
Hierarchical Multi-Stage Word-to-Grapheme Named Entity Corrector for
Automatic Speech Recognition

Abhinav Garg, Ashutosh Gupta, Dhananjaya Gowda, Shatrughan Singh, Chanwoo Kim

Samsung Research Korea
{abhinav.garg, g.ashu, d.gowda, shatrughan.s, chanw.com}@samsung.com

Abstract
In this paper, we propose a hierarchical multi-stage word-to-
grapheme Named Entity Correction (NEC) algorithm. Conven-
tional NEC algorithms use a single-stage grapheme or phoneme
level edit distance to search and replace Named Entities (NEs)
misrecognized by a speech recognizer. However, longer named
entities like song titles cannot be easily handled by such a single
stage correction. We propose a three-stage NEC, starting with
a word-level matching, followed by a phonetic double meta-
phone based matching, and a final grapheme level candidate
selection. We also propose a novel NE Rejection mechanism
which is important to ensure that the NEC does not replace cor-
rectly recognized NEs with unintended but similar named en-
tities. We evaluate our solution on two different test sets from
the call and music domains, for both server as well as on-device
speech recognition configurations. For the on-device model, our
NEC outperforms an n-gram fusion when employed standalone.
Our NEC reduces the word error rate by 14% and 63% rela-
tively for music and call, respectively, when used after an n-
gram based biasing language model. The average latency of our
NEC is under 3 ms per input sentence while using only ∼1 MB
for an input NE list of 20,000 entries.
Index Terms: Named Entity Corrector, Spell Correction, Auto-
matic Speech Recognition, Domain biasing, NE Rejection

1. Introduction
End-to-end Automatic Speech Recognition (ASR) models en-
compass the separate components such as acoustic, lexicon, and
language model of a conventional ASR model into a single net-
work [1, 2, 3, 4, 5]. It enables training and optimizing the differ-
ent components together, thereby simplifying the development
of ASR systems. Listen, Attend and Spell (LAS) [6], and Re-
current Neural Network Transducer (RNN-T) [7, 8] are exam-
ples of end-to-end architectures, which have seen wider adop-
tion for both server-based and on-device deployment owing to
their competitive performance compared to conventional mod-
els for a variety of tasks [9, 10, 5, 11].

End-to-end models are much simpler to train and can
achieve a competitive word error rate (WER) compared to con-
ventional ASR systems [12]. However, the misrecognition of
rarely occurring words such as named entities (NEs) is a well-
known shortcoming of end-to-end models [13]. This is because
end-to-end models are trained using a far smaller number of
audio-text pairs compared to the large text-only data used to
train language models in the conventional ASR systems. An
ASR is the first step of any spoken dialog system, and errors
in recognition of hypothesis especially named entities cascades
in subsequent natural language understanding (NLU) module.
Hence a variety of research [14, 15, 16, 17, 18, 19] is being
done by researchers in both NLU and ASR community to ad-
dress this problem.

The problem of NE misrecognition is particularly severe
for domains like music, contacts, location, and so on hav-
ing a large number of infrequent proper nouns. One approach
to incorporate domain information into ASR is using on-the-
fly rescoring [20, 21] with a domain-specific n-gram language
model (LM). Another similar approach is to do a shallow fu-
sion with a domain biased Weighted Finite-State Transducer
(WFST) [22, 23, 24]. Some previous works have also ex-
plored incorporating the domain-specific LMs into the end-to-
end network using different fusion techniques such as shal-
low,deep [25, 26] and cold [27] fusion. [28, 29] used deep learn-
ing approaches for named entity correction whereas [23, 30]
also explored using deep neural architectures for contextualiz-
ing ASR output where they jointly optimize the ASR along with
the contextual embeddings.

While the above methods significantly improve the perfor-
mance of domain ASR, each of them has some shortcomings.
They might require large amounts of domain-specific training
data, additional training time; moreover, they might add high
latency, or increase the model size making the overall ASR
model bulky and slow. This restricts their usage especially for
on-device applications with limited memory and latency con-
straints. Hence, simple edit distance based algorithmic spell cor-
rection methods have been proposed [16, 31, 32, 33]. While
these are fast and light-weight, they might also suffer from a
severe problem of replacing a correct ASR output with its close
and confusing match from the corresponding input NE list.

