct ST network as usual
• Add ASR decoder as an additional network
• Combine the losses by "scale", L = λ log ps2s(eI1|xT1 ) + (1− λ) log ps2s(fJ1 |xT1 )

lambda = 0.5
network = {
# ST direct encoder-decdoer network in here
...
"output": {"class": "rec", "from": [], "unit": {
...
"output_prob": {"class": "softmax", "from": ["readout"], "dropout": 0.3,"target": ST_VOC, "loss": "ce", "loss_opts": {"label_smoothing": 0.1, "scale": lambda}}
}, "target": target, "max_seq_len": "max_len_from(’base:encoder’)"},

}
# Additional ASR decoder
network_asr_dec = {
"output_asr": {"class": "rec", "from": [], "unit": {
"output": {"class": "choice", "target": ASR_VOC,"from": ["output_prob"], "initial_output": 0},
...
"output_prob": {"class": "softmax", "from": ["readout"], "dropout": 0.3,"target": ASR_VOC, "loss": "ce", "loss_opts": {"label_smoothing": 0.1, "scale": 1.0-lambda}
}, "target": target2, "max_seq_len": "max_len_from(’base:encoder’)"},

}

if task != "search":
network.update(network_asr_dec)
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Part 2: Specific Models & Applications,

ST: Multi-task Learning

• Many-to-one
– MT model is auxiliary co-trainer
– Shared target text decoder
– Two independent encoders correspond to speech and source text
– A switch layer to select the encoders
– Ignore MT encoder in inference
– Transfer learning can be applied (blue blocks)

ST encoder

Pre-trained ASR encoder

Bidir LSTM ×L

MT encoder

Pre-trained MT encoder

Bidir LSTM ×L

Attention

ST decoder

Pre-trained MT decoder

LSTM ×L

English Speech English Text

French Text
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Part 2: Specific Models & Applications,

ST: Multi-task Learning

Multi-task Learning - Many-to-One

• Construct the direct ST network as usual
• Add the additional MT encoder
• Use switch to select each of the encoders based on input data

network = {
# The speech encoder
"source": {"class": "eval", "eval": "tf.clip_by_value(source(0), −3.0, 3.0)"},
"lstm0_fw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": 1, "from": ["source"] },
"lstm0_bw" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": −1, "from": ["source"] },
"lstm0_pool": {"class": "pool", "mode": "max", "padding": "same", "pool_size": (2,), "from": ["lstm0_fw", "lstm0_bw"], "trainable": False},
...
# The text encoder
"source_text": {"class": "linear", "activation": None, "with_bias": False, "n_out": 512, "from": ["data:source_text"]},
"lstm0_fw_text" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": 1, "from": ["source_text"] },
"lstm0_bw_text" : { "class": "rec", "unit": "nativelstm2", "n_out" : 1024, "direction": −1, "from": ["source_text"] },
...
"length": {"class": "length", "from": [data:data]},
"length_is_empty": {"class": "compare", "value": 1, "from": ["length"], "kind": "less_equal"},

"output": {"class": "rec", "from": [], "unit": {
...
# The context vector in the decoder
"context": {"class": "switch", "condition": "base:length_is_empty", "true_from": "context_text", "false_from": "context_audio"},

...}
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Part 2: Specific Models & Applications,

ST:

End-to-end ST - Two-Stage Model

• Rely on transcripts, but optimized in part through end-to-end training
• Passing internal representation, e.g. attention or decoder state
• Easy setup without touching code

ST encoder

Pre-trained ASR encoder

Bidir LSTM ×L

Attention

ASR decoder

Pre-trained ASR decoder

LSTM ×L

Attention

ST decoder

Pre-trained MT decoder

LSTM ×L

English Speech

French Text

English Text

ST encoder

Pre-trained ASR encoder

Bidir LSTM ×L

Attention

ASR decoder

Pre-trained ASR decoder

LSTM ×L

Attention

ST decoder

Pre-trained MT decoder

LSTM ×L

English Speech

French Text

English Text
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Part 2: Specific Models & Applications,

ST:

Other Aspects

• Almost all ASR features can be used for ST
• E.g. SpecAugment, CTC loss, layer-wise pretraining, etc.

network = {
% we define the ST model here

}

network_additional_ctc = {
"ctc": {"class": "softmax", "from": ["encoder"], "loss": "ctc",

