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Abstract
The evaluation of scientific submissions through peer review is
both the most fundamental component of the publication pro-
cess, as well as the most frequently criticised and questioned.
Academic journals and conferences request reviews from mul-
tiple reviewers per submission, which an editor, or area chair
aggregates into the final acceptance decision. Reviewers are
often in disagreement due to varying levels of domain expertise,
confidence, levels of motivation, as well as due to the heavy
workload and the different interpretations by the reviewers of
the score scale. Herein, we explore the possibility of a compu-
tational decision support tool for the editor, based on Natural
Language Processing, that offers an additional aggregated recom-
mendation. We provide a comparative study of state-of-the-art
text modelling methods on the newly crafted, largest review
dataset of its kind based on Interspeech 2019, and we are the
first to explore uncertainty-aware methods (soft labels, quantile
regression) to address the subjectivity inherent in this problem.
Index Terms: natural language understanding, peer review, sub-
jectivity quantification, meta-research

1. Introduction
Peer review is one of the cornerstones of the scientific process for
presenting, evaluating, and discussing novel findings since the
17th century [1]. Besides the purely written documentation of
this process in journals, conferences provide a breeding ground
for academic dispute and exchanges with field peers. Accep-
tance of academic papers for leading conferences is based on the
evaluation of the scientific merit thereof, made by the expert re-
viewers as well as the conference chairs. Peer-review is detailed
work, requiring assessment of the article with respect to crite-
ria such as novelty, technical correctness, reproducibility, and
thematic alignment with the venue. This is exacerbated by the
detrimental effect of numerous reviewer biases to the integrity of
the reviews [2]. The individual biases are traditionally addressed
by requesting multiple reviewers to evaluate each submission;
even so, this occasionally has led to many valuable papers to at
least one rejection prior to final acceptance [3, 4].

The impact of such biases on the peer review process can
also be surmised from the NeurIPS experiment [5], in which
10 % of submissions were put through peer-review twice under
different committees, with a 57 % disagreement on the list of
accepted papers between committees. Whereas it was observed
in [4] that more reviewers per submission lead to a more accurate
screening process, this comes at the cost of greater workloads.
Instead, we follow the assumption of recent exploratory stud-
ies [6–8] that a Natural Language Processing (NLP) support

∗

tool can provide an additional computational recommenda-
tion by aggregating the reviews. In [6], the authors provide
PeerRead, a dataset of peer-reviews of Artificial Intelligence con-
ferences, and a set of simple NLP baselines by utilising the ab-
stract as well as 1 608 (ICLR ’17, ACL ’17, CoNLL ’16) reviews
for predicting submission acceptance. The studies performed
in [7, 8] proposed models that predict the submission acceptance
based on dual-instance models that pair each review with the cor-
responding abstract. The former study utilises a Convolutional
and Recurrent neural network layer stack that processes clas-
sical word embeddings [9], whereas the latter utilise sentence
embeddings [10] instead, with additional sentiment metadata
extracted by the VADER model [11]. We are the first, how-
ever, that propose a model that examines submission level
recommendation by aggregating the review text from all re-
viewers, in an uncertainty-aware framework that also takes
into account the review task subjectivity, and evaluate it on a
corpus of submissions from the world’s largest and most com-
prehensive conference on the science and technology of spoken
language processing: the 20th Annual Conference of the Interna-
tional Speech Communication Association – Interspeech 20191,
promoted as the “Crossroads of Speech and Language”. Com-
prising more than 2 000 submissions and around 6 000 reviews,
it is the biggest single-blind, peer review dataset that has been
utilised in such an NLP study.

We explore both submission- and review-level predictions
on both a binary classification task of the overall acceptance
of a paper, as well as numerical prediction of the individual
and summary scores of reviewers. By fusing representations
of review texts, we achieve a Macro-F1 score of 57.15% for
acceptance prediction using an ALBERT model [12] fine-tuned
in an end-to-end manner on our dataset, and a root mean square
error of 0.56 (± 0.07) for the Interspeech-specific, averaged
reviewer overall score using a Convolutional Recurrent Neural
Network (C-RNN) trained on FastText word embeddings [13].