In this paper, we propose a hierarchical multi-stage word-
to-grapheme Named Entity Correction (NEC) algorithm. Our
NEC uses weighted edit distance and has a NE Rejection mod-
ule based on ASR beam search outputs to ensure that NEC does
not replace any correctly recognized named entity. We follow a
multi-stage hierarchical matching approach starting from word
to grapheme. At each stage, we select only a sub-set of can-
didate NEs based on the normalized edit distance which con-
strains the size of the NE list to be processed in the subsequent
stage. In the first two stages, we select candidates based on word
level and phoneme level information. In the third stage, we cal-
culate the weighted edit distance of the remaining candidates
and choose a candidate with minimum distance. Finally, we ver-
ify if this candidate is indeed a better replacement than the ASR
output itself. We focus on building light-weight and fast solu-
tion that can be used as a standalone domain biasing solution in
constrained environments or it can be applied as an additional
step along with other domain biasing solutions such as those
based on WFST, n-gram, and so on.

The proposed algorithm is evaluated on three test sets -
Call, Music, and Open Domain with three different model con-
figurations - the on-device model, on-device model + n-gram,
the server model + WFST. For the on-device model, proposed
NEC outperforms n-gram fusion when used standalone and
gives 14% and 63% relative WER improvement for music and

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-31741793

call test sets respectively when used with an n-gram LM.

2. ASR Architecture
For our baseline ASR we use an Attention based Encoder-
Decoder (AED) architecture, composed of an encoder, a de-
coder, and an attention block [6]. Our AED system is con-
structed using a Tensorflow 2.0 Keras model. This model is
trained using an in-house trainer built using Tensorflow 2.0-
Keras APIs and the tf.data pipeline. An AED model takes
speech x as an input and outputs a beam of possible hypotheses,
y0, . . . , yb−1 along with their probability scores (beam scores)
p0, . . . , pb−1, where b is the beam size, pi = P (yi|x), and
p0 > p1 · · · > pb−1. In this work, we use server and on-device
AED models from our previous works [34, 21] for evaluating
our NEC solution.

After obtaining the hypothesis from the AED model, we
used a simple keyword-based domain classifier for deciding the
domain of the AED output. Based on this domain, we apply an
optional domain-specific biasing method as explained in Sec-
tion 4. Finally, we extract the NE, n0 from the top output y0 of
the AED model using regular expression (regex) matching with
handcrafted rules. If y0 contains multiple NEs, we process each
of them separately with our NEC algorithm. We refrain from
using neural domain classifiers [35] and NE extractors [36] to
keep our post-processing lightweight and fast. Neural domain
classifiers and NE extractors can be further used to improve the
overall performance.

3. Named Entity Corrector
A block schematic of the proposed multi-stage Named En-
tity Corrector (NEC) is shown in Fig. 1. Given ASR outputs
(y0, . . . , yb−1), (p0, . . . pb−1) and an NE listL0 containing pos-
sible alternatives for NE in ASR output, the purpose of an NEC
is to replace the NE in the ASR output with a better alternative
from the input NE list L0 if available.

Figure 1: Block schematic of the proposed Named Entity Cor-
rector (NEC)

We follow a hierarchical multi-stage, multi-granular ap-

proach starting from word to grapheme. At each stage, we select
only a subset of candidate NEs based on the normalized edit dis-
tance which constrains the size of the NE list to be processed in
the subsequent stage. In the first stage, a word level edit dis-
tance is used to shortlist NE candidates, which are refined at the
second stage using a double meta-phone based edit distance.
In the third stage, we calculate the weighted edit distance for
all remaining candidates and choose a candidate with minimum
distance. Finally, we check if the obtained candidate is indeed a
good replacement for the input NE using its beam information.
Now, we explain each of these stages in details.

3.1. Word level matching

At the first stage, we select candidate NEs from the NE list L0

based on their normalized word-level edit distance with NE n0

corresponding to the top ASR hypothesis y0. In particular, given
an input NE list L0 and NE n0, L1 is the list of all NEs ni ∈ L0

such that:
d1i = WordEd(ni, n

0) (1)

L1 = {ni|d1i < ε1, ∀ni ∈ L0} (2)

where WordEd(ni, n
0) is a word level edit-distance be-

tween ni and n0 normalized by number of words in n0. ε1 is
the threshold we use for selecting potential replacement candi-
dates from the input NE list L0.

