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Abstract
Human voices vary in their perceived masculinity or feminin-
ity, and subjective gender scores provided by human raters
have long been used in psychological studies to understand the
complex psychosocial relationships between people. However,
there has been limited research on developing objective gender
scoring of voices and examining the correlation between ob-
jective gender scores (including the weighting of each acous-
tic factor) and subjective gender scores (i.e., perceived mas-
culinity/ femininity). In this work we propose a gender scoring
model based on Linear Discriminant Analysis (LDA) and using
weakly labelled data to objectively rate speakers’ masculinity
and femininity. For 434 speakers, we investigated 29 acous-
tic measures of voice characteristics and their relationships to
both the objective scores and subjective masculinity/femininity
ratings. The results revealed close correspondence between ob-
jective scores and subjective ratings of masculinity for males
and femininity for females (correlations of 0.667 and 0.505 re-
spectively). Among the 29 measures, F0 was found to be the
most important vocal characteristic influencing both objective
and subjective ratings for both sexes. For female voices, local
absolute jitter and Harmonic-to-Noise Ratio (HNR) were mod-
erately associated with objective scores. For male voices, F0
variance influenced objective gender scores more than the sub-
jective ratings provided by human listeners.
Index Terms: gender scoring, masculinity, femininity, LDA

1. Introduction
The perceived degree of masculinity in males and femininity
in females is associated with the development of secondary
sex characteristics [1]. Influenced by genetics, hormones and
the environment, these secondary sex characteristics have been
found to correlate with health status, physical strength and mat-
ing success [2, 3, 4, 5]. The human voice is one form of sexually
selected morphological trait, and is amenable to judgements of
masculinity and femininity. Several studies have shown that
vocal masculinity/femininity plays an important role in social
behaviours [6, 7, 8, 9]. A common research method used in
examining vocal masculinity/femininity is to collect subjective
gender scores, in which listeners assign degrees of masculin-
ity/femininity to human voices. However, the acquisition of
perceptual gender scores is both time and resource consuming.

Several studies have investigated relationships between
various acoustic measures and the perceived masculin-
ity/femininity of voices, as well as the utility of the acoustic
measures in objectively discriminating male and female speak-
ers. Vocal-tract length (VTL) has been shown to influence male

and female speakers’ acoustic quality where longer VTL has
been associated with lower F0 [10, 11], lower formant disper-
sion [7], and higher perceived masculinity and attractiveness, as
rated by female listeners [7]. It was also demonstrated that male
speakers who were taller and had higher testosterone levels had
lower F0 and resonance (∆F), and their voices were rated as
more masculine [6, 12]. Similarly, speakers of both sexes whose
voices had naturally either low F0 or low formant frequencies
(Fn), or both were rated as being more masculine [13]. Apart
from the conventional cues, jitter, shimmer and Harmonic-to-
Noise Ratio (HNR) have also been investigated [14, 15]. How-
ever, only jitter parameters were found to be statistically signif-
icantly higher in males than in females [14]. Whereas the study
of voice quality [16] found that HNR, jitter and shimmer were
correlated significantly with biological sex. It was reported that
the classification of sex using a combination of F0, jitter, shim-
mer and HNR achieved accuracy of 99% for both males and
females [16]. Therefore, the existing literature suggests that
acoustic measures such as F0, F0 variance, Fn, ∆F, VTL, HNR,
jitter and shimmer could be valid cues to vocal masculinity and
femininity as assessed by human listeners. Several studies have
focused on developing computation models for the binary clas-
sification of sex based on voice samples and using particular
acoustic measures. Examples include applying support vector
machines (SVMs) on F0 and Fn [17], a linear prediction (LP)
model on F0 related measures [18] and LDA on voice quality
measures [19].

Several studies have identified the acoustic measures that
differentiate male and female speakers. Other studies have
identified acoustic measures that correlate with listeners’ rat-
ings (subjective gender scores) of masculinity/femininity. To
the best of our knowledge, there has been no studies that have
attempted to build an objective gender scoring model by using
a comprehensive set of acoustic measures to differentiate be-
tween males and females. Additionally, limited effort has been
invested in generating a continuous gender score based on input
data with binary labels of males and females. As a result, it is
currently unclear whether an objective gender score based on
biological sex classification would correlate with subjectively
rated masculinity/femininity. A previous study utilised 3D fa-
cial measurements to generate objective gender scores based on
measures that could accurately classify individuals on biologi-
cal sex using a computational model based on LDA [20]. The
objective gender score was verified by investigating its correla-
tions with subjective gender scores within each sex. We adapted
this approach to the study of voice masculinity/femininity.