2. Methods and Experimental Settings
In this section we introduce our methodology, beginning with
an explanation of the machine learning tasks and the means
by which we propose to address the task subjectivity, followed
by the two different model architectures in our experiments: a
state-of-the-art ALBERT model fine-tuned on the dataset (cf.
Section 2.2), and a more traditional C-RNN that learns from

1https://interspeech2019.org/: Due to the
high sensitivity of the data, especially with regard to the re-
jected, and thus still unpublished papers, we are not able
to publish the data itself, but the framework code can be
found here https://github.com/glam-imperial/
Uncertainty-Aware-Machine-Paper-Reviewing.Equal Contribution
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pre-trained, static word embeddings (cf. Section 2.3). We then
describe the review aggregation approaches we adopt for mak-
ing submission related predictions (cf. Section 2.4). Finally,
experimental settings are detailed.

2.1. Peer Review Modelling Tasks
In this study, we are concerned with two prediction settings of
different granularity: a) review-level, in which we make pre-
dictions for each individual review based on the review text,
and b) submission-level, in which we aggregate the reviewers’
text information, thus computationally mimicking the job of an
editor. We also consider two prediction task types: a) binary
classification of paper acceptance versus rejection, and b) re-
gression, in which we explore the prediction of reviewer scores.
Regardless of the prediction setting, the data is expressed as
D = {X ,Y}, where X = {Xi} is the set of samples denoted
by the index i. Similarly, Y = {Yi}, and Yi = {yi,s}, where
s is the score index (e. g., for a particular submission, we have
available the binary acceptance scores, the novelty score, and the
technical correctness score, among others). A model M receives
the tokenised representation of Xi and learns to produce the
predicted numerical values ŷ(i,s) for the s-th target, which is
either a continuous-valued number in the case of regression, or
logits in the case of classification.

Classification (C): For binary classification, all models op-
timise the parameters based on the cross-entropy loss. One of
the contributions of this paper is the incorporation of reviewer
disagreement information in the training process by utilising a
soft ground truth for each submission that is generated by the
different opinions of the reviewers, instead of training the model
on the hard binary label. We use the modified soft label [14]:

qk =
α+

∑R
r h

r
k

2α+
∑acc.,rej.

k

∑R
r h

r
k

, (1)

where qk is the soft value for the k-th class, hr
k a hard binary

value given by the r-th reviewer (of a total of R for the sub-
mission), and α a regularisation parameter that if set to 0, the
standard soft labels are recovered, i. e., the average of the one-hot
hard labels. We also utilise the modified version by setting α to
0.75, following [14]. Training on soft labels allows the model
to place less certainty on submissions towards which the review-
ers have exhibited disagreement. This principle has also been
shown to be a successful technique in knowledge distillation [15].
Soft labels are used during training only, to provide information
regarding the task subjectivity and the reviewer disagreement
to the model; test reporting is performed as usual, on the hard
labels, in order to ensure a fair comparison.

Regression (R): We further attempt to predict the real val-
ued reviewer scores and use the Mean Squared Error (MSE) as a
network training loss. Neural network regression outputs only a
point estimate. However, for decision making, it is often bene-
ficial to rely on quantile based confidence intervals to quantify
(un)certainty [16–18]. In our context, since a) the reviewers often
have disagreeing views on paper merit, and b) in submission-
level predictions the final score is only partially dependent on
the review, as the final decision is made by the area chair, we
believe that it is sensible to be able to model a more complex,
distributional output. This can be formalised as:

L (ξi|αp) =

{
αpξi if ξi ≥ 0
(αp − 1)ξi if ξi < 0

, (2)

where α is required to be a value between 0 and 1 expressing the
percentile p (e. g., p = 0.9, the 90th percentile) and ξi = yi− ŷi,p

for each individual percentile prediction ŷp. The loss is averaged
and updated per batch. When p = 0.5, the loss corresponds to the
Mean Absolute Error (MAE) except using a median prediction
instead of the mean. We implemented Quantile Regression
(QR) as suggested by [19] by combining multiple-outputs of
a predictive model, each corresponding to a different pre-set
quantile, to avoid the occurrence of quantile crossing problems.