3.2. Phonetic matching

In the next stage we calculate phonetic similarity between NEs
in L1 and the input NE n0. For doing this, we use Double
MetaPhone (DMP) algorithm [37]. DMP maps an input token to
its approximate phonetic representation using predefined rules
and heuristics. It was primarily developed for English but was
later extended to other languages as well.

We compute the DMP code for a given multi-word NE by
obtaining the DMP code for each word in the NE and later con-
catenating them with a space. Similar to stage one, we calculate
normalized edit distance between DMP code for input NE n0

and each NEs in L1. Based on this we create a next list of NE
candidates L2 ⊂ L1, such that :

d2i = ED(DMP (ni),DMP(n0)) (3)

L2 = {ni|d2i < ε2, ∀ni ∈ L1} (4)

where DMP(n) is DMP code for n computed as described
above. ED(a, b) is the grapheme level edit distance between a
and b normalized by the length of b. ε2 is the filtering parameter
used to reduce the size of L2.

3.3. Grapheme level matching

At the third stage, we calculate grapheme based edit distance
d3i as d3i = ED(ni, n

0) for each candidate NE ni ∈ L2. For
choosing our final replacement NE, nr , we calculate weighted
edit distance for each candidate NE in L2 as :

dfi = w1 ∗ d1i + w2 ∗ d2i + w3 ∗ d3i (5)

where w1, w2, w3 are the weights given to word level, pho-
netic level and grapheme level edit distance respectively and
w1 + w2 + w3 = 1. nr ∈ L2 is the final suggestion NE
with weighted edit distance dfr s.t. dfr = min(dfi)∀ni ∈ L2.
If dfr < ε3, our NEC passes nr to the next stage for final verifi-
cation else our NEC terminates with no suggestion.

1794

3.4. NE Rejection

A simple edit distance based NEC has a shortcoming of replac-
ing NEs which are correctly predicted by the ASR. This prob-
lem is more profound for domains like call, music, location. For
such domains either it is difficult to get an exhaustive NE list,
or the NE list might be too large resulting in resource-intensive
and slow NEC. In such cases instead of the correct NE, the NE
lists might contain similar but incorrect replacements which can
degrade the performance of the ASR. Hence, apart from im-
proving domain-specific performance, our main focus was to
ensure that our NEC solution does not cause any degradation
to ASR output irrespective of the domain or the amount of NEs
used. We use the beam information of the ASR to accomplish
this. In this module, we verify whether nr is indeed a suitable
replacement for n0.

For this stage first we extract n1, . . . , nb−1, where ni is the
NE present in top ith hypothesis of the ASR, yi. For extract-
ing ni we use the following approaches. First we try to extract
ni using the same regex rule as n0. As yi might be erroneous,
we use a fall back NE extractor, which aligns y0 and yi using
minimum edit distance alignment and extracts NE ni from yi

corresponding to n0 in y0.
If nr matches with any of the beam NEs, n0....nb−1 then

we straightaway accept nr as a replacement for n0. Otherwise
for both n0 and nr we calculate rejection score, rn as :

rn =

b−1∑
i=0

pi ∗ (w1 ∗WordEd(ni, n) + w2 ∗ ED(

DMP (ni), DMP (n)) + w3 ∗ ED(ni, n)) (6)

Where n can be either n0 or nr , pi represents probability
for ASR output yi. Finally, if rn0 > rnr , we accept nr as a
suitable replacement for n0 otherwise we reject nr and output
no suggestion for n0.

4. Experimental Setup
We use two AED systems to evaluate our NEC algorithm. The
first model is similar to [34], which is trained with anonymized
open domain corpus consisting of around 10K hours of tran-
scribed speech. The second model is similar to [21], which is
essentially the first model compressed and quantized for on-
device applications. Both models use subword BPE units [38] as
their output and have an output vocabulary size of 10k. We call
the first model as the server model and the second model as the
on-device model. All the models in this paper are trained using
an in-house trainer built using the Tensorflow 2 Keras APIs.

