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Abstract 
More and more, humans are engaging with voice-activated 
artificially intelligent (voice-AI) systems that have names 
(e.g., Alexa), apparent genders, and even emotional 
expression; they are in many ways a growing ‘social’ 
presence. But to what extent do people display sociolinguistic 
attitudes, developed from human-human interaction, toward 
these disembodied text-to-speech (TTS) voices? And how 
might they vary based on the cognitive traits of the individual 
user? The current study addresses these questions, testing 
native English speakers’ judgments for 6 traits (intelligent, 
likeable, attractive, professional, human-like, and age) for a 
naturally-produced female human voice and the US-English 
default Amazon Alexa voice. Following exposure to the 
voices, participants completed these ratings for each speaker, 
as well as the Autism Quotient (AQ) survey, to assess 
individual differences in cognitive processing style. Results 
show differences in individuals’ ratings of the likeability and 
human-likeness of the human and AI talkers based on AQ 
score. Results suggest that humans transfer social assessment 
of human voices to voice-AI, but that the way they do so is 
mediated by their own cognitive characteristics.   
Index Terms: language attitudes, voice-activated artificially 
intelligent (voice-AI) systems, sociolinguistic competence 

1. Introduction 
Prior work has shown that people have strong beliefs and 
opinions of other individuals based solely on speech patterns 
[1]. These language attitudes have been linked to associations 
between speech variation and geographic region [2], [3], 
gender [4], social class [5], and native language [6]. Language 
attitudes are often a proxy for people’s social attitudes toward 
individuals from a particular regional or social group. 
Specifically, people attribute a person who speaks with an 
accent as being inherently ‘pleasant’ and ‘smart’, or inversely 
‘harsh’ and ‘not intelligent’, if they associate people from the 
social group the accent indexes as having that attribute [7], 
[8]. In other words, people have intricate folk beliefs about 
inherent cognitive and social characteristics of speakers based 
purely on their voice and speech patterns.  

An open question is whether people attribute similar 
language attitudes to humans and to voice-activated artificially 
intelligent (voice-AI) systems (e.g., Apple’s Siri, Google 
Assistant, and Amazon’s Alexa). Given the ubiquity of these 
systems [9], there is growing interest in the implications of 
social characteristics of voice-AI, such as gender stereotyping 
of predominantly female assistants [10]–[12]. But our 
scientific understanding of how people attribute social 
variables to voice-AI is still limited.  

The current study examines human and voice-AI language 
attitudes through the lens of the Computers as Social Actors 
(CASA) theoretical framework [13], [14]. CASA posits that 
people automatically apply social behaviors from human-
human interaction to their behaviors toward computers given 
that a cue of humanity is expressed by the system. In 
particular, the use of spoken language has been proposed to 
‘activate’ human social norms toward technology [15]. For 
example, [16] found that participants perceived differences in 
personality across synthesized text-to-speech (TTS) voices 
(e.g., labeled some as being ‘introverted’ or ‘extroverted’) 
based on the acoustic parameters of the voices. Relatedly, [17] 
found that a robot with a higher pitched voice was given 
higher ratings in overall appearance, voice appeal, behavior, 
and personality, relative to with a lower pitched voice. For 
modern voice-AI, TTS synthesis is based on datasets of 
productions from real human speakers, via concatenative TTS 
[18] or neural vocoders trained on human pronunciation 
patterns (e.g., Tacotron or Wavenet [19], [20]). Given their 
more ‘human-like’ voices, a CASA account might predict that 
listeners will ascribe social judgments to voice-AI in the same 
ways that they would toward a real human, even if they know 
that they are interacting with a non-human entity.  