2.2. Transformer Language Models – ALBERT
Recently, a new generation of bidirectional context word em-
beddings based on Transformer networks [20] has led to signifi-
cant improvements on several NLP benchmark datasets [21, 22].
NLP-specific Transformer Language Models (TLM), such as
BERT [23], XLM [24], RoBERTa [25], and the lightweight, spe-
cialised for fine-tuning ALBERT [12] integrate the context of a
word by calculating a unique embedding vector for each word
based on bidirectional context incorporation. Apart from the
training method, the amount of training data and the number of
parameters strongly vary between different TLMs. For example,
the first bidirectional TLM BERT used the BooksCorpus [26] and
the English Wikipedia corpora (combined 16 GBs raw text), re-
sulting in a 110 M parameter network. In comparison, RoBERTa,
which is trained on four datasets in total, consists of 160 GBs of
source text, and the cross-lingual version XLM utilises 665 M
parameters. All have in common that they are very computation-
ally intensive, compared to traditional word embedding methods,
for which precalculated versions are common.

We opted to use the ALBERT architecture as a very com-
petitive benchmark model, to perform end-to-end training of a
TLM as a standalone network. Compared to the BERT architec-
ture, ALBERT applies two novel parameter reduction techniques:
First, the embedding matrix is split into two smaller matrices,
and second, layers are divided into groups and used repeatedly.
Furthermore, it introduces a new self-supervised loss function
that improves handling of multiple sentence input in fine-tuning
tasks. These changes reduced the memory footprint, increased
training speed and achieved the best results to date in the NLP
benchmarks LUE, RACE, and SQuAD, while pre-trained on the
same sources (3.3 B words) as BERT.

2.3. Word Embeddings + Convolutional Neural Networks
Since TLMs are very resource hungry, we also utilise unsuper-
vised word embedding techniques, such as Word2Vec [9, 27],
Global Vectors (GloVe) [28], and FastText [13,29] that substitute
the word tokens with a vector embedded in a latent semantic
space, such that similar words imply smaller vector distance. All
used conventional word embeddings are pre-trained on various
data sets and compressed to 300 dimensions. FastText and GloVe
are based on the Common Crawl (1.9 M unique words, 840 B
tokens) and Word2Vec on the GoogleNews (3 M unique words,
100 B total) dataset. We additionally experimented with training
embeddings exclusively on our data, but the performance was
much worse than the pre-trained embeddings.

After the word embedding layer, the transformed text is fur-
ther processed by a deep neural network. Convolutional Neural
Networks (CNNs) have been used successfully for sentence clas-
sification [30], and more recently, C-RNNs have been adopted
for NLP tasks such as entity recognition [31], as well as bi-
nary [32], and multiclass online hate speech classification [33].
Following the architecture used in [32, 33], ours consists of two
stacked one-dimensional CNN layers, followed by one Gated
Recurrent Unit (GRU) RNN layer. The number of filters and
widths of the convolutional layers are 128-128 and 4-4, respec-
tively, and each one is followed by a max pooling layer that
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undersamples at a rate and stride of 2-2. The hidden units of
the RNN layer are equal to 100. This deep model outputs a
hidden state sequence of a length equal to our selected padded
max size T . Each hidden state is passed through a linear fully
connected (FCNN) layer, and we denote the output sequence by
{ht}. Since the scores we are trying to predict are per sample,
we pool the information of the hidden states into a single one
using attention-based pooling, inspired by [34]. Specifically:

hpooled =

T∑
t=1

atht, (3)

where ai are real valued attention weights – one per hidden
state in the sequence. In order to calculate them, we use an
additional linear FCNN layer with weight matrix w, and as such,
the attention weights are learnt and calculated via softmax:

at =
exp(wᵀht)∑T
t′ exp(wᵀht′)

. (4)

An additional FCNN processes the pooled hidden state to
yield the model output representation.