The on-device model has 20 times fewer parameters than
the server model as it is SVD [39, 9] compressed and quantized.
We use beam search with a beam size of 8 for decoding of server
model and beam size of 4 for the on-device model. Both these
models use MoChA attention [21, 40] and are streaming with
real-time decoding. We apply NEC only after the complete ASR
output is available.

We use ε1 and ε2 as 0.5 and ε3 as 0.25. We give highest
weightage to grapheme level distance with w3 = 0.6 while w2

and w1 are set to 0.25 and 0.15 respectively. These parameters
can be further fine tuned with grid search and optimized for
each domain. However, for consistency, we use the same set of
parameters for all our experiments across various domains.

We perform experiments for 2 domains namely Call and
Music. For call NE list, we collected around 20k most common
English names. For music NE list, we used titles of about 400k

most popular songs and names of 100k most popular artists. We
experiment with 3 test sets - Call, Music, and Open domain. The
Call test set contains about 5k utterances of call requests (e.g.
call becker mathewson). The Music test set contains
20k utterances of requests to play music (e.g. play ariana
grande, play not afraid by eminem). Open domain
contains 1.5k utterances out of which about 4% are from mu-
sic or call domain. For Open domain test set depending upon
classified domain we use either Call post-processing (biasing +
NEC) or Music post processing or none.

We also optionally use WFST rescoring with the server
model and n-gram rescoring with the on-device model. Both
these domain biasing solutions are built from the text corpus
obtained by expanding NE matching regex rules with all possi-
ble NEs in the NE list. We use fusion weights of 0.2 for n-gram
LM and 0.25 for WFST fusion.

For edit distance calculations, we use Levenshtein distance
[41] as our edit distance matrix. To perform ED calculations, we
apply symmetric delete spelling correction algorithm, which is
about six orders of magnitude faster than Norvig’s [31] spelling
corrector.

5. Results
In this section, we discuss the results obtained with our NEC al-
gorithm. Table 1 contains the results and contributions for each
module of our algorithm in terms of Word Error Rate (WER)
and Sentence Error Rate (SER). We start with only grapheme
level matching. After that, we add phonetic level matching us-
ing DMP, Word level matching and finally, we add NE Rejec-
tion. For all the results in Table 1 we used the default configu-
ration of NEC parameters mentioned in Section 4.

We evaluate our algorithm on three test sets - Call, Music
and Open Domain. For The Call test set, over 90% of the ground
truth NEs are already present in the input NE list. The Music test
set has about 50% of the ground truth NEs present in the input
NE list. Finally, The Open Domain test set has only a few (about
4%) music or call domain sentences.

For each of these test sets, we evaluate 3 different scenar-
ios. First, when NEC is used as the only domain-specific post-
processing module for the on-device model. Secondly, we ex-
plore the use of NEC along with an n-gram domain LM. Finally,
we explore the use of NEC along with a much larger server-side
model having a WFST for domain biasing. Please note our NEC
solution is the same for all these cases; however, the base model
varies in terms of parameters and beam size.

For the Call test set, we observe that NE Rejection
marginally degrades the performance. This degradation is ex-
pected because over 90% of the ground truth NEs are already
present in the NE list. Therefore any rejection is presumably
a bad rejection. Hence it becomes difficult for NE Rejection to
make a decision. We obtain a minimum of 53% and a maximum
of 69.4% relative WER improvement for the call test set.

The Music test set is the best application scenario for our
NEC algorithm where only about 50% of the ground truth NEs
are present in the NE list. However, the NE list is huge and
may contain confusing incorrect replacements for other 50%
of the ground truth NEs. As can be seen, NE Rejection consis-
tently improves performance for this test set. For the server-side
model, we obtain about 7.3% relative WER improvement with-
out NE Rejection and about 8.6% with NE Rejection.