Related work in human-robot/computer interaction 
provides some support for the possibility that humans will rate 
TTS voices using human-based attributes. For example, 
individuals’ attitudes of a robot have been shown to vary 
based on the dialect it ‘speaks’ (e.g., Acapela TTS child 
voices presented via NAO robots in [21]; US, UK, NZ dialect 
ratings for a health robot in [22]). Similarly, listeners assign 
age and gender to TTS voices presented (e.g., IBM TTS in 
[23]), suggesting that social attribution of a voice does not rely 
on the presence of a physical form. Even fewer studies have 
made a direct comparison between both TTS and naturally-
produced human voices. Such a comparison is essential for 
evaluating predictions made by the CASA framework: people 
might apply social rules from human-human interaction to 
interactions with technology, but it is possible that there is still 
a distinction between real human versus voice-AI. For 
example, [24] found that a human voice was rated as nicer, 
less eerie, less supernatural, less hair-raising, and less 
shocking than a TTS voice. [25] found that a human voice was 
rated as having stronger social presence and behavioral 
intentions, while a TTS voice received lower trust ratings.  

1.1. Individual variation in language attitudes 

An additional consideration is whether computer 
personification responses (here, application of language 
attitudes to voice-AI) might vary across individuals. 
Individual variation in behavioral responses to speech is well 
attested: there are differences across people within the same 
age, social group, and region in how speech patterns are 
perceived [26]. In particular, variation across listeners has 
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been linked to differences in individuals’ cognitive processing 
style (see [27] for review); that is, how people cognitively 
vary in how they process sensory information [28].  

There is increasing evidence that there is individual 
variation in personification of technology, as well. For 
example, in a self-reported diary study of human-Alexa 
interactions, [29] found that only half of participants reported 
human social behaviors toward Alexa (e.g., saying “please” 
and “thank you”). This suggests that the application of 
politeness norms from human-human interaction to 
interactions with technology (cf. [30]) varies across users. For 
example, [31] found that the extent to which participants 
responded positively to a computer’s flattering praise varied 
as a function of their cognitive style: individuals with less 
analytical and more intuition-driven traits were more greatly 
affected by the computer’s flattery. Also, [32] found that 
participants’ subconscious vocal entrainment behavior toward 
human and Siri voices varied based on their cognitive 
processing styles, measured by the Autism Quotient (AQ). 

The AQ [33] is a common non-clinical instrument across 
studies of speech and language behavior used to assess 
differences in individuals’ cognitive processing style [26], 
[32]. The AQ has been shown to capture variation within 
neurotypical populations and is consistent with those formally 
diagnosed with Autism Spectrum Disorder (ASD), a condition 
that results in significant atypicality in social, emotional, and 
communicative behavior (DSM-5 [34]). In a general 
population of people, without a clinical ASD diagnosis, 
autistic-like traits manifest to varying degrees and can be 
quantified [35]. The AQ has also been shown to capture 
differences in behavior across individuals. For instance, 
people with higher AQ scores, signaling more autistic-like 
traits, were less accurate in detecting whether a robot’s actions 
were pre-programmed or human-controlled [36]. 

Given that one of the primary characteristics for 
individuals with more autistic-like traits is a deficit in emotion 
perception [37], [38], presenting participants with emotionally 
expressive stimuli is one way to further probe the social nature 
of these interactions and emphasize possible sources of more 
subtle individual variation. This has been previously 
demonstrated for emotion expression in robots: individuals 
with more autistic-like traits display weaker sensitivity to a 
robot’s fear and disgust  facial expressions [39], [40]. For 
voice-AI, emotional expressiveness can be conveyed in some 
systems. For instance, the Amazon Alexa (US-English) voice 
has ‘Speechcons’ [41]: words and phrases that have been 
recorded in a hyper-expressive manner by the voice actor. 
Prior work suggests that participants respond positively to 
these emotionally expressive productions by voice-AI, 
displaying more vocal entrainment toward emotionally 
expressive interjections by Alexa [42] and rating interactions 
with an Alexa social bot more highly if it contained them [43]. 
We predict that differences based on AQ will manifest in 
different social judgments of Alexa and human voices who 
use emotionally expressive speech. Therefore, in the present 
study, we exposed participants to these same emotionally 
expressive interjections to further increase possible variation 
in responses based on AQ. 