2.4. Review aggregation
In the case of submission-level prediction, if we wish to include
the review text information, we are faced with the following
problem: we have multiple reviews, their number ranging from
one to five, and we need a way of fusing their information such
that the hidden state we propagate in the neural network is of
fixed size. The way we aggregate multiple reviews for ALBERT,
is by concatenating them, adding a <NEXT> token between
reviews. Even though this induces an ordering among them, we
found it is an effective method, that does not require much more
overhead during the already computationally heavy end-to-end
fine-tuning of the TLM-based ALBERT. In the C-RNN case, we
have an alternative that does not introduce a notion of sequence
ordering among them. We opted to address this issue using
fusion via an attention mechanism, similar to the one described
for attention pooling of sequences in the above.

2.5. Experimental settings
We have split our dataset into train-validation-test partitions of
50-25-25 percentages. We optimise the model parameters using
the train partition, we evaluate after each epoch on the valida-
tion partition, and we report test measures using the model that
yielded the best validation performance. For the classification
task, we report the Macro-averaged F1 score, and use it for
monitoring the best validation performance. For further analysis
of the skill of the classifier, we also report the Macro-averaged
Area Under Receiver Operator Characteristic Curve (AU-ROC),
Area Under Precision-Recall (AU-PR). For the regression task,
we report RMSE, and MAE and monitor the former.

Following the authors’ recommendation, ALBERT is fine-
tuned for 5 epochs using a learning rate of 1e-5, a warmup ratio
of 0.06, and gradient clipping at 1.0. Due to GPU memory
restrictions (32 GBs), we had to use half-precision training and
a batch size of 12. Preliminary experiments showed high result
stability, since the model is supervised fine-tuned only. For this
reason and the high computation requirements, experiments with
ALBERT are executed one time. In contrast, our C-RNN has
a more complex structure trained from scratch. Hence, we ran
our experiments for 40 epochs, with 10 epoch patience, and
we report averaged scores across 40 trials. For our C-RNN,
hyperparameter search was limited to an evaluation of different
learning rates (1e-3, 1e-4, and 1e-5) and different kernel sizes (4,
and 25). Gradient clipping was applied for stability.

1 2 3 4 5 6
Scores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

reproducibility
quality of references

clarity of presentation
overall rev.

technical correctness
novelty

interspeech score
reviewer confidence

Figure 1: Density estimation of all scores averaged on
submission-level. The two calculated scores, average overall
score, and Interspeech score have wider distributions, constitut-
ing more difficult tasks.

3. Interspeech 2019 Submission Corpus
The data collected from the submission system of Interspeech
2019 consist of 2 179 preprocessed academic submissions, and
5 842 reviews, with the corresponding acceptance decisions and
reviewer score recommendations. Overall, the number of ac-
cepted and rejected papers is almost identical. Within the 13
different scientific areas of the conference (tracks), it is still very
balanced with less than 5 % deviation. An important criterion for
the final acceptance decision, and thus an appropriate regression
target, is the aggregate Interspeech score (iss):

iss = 1 + 5 ∗
(

conf + 26

29
+ 0.1 ∗

nov − 1

3
+ 0.05 ∗

tech − 1

3
+ 0.05 ∗

pres − 1

3

+0.05 ∗
rep − 1

3
+ 0.65 ∗

reco − 1

5
+ 0.1 ∗

qref − 1

3
),

(5)

which is derived from the basic scores of each author, namely
a) reviewer confidence (conf), b) novelty (nov), c) technical cor-
rectness (tech), d) clarity of presentation (pres), e) reproducibil-
ity (rep), f) overall recommendation (reco), and g) quality of
references (qref) depicted as density distributions in Figure 1.

