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Abstract
Neural network language models (LMs) based on self-attention
have recently outperformed the previous state of the art, LSTM
LMs. Transformer LMs today are often used as a postprocess-
ing step in lattice or n-best list rescoring. In this work the main
focus is on using them in one-pass recognition. We show that by
a simple reduction of redundant computations in batched self-
attention we can obtain a 15% reduction in overall RTF on a
well-tuned system. We also show that through proper initial-
ization the layer normalization inside the residual blocks can
be removed, yielding a further increase in forwarding speed.
This is done under the constraint of staying close to state-of-the-
art in terms of word-error rate (5.4% on LibriSpeech test-other)
and achieving a real-time factor of around 1. Last but not least
we also present an approach to speed up classic push-forward
rescoring by mixing it with n-best list rescoring to better utilize
the inherent parallelizability of Transformer language models,
cutting the time needed for rescoring in half.
Index Terms: speech recognition, decoding, Transformer lan-
guage model

1. Introduction
Language Models based on the Transformer architecture [1]
have recently become very popular [2, 3, 4] as they outperform
the previously state-of-the-art LMs based on Long Short-Term
Memory (LSTM) [5]. For LSTM LMs multiple prior works ex-
ist on using them in one-pass recognition [6, 7, 8, 9, 10, 11]
and most recently also in low-latency streaming [12]. The main
focus of these works is on caching as many of the compu-
tations as possible or quantizing and recombining state. An-
other common requirement for real-time performance on large-
vocabulary1 tasks is the avoidance of a naive softmax to com-
pute the final output probabilities as this is computationally too
inefficient when only a small fraction is needed during decod-
ing. Often Noise-Contrastive Estimation (NCE) [13, 14] is used
to obtain a self-normalized output-layer where word probabili-
ties can be computed independently of each other.

Transformer LMs are now also gaining traction and are for
example used in lattices/n-best lists rescoring [15, 16]. One
challenge with these new models is the growth of the models in-
ternal state with the number of inputs. It is precisely this growth
that allows the model to capture longer / more complex depen-
dencies. The linear growth in memory is also accompanied by
a quadratic increase in computation time, posing an additional
challenge. Apart from using Transformer LMs directly one can
argue that an end-to-end trained Transformer acoustic model
(AM) is also a Transformer language model as for example in
[16, 17]. Especially the label-encoder part of the Transformer-
transducer architecture [17] is apart from the missing output

1in this case roughly above 100-150k words

layer an Transformer LM. In addition they perform shallow
fusion with a grapheme based Transformer LM. To make the
model streamable the authors propose to limit the attention of
the audio- and label-encoder to fixed size contexts. Other works
concerning efficient acoustic Transformer AMs focus on effi-
cient attention computations by using locality sensitive hashing
[18] or block-wise attention with context propagation [19]. For
Transformer LMs similar optimizations were proposed by e.g.
[20], where the attention spans of each attention head are auto-
matically learned and capped. Others propose modifications to
the self-attention mechanism itself by using tensor decomposi-
tion to reduce the computational effort required [21].

Apart from [21], most works focus on reducing the tempo-
ral range over which self-attention is performed. As the number
of inputs for our word-level Transformer LM are much fewer
than in acoustic models or character language models we focus
on training more compact models starting with the work from
[22]. In this work the focus was on trading self attention layers
for more and wider residual blocks between the layers.

Another important aspect of Transformer LMs is their in-
ability to generalize to sequence lengths far beyond what they
have seen in training [23]. This is not a problem in practical sys-
tems as even in the case of a mismatch in training and test data
the test data can be cut into smaller pieces by using a segmenter.

In light of these problems we will foremost focus on opti-
mizing Transformer LMs for one-pass speech recognition. To
that end, we first give a brief overview of the Transformer LM
architecture. Then we explain our proposals to improve one-
and two-pass performance which we afterwards evaluate on the
LibriSpeech corpus. We also show some experiments regarding
long-context recognition. The paper ends with conclusions.