1.2. Current Study 

We designed the current study to explore differences in 
people’s social judgments of voice-AI talkers, compared to a 
human’s utterances. Participants completed a short interactive 
task, where they heard neutral and hyper-expressive 

interjections produced by the default Amazon Alexa voice and 
a real human female speaker. Then, participants rated the 
speakers across 6 social traits: how intelligent, professional, 
likeable, attractive, human-like, and old each voice sounded. 
We selected these ratings based on related work in human-
human (e.g., ‘intelligence’ in [7]; ‘professional’ in [44]; 
‘likeable’ in [45]; ‘attractive’ in [46]; ‘age’ in [47]), and 
human-computer interaction (‘human-like’ and ‘age’ in [23]). 
Participants also completed the Autism Quotient (AQ) [33]. 
We then tested the extent the relationship between AQ scores 
and ratings for the voice-AI and the human talkers.  

We have several predictions about the relationship 
between an individual’s autistic-like traits and their social 
ratings of a voice-AI and a naturally produced human voice. 
First, we predict that people who display more autistic-like 
traits will show more variation in their social ratings in 
general (i.e., for humans and voice-AI); this is in line with  
prior work showing that individuals with ASD display 
difficulty with social evaluation [48].  

Second, we predict that individuals with higher AQ scores 
will attribute more positive social judgments to the voice-AI 
talker (relative to the human talker). This prediction stems 
from work showing that individuals with ASD often prefer 
interactions with technology over those with humans [49], 
[50]. One way to understand this relationship is through the 
lens of the Uncanny Valley of the Mind [51], a function 
proposed to capture the dynamics of increasing human-
likeness on likeability: while usually increasing humanness 
correlates with increasing likeability, at a point nearing the 
‘human’ boundary, humans respond with discomfort or 
disgust. This ‘valley’, however, has been proposed to be 
shifted in individuals with ASD [52], occurring with the most 
‘human-like’ humans. Put another way, increasing autistic-
like traits may led to greater uncanniness of the human, 
relative to the voice-AI, talker. In the present study, this could 
be realized as lower ratings for the human voice. 

2. Methods 

2.1. Stimuli, Participants, and Procedure 

Stimuli for the interactive task consisted of 24 interjections, 
used in [42], generated in neutral and emotionally-expressive 
prosodies: awesome, bravo, bummer, cheers, cool, darn, ditto, 
dynamite, eureka, great, howdy, hurray, jinx, roger, shucks, 
splash, super, wow, wowzer, yikes, yuck, yum, zap, zing. Items 
were selected from the Alexa ‘Speechcons’ available [41]. 
The neutral Alexa productions were generated using the Alexa 
Skills Kit (ASK). For the human voice, a female native 
English speaker (age 25) was recorded producing the same set 
of interjections. These productions were elicited using 
instructions to speak in an emotionally neutral or expressive 
manner; the speaker did not imitate the Alexa voice. The 
recordings were made in a sound attenuated booth while the 
speaker wore a head-mounted microphone (Shure WH20 
XLR) at a 44.1 kHz sampling rate. All stimuli were amplitude 
normalized to 65 dB in Praat. (Though normalizing might 
reduce acoustic cues to expressiveness, we did so to maintain 
perceptual loudness across items).   

Participants (n=34), native English speakers recruited 
from the UC Davis Psychology subjects pool (21 M, 13 F; 
mean age = 20.12 years, sd = 2.2) were first familiarized with 
the words by reading them aloud. Then, participants were 
exposed to both speakers’ productions. In this phase, 
participants were first introduced to each interlocutor, one at a 
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time; either the voice-AI system (‘Alexa’) or human 
(‘Melissa’) first (Speaker order blocked and counterbalanced 
across participants). On a trial, participants heard an item 
produced by a talker and were asked to repeat the word. Both 
neutral and emotionally expressive productions were 
randomly presented within each block (2 blocks per speaker).  