3.1. Data Preprocessing

For the partition sampling, we froze the seed to keep the split
constant and balanced over multiple runs, so that at the sub-
mission level, 50.8% of the training, 50.3% of the validation,
and 48.7% of the test partition contain rejected papers. Small
editorial mistakes are corrected, contractions are replaced by full
words (you’re→ you are), special characters unified (e. g., – (en-
dash) or — (em-dash)→ - (hyphen)) and transformed to words
( “?” → “questionmark”) as well as the text is transformed to
lower case before the tokenisation. Since the reviews are written
in a formal language, no complex preparation was necessary. An
average review has 106 words, so that the sequence length was
limited to spacious 200 words on review-level and for attention
fusion, but increased it by 100 for the review concatenation.

4. Results and Discussion
The results for acceptance classification both for submission-
and review-level, including the soft label training variations, are
summarised in Table 1. Our reviewer score prediction experi-
ment is summarised in Table 2. Finally, we also apply neural
network quantile regression in the submission-level setting. The
results are summarised in Table 3. We use bold font to indicate
the performance measure value yielded by the best method for
a particular score. In the case of quantile regression, we also
denote by italics cases where it is better than regular regression.
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Table 1: Performance of Word2Vec (W2V), FastText and Glove
(GloVe) word embeddings in our architecture compared to end-
to-end fine-tuned ALBERT on review- and submission-level ac-
ceptance prediction as hard, soft, and modified soft classifi-
cation [14]. Classification performance measures are Macro-
averaged ( %). We report Mean (Ø) and standard deviation (±)
if multiple trials have been performed.

Measure W2V FT GLOVE ALBERT
Ø ± Ø ± Ø ± Ø

Review-level

H
ar

d F1 58.18 .05 61.62 .05 52.52 .02 56.60
AU-ROC 62.98 .06 64.79 .05 54.31 .02 56.60
AU-PR 62.04 .05 62.92 .04 54.30 .01 52.23

Submission-level

H
ar

d F1 49.23 .13 52.05 .13 45.67 .11 51.37
AU-ROC 59.48 .09 61.38 .10 55.70 .05 56.52
AU-PR 59.08 .08 61.08 .10 55.31 .05 51.88

So
ft

F1 51.84 .14 55.01 .13 52.83 .14 57.15
AU-ROC 62.70 .09 65.22 .10 62.84 .09 57.17
AU-PR 62.80 .09 65.86 .10 62.40 .09 52.46

M
.-S

of
t F1 46.91 .14 53.86 .14 47.26 .15 32.34

AU-ROC 59.80 .10 65.34 .11 59.61 .09 49.43
AU-PR 59.82 .10 65.66 .11 59.57 .09 48.07

4.1. Discussion – classification
On review-level, our framework using FastText embeddings
and attention-fusion outperformed all other conventional embed-
dings, and even the Transformer-based ALBERT on all measures.
On submission-level, the results are more varied. ALBERT yields
the best performance in terms of F1 using the regular soft labels,
whereas FastText is the best performer in terms of AU-ROC and
AU-PR. The latter is a possible indication that the FastText rep-
resentations lead to a better calibrated model for this task. The
regular soft labels are consistently contributing to improvement,
especially in the sharp increase observed in the case of ALBERT.
The modified soft labels [14] yield a more modest performance
improvement in most cases, indicating that the additional degree
of softness is not helpful in this case. The GloVe embeddings,
which were the representation of choice in the related study per-
formed in [6], were the worst performers in most cases. The
TLM-based approach is not the clear winner, as would be ex-
pected [23], perhaps due to the different nature of scientific
language, on which these models are not trained, as well as
the small, for fine-tuning, size of the dataset.