Using a new dataset of speech segments from 434 speakers
which is more than 3 times larger than the datasets used in pre-
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vious research [6, 7, 8, 10, 11, 12, 13, 14, 16], the current study
aims to:

1. Establish a novel model to derive an objective gen-
der score based solely on using a comprehensive set of
acoustic measures that differentiate between the two bi-
ological sexes.

2. Propose a machine learning method for determining the
relative weighting of the acoustic measures in accounting
for gender classification.

3. Assess the extent to which an objective gender
score derived from the gender classification correlates
with the subjective masculinity/femininity ratings for
males/females.

The rest of this paper is organized as follows. Section 2
gives a detailed description of the proposed model. Section 3
describes the databases. Section 4 presents the obtained results,
and is followed by analysis and discussion in Section 5. Section
6 concludes the paper with a brief summary and direction for
future work.

2. System Description
An overview of the gender scoring system is given in Figure 1.

Figure 1: Block Diagram of the Proposed System

2.1. Acoustic Measures

All the audio files (see Section 3) were used to obtain the tar-
geted speakers’ utterances and were segmented into 1 second
time frames. A set of 29 widely known acoustic measures
were extracted for each time frame. Among these measures,
meanF0Hz, stdevF0Hz, Harmonic-to-Noice Ratio (HNR), all
jitter measures (local jitter, local absolute jitter, rap jitter, ppq5
jitter and ddp jitter)1 and all shimmer measures (local shimmer,
local db shimmer, apq3/5/11 shimmer and dda shimmer)2 were
obtained from Parselmouth 0.3.3 which is a Python library for
the Praat software. The mean and median of F1, F2, F3 and F4
measure formants at each glottal pulse using the formant posi-
tion formula [21]. The VTL is estimated in seven measures: for-
mant position (pF) [21], formant dispersion (fdisp) [22], aver-
age formant frequency (avgFormant) [23], geometric mean for-
mant frequency (mff) [24], estimation of VTL (VTL Fn) [25],
formant spacings (∆F) [26] and estimation of the maximum
VTL (VTL ∆F).

On inspection, each of the acoustic measures was approx-
imately normally distributed for each sex. Some of the 29 pa-
rameters were highly correlated with each other, such as the
mean and median values of each formant frequency, as well as
measures of jitter and of shimmer. In this study because corre-
lations are not expected to affect the computational modelling
negatively, we decided to keep as much information as possible.

1http://www.fon.hum.uva.nl/praat/manual/Voice 2 Jitter.html
2http://www.fon.hum.uva.nl/praat/manual/Voice 3 Shimmer.html

Given these acoustic measures, a data-driven model is proposed
to be used in generating objective gender scores for comparison
with subjective ratings of masculinity and femininity.

2.2. Computational Gender Scoring Model

A Linear Discriminant Analysis (LDA) classifier was used on
the acoustic measures and the corresponding binary labels (0 for
females and 1 for males). LDA benefits from its ability to re-
duce dimensions of the feature set while retaining the informa-
tion that discriminates output classes. In this study, LDA tries to
find a decision boundary around the clusters of classes of males
and females. It then projects the 29-dimensional data points to
new dimensions, in a way that the two clusters are as separate
as possible and the individual data points within a cluster are
as close to the centroid of the cluster as possible. The trans-
formed new dimensions are ranked on the basis of their ability
to maximize the distance between the clusters and minimize the
distances between the data points within each cluster. While
some of the acoustic measures are highly correlated, LDA takes
advantage of information on the multiple dimensions and trans-
forms them into the LDA space, without adverse effect.

LDA has been commonly used in classification models. In
this study, LDA was used for classification based on the work
of [20]. In [20], a gender score was obtained by measuring the
ratio of the distance between each projected sample data point
and the midpoint between the means for the male and female
classes to the distance between the means of the two classes.
However, in the present study, given two clusters with irregu-
lar hyperplanes, this method may not be applicable. Thus for
this study, an objective gender score was derived from the con-
fidence score of the LDA algorithm attributes. The confidence
score of each sample belonging to two classes is the signed dis-
tance of this sample to the boundary point c, which is defined
as:{
Ogsm =‖ ω∗x− c ‖1, if sample x is labelled as male
Ogsf = − ‖ ω∗x− c ‖1, if sample x is labelled as female

(1)
Where ω∗ is the projection vector of LDA, which is learned
from the development data labelled for male and female; and c
is the boundary point of the two classes, which is calculated as
w∗ 1

2
(µ∗

0 + µ∗
1), and where µ∗

0 and µ∗
1 are the means of the two

classes. To normalise the gender scores for comparison with the
subjective scores, the gender scores were converted to z-scores
for each sex. As the objective scores have a mean of 0 and a
distribution spread of up to 4 standard deviations, for ease of
presentation the final objective scores were shifted by +4 for
males and -4 for females denoting as Oz

gsm and Oz
gsf . Figure

2 depicts the distribution of the objective gender scores and the
calculation method, where Oz

gsm is in blue and Oz
gsf is in red.