After the exposure phase, participants rated each talker’s 
voice for 6 traits using a sliding scale (ranging from 0-100) 
(see Table 1). Order of speaker block (human, voice-AI) was 
counterbalanced across participants. Following the ratings 
task, participants completed the AQ questionnaire.  

Table 1: Social Attribute Ratings 

Professional How professional did ___ sound? 
(0=not professional, 100 =extremely professional) 

Likeable How likeable did ___ sound? 
(0=not likeable, 100 =extremely likeable) 

Attractive How attractive did ___ sound? 
(0=not attractive, 100 =extremely attractive) 

Intelligent How intelligent did ___ sound? 
(0=not intelligent, 100 =extremely intelligent) 

Human-like How much like a real person did ___ sound? 
(0=not like a real person, 100=extremely realistic) 

Age How old did ___ sound? (0-100 in years) 

2.2. Autism Quotient 

The AQ questionnaire [33] consists of 50 statements designed 
to quantify the extent of autistic-like traits in adults of normal 
intelligence in a non-clinical setting. There are 5 categories of 
questions, assessing cognitive dimensions specifically 
associated with ASD: social skills, attention switching, 
attention to detail, communication, and imagination. For each 
statement, participants pick one of four answers “definitely 
agree”, “slightly agree”, “slightly disagree”, and “definitely 
disagree”. We followed the binary coding of responses as 1 or 
0, with 1 corresponding to a more autistic-like response; 0 
corresponding to a less autistic-like response. The total score 
is summed such that a higher value indicates more autistic-like 
traits, ranging from 0 (no autistic-like) to 50 (highly autistic-
like).  

3. Analysis & Results 

3.1. AQ Scores 

We observed variation in participants’ overall AQ scores 
(range=8-31, mean = 17.7, sd = 5.7). The standard deviation 
of all social ratings (collapsed across the six variables) was 
modeled with a linear regression with a fixed effect of AQ 
score (continuous 0-50) with the lme4 R package [53]. The 
model did not reveal an effect of AQ score on overall ratings 
variation [β=-0.01, t=-0.03, p=0.97]. Overall, the intercept for 
all ratings was 60.2.  

3.2. Social Ratings Models 

We modeled each social rating as a continuous dependent 
variable (0-100) with separate linear mixed effects models. 
Each model contained identical fixed and random effects 
structure. Fixed effects included Talker (2 levels: Alexa, 
human; contrasts were sum coded), AQ score (continuous: 0-
50), and their interaction. Random effects included by-Subject 

random intercepts. (Models with the added by-Subject random 
slope for Talker did not converge; note that a separate model, 
with AQ as a 4-point scale, did not improve model fit). 

3.2.1. Attractiveness, intelligence, professionalness 

The attractiveness, intelligence, and professionalness ratings 
models all showed no significant effects or interactions. The 
intercepts were all above 50 (51.9 attractive, 64.9 intelligent, 
70.5 professional), indicating that participants rated both 
voices as similarly attractive, intelligent, and professional.  

3.2.2. Likeability, age, human-likeness 

The likeability ratings model computed a significant main 
effect of Talker, where participants judged the Alexa speaker 
to more likeable, overall, than the human speaker [β=-15.2, 
t=-2.7, p<0.05]. This effect was additionally modulated by an 
interaction between Talker and AQ score [β=-0.99, t=-3.2, 
p<0.01]. This interaction is depicted in Figure 1.A; as 
participants’ AQ scores increase, they are more likely to 
report distinct likeability ratings for the voice-AI and for the 
human talker: higher for the real person and lower for Alexa. 

For participants’ estimates of the speakers’ ages, the model 
computed a main effect of Talker: the Alexa voice was rated 
as sounding older than the human voice [β=6.5, t=2.6, 
p<0.05]. Figure 1.B displays this main effect. There were no 
other significant effects or interactions.  