To further evaluate the usefulness of NE Rejection, we
compute results for the music test set with only 2, 5, 10, 20%
of the NE list selected randomly from the full NE list of 500k

1795

Table 1: Performance (in %) of different stages of NEC for various models on music, call and open domain testsets

Testset Model Biasing Baseline +Grapheme NEC +Phonetic NEC +Word NEC +NE Rejection

WER SER WER SER WER SER WER SER WER SER

Music On-device None 12.20 46.85 10.12 35.27 9.58 33.10 9.68 33.60 9.60 33.15
N-gram 10.26 37.97 9.36 32.17 8.96 30.61 8.90 30.46 8.80 29.9

Server WFST 6.12 24.6 6.05 23.61 5.81 22.41 5.67 21.80 5.59 21.68

Call on-device None 19.15 46.01 7.22 13.26 5.55 9.78 5.48 9.50 5.85 10.24
N-gram 12.80 31.95 5.96 11.10 4.91 8.90 4.69 8.60 4.80 8.74

Server WFST 10.30 24.50 5.12 9.89 4.64 8.51 4.73 8.68 4.79 8.72

Open
Domain

On-device None 14.61 29.21 14.67 29.33 14.64 29.21 14.61 29.15 14.59 29.15
N-gram 14.52 28.89 14.58 29.27 14.54 28.89 14.52 28.83 14.49 28.77

Server WFST 9.03 22.02 9.20 22.52 9.09 22.27 9.05 22.08 8.90 21.57

song titles and artist names (400k +100k). We used our server
model, and the results were averaged over 5 runs, as shown in
Table 2. As the size of the NE list increases the probability of
ground truth NE being present in the list increases, however, the
probability of close matching incorrect NE being present in the
list also increases. For NEC without NE Rejection, the results
improve initially with 2% of the NE list as there are not many
confusing candidates. However, they degrade after that for 5%
and 10% as the confusing candidates start to appear. Finally,
the results start improving once enough number of ground truth
NEs are present in the NE list. In contrast to this, the results for
NEC with NE Rejection are consistently better than the base-
line.

For Open domain, NEC without NE Rejection degrades the
performance marginally. This is majorly due to NEs in sen-
tences like: "call previous number", "play some
good song" getting replaced with wrong NEs from the NE
list. Such cases can be probably handled via a better domain
classifier, but for us, NE Rejection ignores such misclassifica-
tions and improves the performance by 1.4% relative WER for
server model.

As can be seen from Table 1, our algorithm achieves better
performance than n-gram fusion for the on-device model for
both call and music test sets. Also, when combined with other
biasing techniques like n-gram or WFST fusion, it significantly
improves the performance. Hence, our NEC can either be used
as a replacement for n-gram in an on-device model. Or it can
also be used as an additional step in the domain-specific post-
processing pipeline of any ASR system.

The average latency of our algorithm is about 2-3 ms per
utterance averaged across all domains on a CPU with a clock
rate of 2.6 Ghz and ∼9 Gb memory. The memory consumption
is around 1 MB for call and around 40 MB for music which
is 3.5 ∼ 4 times the size of NE list itself. This memory is re-
quired to store the data structure for the fast computation of edit
distances. This data structure can either reside in memory or re-
side in the secondary storage and parts of it can be loaded on an
on-demand basis. All our experiments use an in-memory data-
structure. In terms of number of candidates, average length of
L1 is about 0.7% of L0 and average length of L2 is about 50%
of L1.

To evaluate the effectiveness of our fallback NE extractor,
which extracts the NE using minimum edit distance alignment,
we also computed the percentage of times fallback NE extractor
was used. For server model with WFST, fallback NE extractor

Table 2: Performance (in %) of NEC experiments for music test
set with various percentages of the full NE list averaged over 5
runs

Percentage of
NE list used

NEC w/o
NE Rejection

NEC with
NE Rejection

WER SER WER SER
0 6.12 24.6 6.12 24.6
2 6.04 ↓ 24.14 5.96 ↓ 23.74
5 6.43 ↑ 26.13 5.99 ↓ 23.88

10 6.13 ↑ 24.63 5.96 ↓ 23.73
20 5.91 ↓ 23.5 5.84 ↓ 22.6

100 5.67 ↓ 21.80 5.59 ↓ 21.68

was used <5% as the beams were well-formed. However, for
the on-device model, it was used about 8% for the n-gram case
and about 11% for the no-bias case.