"target": "target_text_sprint", "loss_opts": {"beam_width": 1, "ctc_opts": {"ignore_longer_outputs_than_inputs": True}}}
}

if task != "search":
network.update(network_additional_ctc)

• Interfaces to RASR (Sprint)
– Hybrid HMM-NN ASR model
– ASR streaming, thus enabling online ST (not yet public)
– Segmentation of speech frames using alignments
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Part 2: Specific Models & Applications,

TTS

Part 2: Specific Models & Applications
Introduction
Machine translation (RNN/Transformer-based encoder-decoder-attention)
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Extending TTS models
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Part 2: Specific Models & Applications,

TTS

Neural TTS = neural feature model + neural vocoder model

Prominent neural feature models:
• Tacotron 1/2
• Deep Voice 3 / ClariNET
• FastSpeech
• Transformer TTS

Prominent neural vocoder models:
• WaveNet
• WaveRNN
• WaveGlow
• LPCNet
• MelGAN

• Many non-official repositories, no unified frameworks implementing multiple approaches
• Exception: ESPNet, OpenSeq2Seq and in the future RETURNN

Section 2.6,
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Part 2: Specific Models & Applications,

TTS: Tacotron-2

Common architecture: Tacotron-2 [Shen & Pang+ 17]

• Encoder-decoder architecture with LSTMs
• Explicit stop token
• Log-mel feature targets
• Non-autoregressive post-net for
spectrum-refinement

• Can run on any text representation

• A complete RETURNN configuration for Tacotron-2 can be found here:
https://github.com/rwth-i6/returnn-experiments/tree/master/2020-TTS-LJSpeech

Section 2.6,
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Part 2: Specific Models & Applications,

TTS: Tacotron-2

Tacotron-2 uses mostly common modules and features also found in MT and ASR
→ all needed modules should be part of the framework

Functions not covered by ASR and MT are:
• ZoneoutLSTM
• Location Sensitive Attention
• Explicit stop token instead of stopping via target labels
• The decoder might operate on merged frames

Extensions also include:
• Monotonic attention variants

Section 2.6,
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Part 2: Specific Models & Applications,

TTS: Tacotron-2

Example: Native support for windowing

• The Framework should be capable of handling windowing
• Using windowing should be minimal overhead
→ The windowing is simply a layer which generates data
’windowed_data’: {’class’: ’window’,

’from’: [’data’],
’window_size’: 2,
’window_right’: 1,
’stride’: 2},

’windowed_data_target’: {’class’: ’merge_dims’,
’from’: [’windowed_data’],
’axes’: ’static’,
’n_out’: 160,
’register_as_extern_data’: ’windowed_data_target’},

• The windowing can be undone at any part of the network
’output_split’: {’class’: ’split_dims’, ’from’: [’decoder’], ’axis’: ’F’, ’dims’: (2, −1)},
’output_reshape’: {’class’: ’merge_dims’, ’from’: [’output_split’], ’axes’: [’T’, ’static:0’], ’n_out’: 80,},

→ Slight overhead in reshaping the tensors
→ Good control over the windowing behavior, but missing overlap-and-add
Section 2.6,
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Part 2: Specific Models & Applications,

TTS: Extending TTS models

Example: Location Sensitive Attention

• The core component is convolutional feedback:
’feedback_pad_left’: {’axes’: ’s:0’, ’class’: ’pad’, ’from’: [’prev:accum_att_weights’],

’mode’: ’constant’, ’padding’: ((15, 0),), ’value’: 1},
’feedback_pad_right’: {’axes’: ’s:0’, ’class’: ’pad’, ’from’: [’feedback_pad_left’],

’mode’: ’constant’, ’padding’: ((0, 15),), ’value’: 0},
’convolved_att’: {’L2’: 1e−07, ’activation’: None, ’class’: ’conv’, ’filter_size’: (31,),

’from’: [’feedback_pad_right’], ’n_out’: 32, ’padding’: ’valid’},

• The combination of MLP-style attention inputs is only a single command:
’att_energy_in’: { ’class’: ’combine’, ’from’: [’base:enc_ctx’, ’s_transformed’, ’location_feedback_transformed’],

’kind’: ’add’, ’n_out’: 128},

→ For some attention mechanisms, implementing and editing is really convenient

A more complicated issue: Dynamic convolution feedback [Battenberg & Skerry-Ryan+ 20]
• Convolutional filters are computed by layers
• Filters are independent for each batch position
• tf.nn.depthwise_conv2d needed for correct filter computation
→ Custom TF code needed, as depthwise convolution does not exist yet
Section 2.6,
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Part 2: Specific Models & Applications,