2. Transformer LMs
The central component of Transformer neural networks is the
self attention mechanism[1]. For a given input xi at position i
a self-attention layer will create 3 values (ki, vi, qi) through an
affine transformation of input xi. These are the key, value and
query for the attention mechanism:

αi,j =
exp(qi · kj)∑̃

j≤i

exp(qi · kj̃)

oi =
∑
j≤i

αi,jvj

This attention mechanism is usually performed with multiple
independent heads. The residual output oi is then added to the
input xi. In between two self-attention layers there are a number
of wide residual feed-forward blocks[24]. These consist of two
linear layers with a nonlinearity in-between. Often dropout is
used as well, but following the training configuration of [3] we
do not use dropout for our models.
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3. Improvements to runtime performance
3.1. Better Training Hyperparameters

As stated before our Transformer architecture is carried over
from [22]. In their setup, the model is trained with stochas-
tic gradient descent and gradient clipping. The gradient clip-
ping is chosen to be as large as possible while still obtaining
model convergence. We noticed (by accident) that pretraining
the model with a small gradient clipping limit allows us to use
a larger gradient clipping limit later on. This yields a small de-
crease in perplexity such that the model is even closer to the
very large Transformer LM from [3]. Note that the perplexity
of the language model not only influences the final WER, but
also the runtime performance as more focused LM distributions
allow the decoder to prune more hypotheses.

3.2. Quantization of the LM-state

In our search implementation, the language model state is
stored in CPU memory and thus needs to be transferred to and
from GPU memory before and after each forwarding. To re-
duce memory consumption (especially for yet untuned systems
where the search-space can be very large) we quantize the state
and store it in 16-bit integers. To Simplify the quantization / de-
quantization procedure we perform quantization using a fixed
scale (0.001). The effect of this on well tuned systems is rather
small, but it is very helpful in early stages of optimization when
the search space is rather large due to sub-optimal pruning pa-
rameters.

3.3. Common Prefix

As the self-attention mechanism processes the whole sequence
at each step, decoding inevitably slows down for longer se-
quences. One counteracting factor is the fact that after some
time all hypotheses will also have a common prefix that also
grows over time. While batching multiple histories into one re-
quest is more efficient than processing each history individually,
it still incurs a runtime-cost compared to just processing a sin-
gle history. Thus we split the self-attention mechanism into two
parts: The first part is the common prefix and operates with a
batch size of one, the second is the batch for all individual suf-
fixes. After computing the energies, these two parts are merged
and the softmax operation is carried out for all histories in one
batch. This also reduces the amount of state-data that needs to
be transferred to the GPU.

3.4. Fixup initialization

In the classic Transformer architecture each residual and self-
attention layer is preceded by a layer-normalization layer[25].
From a computational point of view layer-normalization con-
sists of the computation of mean and variance and their ap-
plication to the inputs (subtraction + division). While an in-
dividual layer-norm is relatively cheap (compared to e.g. the
self-attention mechanism), the frequent use incurs significant
computational overhead. In our model around 30% of the time
was spent on its computation. To reduce it’s impact we use the
fixup normalization [26] to remove layer-norm from all resid-
ual blocks, keeping it only in front of the self-attention layers.
As in [26] we add additional bias layers and a scaling layer to
each residual block during training. For decoding, we integrate
them into the already existing bias and weight layers to avoid
computational overhead.

3.5. Hybrid Lattice/N-best Rescoring

In contrast to LSTM LMs, Transformer LMs do not have an
explicit recurrence over the label position, i.e. given a word
sequence within each layer, the output at each position can be
computed in parallel. This makes it more efficient to process
long word sequences within one mini-batch on devices with a
high degree of hardware parallelization like GPUs. This can be
exploited to do fast rescoring of n-best lists. Unfortunately n-
best list rescoring often yields results that are worse than push-
forward lattice rescoring, where hypotheses are rescored and re-
combined within each lattice node. In order to achieve lattice-
rescoring level accuracy and still seize the parallelization op-
portunities presented by Transformer LMs we propose a hybrid
lattice/n-best rescoring algorithm. To that end we modify the
push-forward lattice rescoring algorithm as follows. Instead of
rescoring the hypotheses within one node directly we just col-
lect them and push them on to the next node until the number
of hypotheses within one node surpasses a given threshold. The
hypotheses within that node can be thought of as a partial n-best
list that is rescored in one batch. The then rescored hypothe-
ses are recombined and pruned and the expansion in n-best list
style can continue again. A pseudocode formulation is given in
algorithm 1.