4.2. Discussion – regression
The scores are predictable to a degree, in accordance to [6],
as the RMSE and MAE values are between 0.40 and around
1.00, which is within one reviewer decision level. FastText
consistently outperforms other methods in both RMSE and MAE,
both for the submission and review level experiments; however,
all methods are competitive, and in fact, occasionally the winners,
for certain scores. We note that, in general, novelty, technical
correctness, and quality of presentation are the easiest scores to
predict. Inversely, the overall recommendation, the aggregated
Interspeech score, and the reviewer confidence scores are the
hardest, which is understandable as they are sampled from the
distributions with the widest support, as is depicted in Figure 1.

4.3. Discussion – quantile regression
Since the previous experiments have not shown a clear advantage
in the usage of the computationally heavier ALBERT method,
we opted to perform these experiments on the classical embed-
dings only. Quantile regression is more robust, leading to smaller

Table 2: Prediction of reviewer scores on review-level, as well
as the average across reviewers for submission-level prediction.
We report Mean (Ø) and standard deviation (±) using RMSE
(R) and MAE (M) from conventional regression.

Score W2V FT GLOVE Albert
Ø R ± Ø M ± Ø R ± Ø M ± Ø R ± Ø M ± Ø R Ø M

R
ev

ie
w

-le
ve

l

iss 0.88 .06 0.69 .06 0.86 .03 0.69 .03 0.95 .07 0.75 .07 0.78 0.61
conf 0.92 .01 0.72 .01 0.92 .01 0.71 .01 0.92 .00 0.73 .01 0.94 0.78
nov 0.73 .02 0.58 .02 0.71 .01 0.57 .01 0.74 .02 0.57 .03 0.74 0.55
tech 0.69 .01 0.56 .02 0.70 .01 0.58 .01 0.70 .01 0.57 .01 0.73 0.60
pres 0.64 .02 0.50 .02 0.66 .02 0.51 .02 0.65 .02 0.51 .03 0.76 0.60
rep 0.73 .01 0.53 .01 0.73 .01 0.53 .00 0.74 .01 0.53 .01 0.77 0.51
reco 1.09 .06 0.87 .06 1.03 .02 0.82 .02 1.11 .01 0.87 .01 0.97 0.74
qref 0.78 .01 0.64 .01 0.77 .01 0.64 .01 0.80 .01 0.66 .02 0.77 0.64

Su
bm

is
si

on
-le

ve
l iss 0.72 .02 0.57 .02 0.65 .07 0.51 .06 0.70 .04 0.56 .04 0.87 0.65

conf 0.82 .46 0.71 .46 0.59 .01 0.48 .01 0.60 .01 0.48 .01 0.72 0.54
nov 0.49 .02 0.39 .01 0.46 .03 0.37 .02 0.48 .02 0.38 .01 0.51 0.40
tech 0.47 .01 0.38 .01 0.45 .01 0.36 .01 0.47 .02 0.37 .02 0.59 0.43
pres 0.48 .04 0.38 .03 0.44 .03 0.35 .02 0.45 .03 0.36 .03 0.50 0.39
rep 0.51 .00 0.41 .00 0.50 .00 0.41 .00 0.51 .00 0.41 .01 0.50 0.40
reco 0.88 .03 0.70 .03 0.86 .08 0.68 .06 0.87 .07 0.68 .06 0.92 0.72
qref 0.53 .00 0.41 .00 0.53 .01 0.41 .00 0.54 .00 0.41 .01 0.53 0.40

Table 3: Prediction of the average scores across reviewers for
submission-level prediction using quantile regression. We report
Mean (Ø) of RMSE (R) and MAE (M) and standard deviation
(±).