2.3. Acoustic Measure Importance

The Extreme Random Forest (ERF), which was deployed to ex-
tract the importance of the acoustic measures, generates a set of
weights summing up to 100% across all the acoustic measures.
The ERF is more suitable than other methods in the case of nu-
merical input and categorical output, given multi-dimensional
data. Most psychoacoustic studies ranked the importance of
acoustic dimensions by means of the effects of manipulations
on human ratings or by using classification accuracy, which
constrains the statistical analysis on the acoustic measures. The
ERF, popularly used in clinical research [27] to estimate feature
importance in multi-dimensional data, is selected as the tool in
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Figure 2: Distribution of Objective Gender Score

this study. The ERF is preferred as it is much faster than the
random forest method and is less prone to overfitting.

2.4. Evaluation Criteria

The main focus of this study is to establish a computational
model that can mimic subjective perceptual ratings of vocal
masculinity/ femininity. The outcomes of this study are the ob-
jective gender scores and the importance of acoustic measures.
The evaluation criterion for the objective gender scores is the
correlation between the subjective masculinity/femininity rat-
ings and the objective scores derived from the model. The im-
portance of the most discriminating acoustic measures, in the
objective rating, will be analysed by comparing them with val-
ues reported in the literature.

3. Data
The database used was obtained from the School of Psycho-
logical Science at the University of Western Australia. Voice
recordings were collected from another study which investi-
gated the association between perceived gender ratings and
autistic traits [28]. This database was chosen because it contains
more speakers with available perceived gender ratings than any
public database.

The database (see description in Table 1) is composed of
three cohorts of 434 adult participants (268 females and 166
males) who were undergraduates and fluent in English. Tested
individually in a soundproof room, each participant provided
voice samples by reading the Rainbow passage [29] using a
conversational tone. Only the second sentence from the passage
was used for the masculinity and femininity ratings.

Table 1: Database Description

Cohort No. 1 2 3

Collected year 2015 2017-2018 2019

Speakers mean age 18.9 yrs 20.87 yrs 19.09 yrs

Number of speakers 22 m* 22f* 70 m 139 f 74 m 107f

Subjective rating Yes No Yes

Number of raters 30 – 25

Rating scale 1-10 – 1-100

* m - males; f - females

Human gender ratings were provided by raters who did not
know the speakers. For each rater, the voices for each class were
presented in random order. Following the presentation of each
voice through enclosed headphones, a rating scale appeared on
the screen. The scale ranged from 1 to 10 for Cohort 1 and 1
to 100 for Cohort 3, with the extreme points labelled ‘not at all
masculine’ and ‘extremely masculine’ for male voices, and ‘not
at all feminine’ and ‘extremely feminine’ for female voices.

In summary, among the 434 speakers (166 males and 268
females), 96 male speakers were rated for their masculinity and
129 female speakers were rated for their femininity, with the
remaining speakers used only in gender classification. To cor-
rect for how listeners may have used the masculinity/femininity
rating scales differently, the ratings for each listener were first
converted to z-scores. This also enabled the merging of rat-
ings across Cohorts 1 and 3. In order to visualize the results,
the mean value was shifted to -2 for the femininity ratings for
females and +2 for the masculinity ratings for males, as all sub-
jective z-scores were initially had a mean of 0 and a distribution
spread of up to 2 standard deviations. As a result, the mean
values of human ratings for each sex may differ from the cor-
responding mean values of the objective scores. However, this
shift in the standardized ratings did not affect correlations or the
analysis of acoustic measure importance.

The recruitment and testing of all participants were con-
ducted in accordance with the ethics approval obtained for this
study from the Human Research Ethics Committee at the Uni-
versity of Western Australia.

4. Results
4.1. Classification and Objective Scores Analysis

The LDA model classified 99.77% of the speakers correctly as
male or female from the entire 3 cohorts. This confirms the abil-
ity of the LDA to accurately separate males and females. The
gender scores derived from the LDA model were moderately to
highly correlated with the corresponding subjective femininity
and masculinity ratings, with Pearson correlations (r) of 0.505
and 0.667 obtained for females and males, respectively. Figure
3 shows the scatter plot of the relationship between subjective
and objective gender scores in males and females. The objective
gender score is more highly correlated with the corresponding
subjective gender score in males than in females. Possible rea-
sons will be considered in the next section.