Algorithm 1 Hybrid Lattice/N-best Rescoring, L is the set of
nodes n in the lattice, On is the set of outgoing arks of node n,
Hn is the set of hypotheses for node n, ρ is the threshold to start
rescoring, Sa/Sh is the score for ark a / hypotheses h, Wh/Wa

is the word-sequence for hypothesis h / ark a and n(a) is the
destination node for ark a

1: for n ∈ L do
2: if |Hn| > ρ or |On| = 0 then
3: Hn = rescoreWithNewLM(Hn)
4: end if
5: for a ∈ On do
6: for h ∈ Hn do
7: h̃ = (Wh +Wa, Sh + Sa)

8: Hn(a) = Hn(a) ∪ {h̃}
9: end for

10: end for
11: end for

4. Experiments
4.1. Corpus and Models

In this paper we present results on the LibriSpeech corpus [27].
Our acoustic model is the same as in [15]. It is a 6-layer BLSTM
model trained on 960 hours of 40 dimensional Gammatone fea-
tures [28] using the state-level minimum Bayes Risk (sMBR)
criterion [29]. The output units of the acoustic models are tied
triphone states obtained using a Classification and Regression
Tree (CART). The total number of parameters is 152.5 mil-
lion. The main Transformer LM we use consists of 6 self atten-
tion layers. Each self-attention layer except for the first is pre-
ceded by 7 residual blocks. The embedding layer contains 128-
dimensional vectors and the intermediate representation size be-
tween self-attention and residual blocks is 512. Each residual
block is 4096 units wide. In total 285.9 million parameters are
used within that model.
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Table 1: Effect of LM pretraining

Model PPL WER [%]
dev test dev-other test-other

Baseline 56.77 59.39 5.0 5.4
+ Fixup 56.98 59.71 4.8 5.3
+ Pretraining 54.88 57.64 4.6 5.2

4.2. Hardware and Measurement Methodology

As in our previous work [11] each machine used for our ex-
periments has two sockets with Intel Xeon E5-2620 v4 CPUs
with a base-clock speed of 2.1Ghz and 4 Nvidia Geforce 1080Ti
GPUs. Unless stated otherwise, our decoder ran in a single
thread. As we are primarily using the GPU to do computa-
tions, we set the Tensorflow intra/inter op parallelism threads
to 1. To compute the real time factor (RTF), we measure the
total wall-clock time required by the recognizer/rescorer to pro-
cess all segments within the corpus and divide it by the total
duration. This includes loading features from disk, forward-
ing them through the acoustic model and decoding / rescoring.
Startup time is not included. Features are not extracted on the
fly as it creates higher load on our fileserver and is not a major
part during decoding anyway. In a research context, preextract-
ing features for a common task is useful as they are required for
many experiments. In a production streaming system, feature
extraction can be offloaded into a separate thread and will only
contribute to latency, but not (significantly) to the RTF.

4.3. Parameter tuning

As usual tuning of hyperparameters is very important to obtain
good performance. For the training of Transformer LMs we
optimized mainly the gradient clipping and model size and left
other parameters untouched. For decoding we tune the scale for
the language model and the lookahead language model (a bi-
gram count model). We always run recognitions with different
beam sizes, but histogram pruning limits2 are only tuned for the
smallest beam size that yields the best WER. We also use forced
recombination after 10 words in the one-pass systems to speed
up decoding without sacrificing WER.