Score W2V FT GLOVE
Ø R ± Ø M ± Ø R ± Ø M ± Ø R ± Ø M ±

iss 0.74 .02 0.59 0.02 0.70 .03 0.56 .03 0.73 .02 0.58 .02
conf 0.60 .01 0.48 0.01 0.60 .01 0.48 .01 0.60 .01 0.48 .01
nov 0.50 .00 0.40 0.00 0.48 .02 0.38 .01 0.49 .01 0.39 .01
tech 0.46 .01 0.37 0.01 0.46 .02 0.37 .02 0.48 .01 0.38 .01
pres 0.50 .00 0.38 0.01 0.47 .03 0.37 .02 0.50 .01 0.39 .00
rep 0.50 .00 0.40 0.00 0.50 .01 0.40 .01 0.51 .00 0.40 .00
reco 0.93 .00 0.73 0.01 0.92 .01 0.74 .01 0.92 .02 0.72 .01
qref 0.53 .00 0.40 0.00 0.53 .01 0.41 .01 0.53 .00 0.41 .00

standard deviations in most cases. This is to be expected, due to
the task subjectivity, as a regular regression model would strive
to adapt its parameters in order to fit all targets, no matter how
unlikely. Quantile regression instead, places less importance on
samples it considers to be outliers. Moreover, it is relatively com-
petitive with respect to regular regression, and the better choice
in certain cases. Quantile regression seems to be a promising
alternative, albeit not a clear improvement.

5. Conclusions and Future Work
We expect that human executive contribution will continue being
the major factor in the peer-review process, however, we hope
that this study will be an important proof-of-concept towards
the design of automated tools that enhance the review process
by providing an additional, data-informed recommendation. We
took first steps in evaluating the potential of capturing the un-
certainty inherent in the task, and found that the usage of soft
labels brings clear improvement in submission-level decision
classification. We want to emphasise our confidence that un-
certainty quantification methods will be crucial in such tasks
where the human executive function is traditionally required,
and that further research in uncertainty-aware modelling of peer
review related data is important. One avenue we consider partic-
ularly promising for the future, is the decomposition of the task
uncertainty into different factors [35].

6. Acknowledgements
This work was partially supported by the UK Economic & Social
Research Council through the research Grant No. HJ-253479
(ACLEW). Georgios Rizos was funded by the Imperial College
President’s Scholarship EPSRC Grant No. 2021037. The authors
would also like to thank Imperial College MSc student Korbinian
Friedl for his valuable insights regarding the codebase usage.

1811



7. References
[1] D. A. Kronick, “Peer review in 18th-century scientific journalism,”

Journal of the American Medical Association, vol. 263, no. 10, pp.
1321–1322, 1990.

[2] D. Chavalarias and J. P. Ioannidis, “Science mapping analysis char-
acterizes 235 biases in biomedical research,” Journal of Clinical
Epidemiology, vol. 63, no. 11, pp. 1205–1215, 2010.

[3] J. S. Gans and G. B. Shepherd, “How are the mighty fallen: Re-
jected classic articles by leading economists,” Journal of Economic
Perspectives, vol. 8, no. 1, pp. 165–179, 1994.

[4] J. L. Jackson, M. Srinivasan, J. Rea, K. E. Fletcher, and R. L.
Kravitz, “The validity of peer review in a general medicine journal,”
PloS one, vol. 6, no. 7, 2011.

[5] N. Lawrence and C. Cortes. (2014) The NIPS experiment.
[Online]. Available: http://inverseprobability.com/2014/12/16/
the-nips-experiment

[6] D. Kang, W. Ammar, B. Dalvi, M. van Zuylen, S. Kohlmeier,
E. Hovy, and R. Schwartz, “A dataset of peer reviews (peerread):
Collection, insights and nlp applications,” in Proceedings of the
2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
NNACL, 2018, pp. 1647–1661.

[7] K. Wang and X. Wan, “Sentiment analysis of peer review texts for
scholarly papers,” in The 41st International ACM SIGIR Confer-
ence on Research & Development in Information Retrieval. ACM,
2018, pp. 175–184.