TTS: Extending TTS models

Comparison to ESPNet
ESPNet offers a well documented class AttLoc

• Provides additional functions:
– Window constraints (forward window, backward window)
– Softmax scaling
– Encoder context pre-computation

• Downsides:
– Redundant code with other attentions
– Needs code changes to e.g. implement sum feedback
– Can not be combined with other types of feedback

RETURNN:
• Easy switch from prev:accum_att_weights to prev:att_weights
• Fast combination of any feedback types (Location-Sensitive, Gaussian, Fertility based etc.)
• Window constraints available in the softmax_over_spatial layer
• But: An eval layer might be required for very specific constraints
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Part 2: Specific Models & Applications,

TTS: Handling Multispeaker

Global Style Token

Figure: GST architecture taken from [Wang & Stanton+ 18]:

• Reference encoder similar to prosody embedding
• Style or speaker embedding is a combination of fixed
weighted tokens

• Weights can be separated by their characteristics

• Allows for manual control over the style or speaker
• Can model other criteria such as recording settings or
noise
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page 8 of 10

RETURNN tutorial | RWTH i6 | 25 Oct



Part 2: Specific Models & Applications,

TTS: Handling Multispeaker

Necessary features for GST:
• Accessing last recurrent output or computing the mean of outputs:
’ref_enc’: {’class’: ’rec’, ’direction’: 1, ’from’: [’reshape_enc’], ’n_out’: 128, ’unit’: ’nativelstm’},
’ref_enc_reduce’: {’class’: ’reduce’, ’from’: [’ref_enc’], ’axis’: ’T’, ’mode’: ’mean’, ’n_out’: GST_ATT_DIM},
or
’ref_enc_reduce’: {’class’: ’get_last_hidden_state’, ’from’: [’ref_enc’], ’combine’: ’concat’, ’n_out’: GST_ATT_DIM},

• Providing arbitrary trainable tensors:
’style_token_variable’: {’class’: ’variable’,

’init’: ’glorot_normal’,
’shape’: (NUM_TOKENS, TOKEN_DIM), },

’style_token’: {’class’: ’reinterpret_data’,
’from’: [’style_token_variable’],
’set_axes’: {’T’: ’s:0’}},

• Using pre-computed speaker embeddings or pre-computed GST weights as input:
→ Speaker embeddings can be dumped to HDF files at any time
→ Each layer can be replaced by using HDF inputs
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Part 2: Specific Models & Applications,

TTS: Vocoder Integration

Example: Parallel-WaveGAN

• https://github.com/kan-bayashi/ParallelWaveGAN
• supports ParallelWaveGAN, MelGAN and Multiband-MelGAN

Additional Requirements:
• Ground-Truth-Aligned (GTA) decoding
→ RETURNN eval mode and hdf_dump layer

• Converting RETURNN hdf outputs and audio files into ParallelWaveGAN compatible datasets

Decoding:
• Custom code that executes text-processing, RETURNN and the vocoder
• Text processing can be e.g. Sequitur, num2words ...
• Embedding RETURNN and PyTorch applications into a single software
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Conclusion,

Summary

• Each application has its own needs with respect to:
– Data processing
– Model architectures
– Decoding methods

• All applications have the same needs with respect to:
– Flexible network design, e.g adding attention extensions
– High training/decoding speed (possibly with automatic optimization)
– Understandable API

Given the right concepts:
→ A framework can be capable of handling arbitrary tasks and architectures
→ A framework should not loose convenience over flexibility

Section 3,
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Conclusion,

What you should take home

Concepts:
• A tensor management concept like Data can be useful to increase flexibility and simplicity
• Model concepts with stochastic variables is helpful for implementing a larger variety of architectures (e.g. transducer)

Implementation:
• Consider implementing most used operations in native code as in RETURNN, Lingvo or Flashlight/Wav2Letter++
• Providing generic interfaces to external applications (e.g. RASR/Kaldi)

Overall:
• Many documented tasks examples as in e.g. ESPNet and OpenSeq2Seq reduce the entry barrier
• It is important to include additional tools for any supported task
• Try to target a high flexibility before your code-base gets too (task) specific

Section 3,
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Thank you for your attention

Any questions?
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