4.4. LM Training

For the LM training we show in Table 1 the effects of our
two proposed methods. The baseline is taken from [22]. First
we employ fixup to remove the layer-norm from the residual
blocks. This results in very small degradation in perplexity. The
WER goes up, but this is most likely an effect of more extensive
tuning for the fixup model. The main claim from us at this point
is that applying the fixup normalization does not hurt perplex-
ity or WER. Resetting the learning rate to 1.0 and increasing
the gradient clipping from 1.0 to 2.0 helped us to decrease the
perplexity and WER (on dev-other) by 4% relative. This im-
provement is not that large, but given that these models are very
close to the best systems [15, 16, 30], we think that all improve-
ments are worth the effort.

4.5. One-pass recognition

For our one-pass recognition setups we only provide results for

the best set of hyperparameters. In Table 2 results for the dev-
other and test-other corpora are reported. We did not tune our

2150k state hypotheses, 1000 word-end hypotheses

Table 2: WER/RTF for the best single-pass system on Lib-
riSpeech

Corpus Beam WER [%] RTF
Total LM

dev-other
16 4.6 1.83 0.40
15 4.7 1.34 0.33
14 4.8 0.93 0.26

test-other
17 5.2 2.56 0.49
15 5.3 1.48 0.34
14 5.4 1.04 0.27

Table 3: Ablation experiments on dev-other

Model RTF for beam
14 15 16

full 0.93 1.34 1.83
- cache-prefix 1.02 1.37 1.87
- common-prefix 1.19 1.56 2.11
- state quantization 1.17 1.62 2.23
- LM pretraining 1.14 1.62 2.27
- fixup 1.26 1.74 2.37

system for the clean parts of the LibriSpeech corpus as the lower
WER correlates with a much smaller search space and thus even
systems with little optimization perform quite well. The first as-
pect to note is that the one-pass recognition results here are very
close to the results in [15] on which our system is based. WER
increased by 0.1-0.2% on the dev/test-other corpus respectively
while using a much smaller Transformer language model. De-
creasing the beam3 from 16 to 14 results in another 0.2% WER
degradation, but also yields a RTF of around 1. Note that the
share of the language model score computation of the total run-
time is around 20%-30% (depending on beam size). As our
acoustic model is a classic 3-state 10ms frame-shift model a
large part of the time is spent in the expansion of the HMM.

We also performed ablation experiments to quantify the ef-
fect of various improvements to the decoder. As Table 3 show
the main contributor to RTF gains is the common prefix opti-
mization which provides up to 0.24 RTF for beam 16. Caching
of the prefix is only effective for smaller beam sizes as for larger
beams the probability of a change in the prefix increases due to
the increase in concurrent histories. State quantization is also
more effective for larger beams. Going to the LM without LM
training does not change RTF significantly, but increases WER
from 4.6% to 4.9%. The last step in our ablation experiment se-
ries is the step to remove the fixup initialization and add layer-
norm. This again increases RTF for beam 16 by another 0.1. In
total we decreased the RTF for the full system by around 25%
by LM optimizations alone.

4.6. Long-context recognition

As mentioned before the forwarding time of Transformer LMs
is quadratic in the length of the history. To quantify how large
this effect is we merged segments from the same speaker+book

3beam refers here to the acoustic pruning threshold and not as in
many ”end-to-end” systems to the number of hypotheses.
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Table 4: Long-context recognition experiments on dev-other

language long history WER [%] RTFmodel segments pruning

4-gram no

no

8.3 1.77
yes 8.6 2.01

Transformer
no 4.6 1.83

yes 8.3 2.82
yes 5.2 2.35

in the dev-other corpus into one contiguous segment. These
vary in length from 100 to 2000 words. These do not necessar-
ily form one contiguous excerpt from a book and sentences are
sometimes missing in-between. Thus across sentence bound-
ary context might get lost to some extend. As already observed
in [23] Transformer LM performance drops significantly in the
case of inputs that are significantly longer than seen in train-
ing. As can be seen in Table 4 the WER increases from 4.6% to
8.3% on dev-other for Transformer models while e.g. a count-
model is hardly affected by the change with only a degradation
of 0.3%. To recover most of the loss of the Transformer LM we
also added history pruning. If the word history of a hypothesis
exceeds a certain length we prune it back to only the last few
words. In our experiments the optimum for the dev-other cor-
pus is at 100 words for the pruning threshold and 15 words for
the new history length. This shows that while the largest part of
the WER loss stems from the length of the context a significant
amount of it is also due to the mismatch in sentence boundaries
between training and testing.