The human-likeness ratings model revealed a significant 
interaction between Talker and AQ score [β=-1.2 t=-3.2, 
p<0.01]. This interaction can be seen in Figure 1.C: as 
participants’ AQ scores increase, they are more likely to rate 
the human as more human-like and the Alexa talker as less 
human-like. Participants with lower AQ scores (indicating less 
autistic-like traits) rate the Alexa speaker and the human 
speaker as more similar in their human-likeness. No other 
effects were observed. 

4. Discussion 
In this study, we examined whether participants attribute 
language attitudes to a voice-AI interlocutor (here, Amazon’s 
Alexa) and a real human talker in similar ways, and whether 
there are patterns of individual variation in these ratings. 
Overall, we found no difference in the ratings for the Alexa 
and human voice with respect to three dimensions: how 
intelligent, professional, and attractive they sound. Still, 
listeners did hear other differences in the voices: they rated the 
Alexa voice as more likeable and slightly older than the 
human voice. These patterns show that listeners extract subtle 
personality and age-related cues for TTS voices. Here, Alexa 
was rated as being in her 30s, while the human voice was 
rated as being in her 20s. Together, these overall ratings 
patterns provide support for the CASA personification 
framework [13], [14]: humans are applying social labels to 
voice-AI that are, in some cases, similar across the 
interlocutors (intelligence, professional, attractive).  

In addition to these general patterns, we also tested whether 
there was variation in ratings based on an individual’s autistic- 
like traits. While our first prediction was that individuals with 
more autistic-like traits would show greater variation in scores 
in general, we did not find evidence for this: there was no 
relationship between increasing AQ score and overall 
variation in ratings. This is contra what was observed in [48], 
where they saw differences in social evaluations in individuals  
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with ASD. As our participant pool consisted of individuals 
without a formal ASD diagnosis – in assessing individual 
differences in the general undergraduate population – this 
could be one explanation as to why differences in our study 
were minimal.  

At the same time, we did observe patterns of variation 
with some of the ratings: individuals with more autistic-like 
traits were more likely to provide distinct ratings for the Alexa 
and human voices. Contrary to our prediction, however, these 
differences were not in the expected direction; rather, higher 
AQ score was associated with a decrease in likeability and 
human-likeness of the Alexa voice and an increase in both 
dimensions for the human voice. One way to interpret this 
finding is that individuals with more autistic-like traits 
categorize human and voice-AI interlocutors as distinct social 
categories, and subsequently rate them more distinctly. These 
findings can add to prior work outlining Uncanny Valley [51]: 
here, we see that a voice-AI interlocutor who produces speech 
with neutral and expressive emotion is less likeable and less 
human-like for individuals with greater autistic-like traits. 
While we did not see an uncanny ‘cliff’ for autistic-like traits, 
as proposed for ASD [52], this is not to say that such cliff 
does not exist; rather, our findings suggest that the poles of 
human-likeness (machine ß à human) may be more distinct 
for individuals with greater autistic-like traits.  

While this work provides evidence that humans apply 
language attitudes toward voice-AI, there are many questions 
that remain. For one, how these attitudes may interact with 
gender is an open question. In this study, we held gender 
constant, only including female voices, given the availability 
of ‘Speechcons’ [41] for the Alexa female voice. Yet, 
expanding to other genders – and comparing multiple voices – 
will be critical next steps in this line of research. Furthermore, 
gender of the participants may also be a relevant factor in 
these social evaluations. Additionally, a person’s experience 
with voice-AI may be another factor in whether, and to what 
degree, they might apply language attitudes toward voice-AI 
in similar ways as they do for human voices.  

Finally, another open avenue for future work is whether 
the top-down label of voice-AI and human may lead to 
different social ratings. In the current study, these labels 
always matched (i.e., TTS acoustic productions paired with 
knowledge that the speaker was a voice-AI system). Future 
work could test how listeners, varying in AQ, differently 
weigh these factors (different voice quality or different 
speaker category). 
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