Figure 3: Correlations between Subjective Gender Scores and
Objective Gender Scores
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4.2. Acoustic Measures Importance

The weights of the 29 acoustic measures, provided by the ERF,
demonstrate the important cues in gender classification. Among
all the acoustic measures, whose weights sum up to 100%, the
F0 mean (weight of 36.46%), consistent with literature, was the
most discriminating measure in differentiating males and fe-
males. The contributions of the next most important acoustic
measures were F0 stdev (7.9%), local absolute jitter (7.21%),
mean value of F1 (3.55%), HNR (3%), VTL Fn (2.44%), for-
mant position (pF, 2.4%) and geometric mean formant fre-
quency (mff, 2.35%).

Table 2 shows the correlations of the acoustic measures
with the corresponding subjective and objective scores in males
and females.

Table 2: Correlations of Acoustic Measures with Subjective and
Objective Scores in Males/Females

Measures Male
Subjective
Score

Male
Objective
Score

Female
Subjective
Score

Female
Objective
Score

F0 mean 0.60 0.92 0.49 0.90

F0 stdev 0.14 0.52 0.21 0.17

local abs jitter 0.33 0.45 0.37 0.69

F1 mean 0.20 0.12 0.30 0.20

HNR 0.17 0.17 0.13 0.56

VTL Fn 0.46 0.36 0.14 0.14

pF 0.46 0.46 0.15 0.17

mff 0.46 0.37 0.11 0.18

Considering the top three acoustic measures from Table 2,
in Figure 4 we show the scatter plots for each of these measures
with the objective and subjective gender scores with female data
in red and male data in blue.

Figure 4: Scatter Plots of Subjective Gender Score and Objec-
tive Gender Score with Three Key Acoustic Measures

5. Discussion
The objective gender scores, based on all 29 acoustic measures,
correlated more highly with the subjective gender scores (r =
.667 in males; r = .505 in females), than any other single mea-
sure (F0 mean: r = .6 in males; r = .49 in females). Compared

to the facial gender scoring [20] (r = .895 in females and r =
.794 in males), the voice gender scoring shows weaker corre-
lations between objective and subjective gender scores. In the
study of [20], raters were asked to nominate the facial regions
that they used to make their judgements on the masculinity of
males and the femininity of females. Regarding voice, raters
may not be able to easily identify the acoustic measures that in-
fluence their gender judgements. Thus the relationship between
each measure and its effect on perceptual gender scoring may
not be evident. Raters from different cultural backgrounds may
vary in their experience of masculinity and femininity, which
could influence their ratings and therefore the correlations with
objective scores.

Consistent with the literatures [6, 7, 10, 11, 12, 13, 16],
the mean value of F0 (F0 mean) had the strongest association
of any of the acoustic measures with both the objective and
subjective gender scores for males and females, aligning with
its primary role in gender classification. From Table 2 it was
shown that F0 mean correlates only moderately with the subjec-
tive gender scores, with the correlation larger for males than for
females. For the objective scores, it is noticed that the compu-
tational model is more dependent on F0 mean, thus it strongly
dominates the scoring. As demonstrated in Table 2 and Figure
4, the standard deviation of F0 (F0 stdev) was the second most
important measure in categorizing the two sexes and correlated
highly with the objective gender scores for males, but less so
for females. Raters did not rely on F0 stdev to assess masculin-
ity and femininity, with weak correlations observed. Consistent
with [14, 15, 16], local absolute jitter was associated at moder-
ate levels with both the subjective and objective gender scores
for both sexes. Furthermore, in the present study, local absolute
jitter was found to be more associated with the femininity rat-
ings. The estimation of vocal-tract length (VTL Fn), formant
position (pF), and geometric mean formant frequency (mff) had
moderate associations with both objective and subjective gen-
der scores for males, but not for females. The HNR, another
moderate-level contributor to gender scores for females, was as-
sociated with objective scores, aligning with study [16].

6. Conclusions
This study proposed a computational model based on LDA to
rate human speakers’ vocal masculinity and femininity, verified
by the correlations between the objective scores and subjective
scores given by human listeners (r = 0.667 in males and r =
0.505 in females). The study used ERF to analyse the impor-
tance of the 29 acoustic measures. Moreover, it investigated
the relationships between these measures and the subjective and
objective scores. The results show that mean value of F0 is the
most important factor in subjective scoring and gender classi-
fication, especially in assessing males’ masculinity. The stan-
dard deviation of F0, vocal-tract length, formant position and
geometric mean formant frequency contribute more in assess-
ing males’ masculinity than in assessing females’ femininity,
while local absolute jitter and HNR stand out in determination
of females’ femininity. Generally, the model’s performance is
highly coherent with human perceptual ratings. A key limitation
is that the computational model was trained for gender classi-
fication and a regression approach should be considered when
there is sufficiently labelled data. In this way a more reliable
analysis of the acoustic factors that affect both subjective scores
and objective scores can be made.
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