4.7. Rescoring

Table 5: WER/RTF for rescoring with different first-pass LMs
on the dev-other corpus, LM name format is #self-attention lay-
ers x #attention heads #residual block x #residual block size,
HR = hybrid rescoring, RL=recombination limit, i.e. only this
many words in a history are considered during recombination,
resc. = recoring, LM=LM calculation in first-pass decoding
and rescoring

First-Pass LM HR beam WER real-time factor
/RL [%] total resc. LM

6x16 7x4096

no
15/4 4.7 1.29 0.15 0.40
14/4 4.8 0.92 0.11 0.32
14/2 4.9 0.86 0.13 0.31

yes

15/4 4.7 1.25 0.08 0.32
14/4 4.8 0.86 0.05 0.26
14/2 4.9 0.79 0.07 0.25

3x8 5x1024

15/4

4.9 1.18 0.12 0.24
3x8 5x2048 4.8 1.10 0.11 0.23
3x8 5x4096 4.7 1.09 0.11 0.22

3x16 5x4096 4.8 1.10 0.10 0.23
4x4 5x2048 4.8 1.18 0.11 0.25
4x8 5x2048 4.8 1.20 0.11 0.26
4x8 5x4096 4.8 1.12 0.10 0.25

For the rescoring experiments we focus on three aspects:
Firstly how much does hybrid rescoring speed up the rescor-
ing step. Secondly whether a two pass system can outperform
a one-pass system. Furthermore we check if a smaller Trans-

former LM in the first-pass can further improve performance.
In all experiments we use the first-pass LM from the previous
section for rescoring and vary the the first pass LM only. In the
first pass we do forced recombination in the first pass to reduce
the search space in the first pass as in [11]. This is denoted by
recombination limit in Table 5.

In the first 6 rows of Table 5 we see that across different
beam sizes the hybrid rescoring is about twice as fast as the
regular push-forward lattice rescoring algorithm. Due to the
relatively slow first pass the total impact is not that significant.
In another setting where the first pass recognizer is faster the
relative impact would be more significant.

Comparing to the one-pass system we see that for a given
WER the two-pass system is faster by around 7-8% relative, but
this comes at the price of not being able to reach the best WER
of 4.6% on dev-other. This is due to the reduction of the initial
search space by forced recombination of LM contexts. Without
it though the two-pass system becomes a one-pass system.

Lastly we want to compare the performance of the 6-layer
Transformer LM with smaller LMs. We trained a set of different
LMs with 3 and 4 self attention layers and different numbers of
attention heads and residual block sizes. The decoding parame-
ters for the smaller LMs are the same as the 4.7% WER system
with the 6-layer LM. Indeed we see that most smaller Trans-
former LMs perform similarly to the full Transformer model
in the first pass. The actual difference in most cases is less or
equal to 0.03% absolute even if this is not reflected in the sin-
gle digit precision WER, but there is a limit to how small the
initial model can be as we see in the case of the smallest model
(3x8+5x1024). For the model 3x8+5x4096 model the WER is
the same as for the full model at a 0.16 better RTF. We did not
try using count based LMs for the first-pass as we have already
shown in [11] that the lattices produced by a count-LM yield
worse WER.

5. Conclusions

In this work we have demonstrated how to train and use Trans-
former LMs efficiently in one- and two-pass LVCSR. A simple
pretraining helps to improve the perplexity of the LM and ex-
ploiting common prefixes in decoding and quantization of the
LM state help to reduce the RTF and memory consumption of
the model. In total we have improved the WER by 4% and the
RTF by 25% on a strong baseline. We have also shown that uti-
lizing hybrid n-best/lattice rescoring further helps to improve
speed in a two-pass system by a factor of 2.
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