[8] T. Ghosal, R. Verma, A. Ekbal, and P. Bhattacharyya, “Deepsen-
tipeer: Harnessing sentiment in review texts to recommend peer
review decisions,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. ACL, 2019, pp.
1120–1130.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in Advances in Neural Information Processing Systems
(NeurIPS), 2013, pp. 3111–3119.

[10] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar et al., “Uni-
versal sentence encoder for english,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations (EMNLP). ACL, 2018, pp. 169–174.

[11] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based
model for sentiment analysis of social media text,” in 18th Interna-
tional AAAI Conference on Weblogs and Social Media. AAAI,
2014.

[12] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut, “Albert: A lite bert for self-supervised learning of language
representations,” in International Conference on Learning Repre-
sentations (ICLR), 2019.

[13] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” Transactions of the Asso-
ciation for Computational Linguistics, vol. 5, pp. 135–146, 2017.

[14] A. Ando, S. Kobashikawa, H. Kamiyama, R. Masumura, Y. Ijima,
and Y. Aono, “Soft-target training with ambiguous emotional ut-
terances for dnn-based speech emotion classification,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 4964–4968.

[15] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[16] G. Ostrovski, W. Dabney, and R. Munos, “Autoregressive quantile
networks for generative modeling,” in Proceedings of the 35th
International Conference on Machine Learning (ICLM), 2018.

[17] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit
quantile networks for distributional reinforcement learning,” in
Proceedings of the 35th International Conference on Machine
Learning (ICLM), 2018, pp. 1096–1105.

[18] Y. Romano, E. Patterson, and E. J. Candès, “Conformalized quan-
tile regression,” in Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[19] F. Rodrigues and F. C. Pereira, “Beyond expectation: Deep joint
mean and quantile regression for spatiotemporal problems,” IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems (NeurIPS),
2017, pp. 5998–6008.

[21] L. Stappen, F. Brunn, and B. Schuller, “Cross-lingual zero-and few-
shot hate speech detection utilising frozen transformer language
models and axel,” arXiv preprint arXiv:2004.13850, 2020.

[22] B. W. Schuller, A. Batliner, C. Bergler, E.-M. Messner, A. Hamil-
ton, S. Amiriparian, A. Baird, G. Rizos, M. Schmitt, L. Stappen
et al., “The interspeech 2020 computational paralinguistics chal-
lenge: Elderly emotion, breathing & masks.” ISCA, 2020.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019.

[24] G. Lample and A. Conneau, “Cross-lingual language model pre-
training,” arXiv preprint arXiv:1901.07291, 2019.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[26] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books,”
in Proceedings of the IEEE International Conference on Computer
Vision (ICCV). IEEE, 2015, pp. 19–27.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[28] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors
for Word Representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
2014.

[29] L. Stappen, N. Cummins, E.-M. Meßner, H. Baumeister, J. Dineley,
and B. Schuller, “Context modelling using hierarchical attention
networks for sentiment and self-assessed emotion detection in
spoken narratives,” in ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 6680–6684.

[30] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). ACL, Oct. 2014.

[31] J. P. Chiu and E. Nichols, “Named entity recognition with bidirec-
tional lstm-cnns,” Transactions of the Association for Computa-
tional Linguistics, vol. 4, pp. 357–370, 2016.

[32] Z. Zhang, D. Robinson, and J. Tepper, “Detecting hate speech on
twitter using a convolution-gru based deep neural network,” in
European Semantic Web Conference. Springer, 2018, pp. 745–
760.

[33] G. Rizos, K. Hemker, and B. Schuller, “Augment to prevent: Short-
text data augmentation in deep learning for hate-speech classifica-
tion,” in Proceedings of the 28th ACM International Conference on
Information and Knowledge Management (CIKM). ACM, 2019,
pp. 991–1000.

[34] Z. Zhang, B. Wu, and B. Schuller, “Attention-augmented end-to-
end multi-task learning for emotion prediction from speech,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 6705–
6709.

[35] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017, pp. 5574–5584.

1812