6. Conclusion
In this paper, we presented a hierarchical multi-stage word-

to-grapheme Named Entity Correction (NEC) algorithm. We
start from word-level matching, followed by a phonetic match-
ing and finally a grapheme level candidate selection. We also
presented a novel NE candidate rejection mechanism to prevent
NEC from replacing a correctly recognized NE. We evaluate
improvement obtained by each stage. We also perform experi-
ments with various NE list sizes, where NEC without NE Re-
jection degrades the performance for a few list sizes; however,
with NE Rejection, it always performs better than the baseline.
The proposed NEC has a latency of 2-3ms and a memory foot-
print of about 3.5-4 times the size of the NE list. For a resource
constraint on-device model, we show that our NEC outperforms
n-gram fusion when used standalone and provides significant
improvement when used along with an n-gram. Hence, the NEC
can be used as a standalone domain biasing solution for resource
constraint environment, or it can be applied as an additional step
along with other domain biasing solutions such based on WFST,
n-gram, and so on.

7. References
[1] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.

Cubuk, and Q. V. Le, “SpecAugment: A Simple Data Augmen-

1796

tation Method for Automatic Speech Recognition,” in Proc. Inter-
speech, 2019.

[2] A. Garg, D. Gowda, A. Kumar, K. Kim, M. Kumar, and
C. Kim, “Improved Multi-Stage Training of Online Attention-
based Encoder-Decoder Models,” in Proc. ASRU, 2019.

[3] D. Gowda, A. Garg, K. Kim, M. Kumar, and C. Kim, “Multi-
task multi-resolution char-to-bpe cross-attention decoder for end-
toend speech recognition,” in Proc. Interspeech, 2019.

[4] C. Kim, M. Shin, A. Garg, and D. Gowda, “Improved vocal tract
length perturbation for a state-of-the-art end-to-end speech recog-
nition system,” Proc. Interspeech 2019, pp. 739–743, 2019.

[5] D. Gowda, A. Kumar, K. Kim, H. Yang, A. Garg, S. Singh, J. Kim,
M. Kumar, S. Jin, S. Singh, and C. Kim, “Utterance invariant
training for hybrid two-pass end-to-end speech recognition,” in
Proc. Interspeech, 2020.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. ICASSP, 2016.

[7] A. Graves, “Sequence transduction with recurrent neural net-
works,” CoRR, vol. abs/1211.3711, 2012.

[8] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and
N. Jaitly, “A comparison of sequence-to-sequence models for
speech recognition.” in Proc. Interspeech, 2017.

[9] A. Garg, G. Vadisetti, D. Gowda, S. Jin, A. Jayasimha, Y. Han,
J. Kim, J. Park, K. Kim, S. Kim, Y. Lee, K. Min, and C. Kim,
“Streaming on-device end-to-end asr system for privacy-sensitive
voicetyping,” in Proc. Interspeech, 2020.

[10] A. Kumar, S. Singh, D. Gowda, A. Garg, S. Singh, and C. Kim,
“Utterance confidence measure for end-to-end speech recognition
with applications to distributed speech recognition scenarios,” in
Proc. Interspeech, 2020.

[11] K. Kim, K. Lee, D. Gowda, J. Park, S. Kim, S. Jin, Y.-Y. Lee,
J. Yeo, D. Kim, S. Jung et al., “Attention based on-device stream-
ing speech recognition with large speech corpus,” in Proc. ASRU.
IEEE, 2019.

[12] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang et al., “Stream-
ing end-to-end speech recognition for mobile devices,” in Proc.
ICASSP, 2019, pp. 6381–6385.

[13] T. N. Sainath, R. Prabhavalkar, S. Kumar, S. Lee, A. Kannan,
D. Rybach, V. Schogol, P. Nguyen, B. Li, Y. Wu, Z. Chen, and
C. Chiu, “No need for a lexicon? evaluating the value of the pro-
nunciation lexica in end-to-end models,” in Proc. ICASSP, 2018.

[14] V. Yadav and S. Bethard, “A survey on recent advances in named
entity recognition from deep learning models,” arXiv preprint
arXiv:1910.11470, 2019.

[15] R. C. De Amorim and M. Zampieri, “Effective spell checking
methods using clustering algorithms,” in Proceedings of the Inter-
national Conference Recent Advances in Natural Language Pro-
cessing RANLP, 2013.

[16] A. Raghuvanshi, V. Ramakrishnan, V. Embar, L. Carroll, and
K. Raghunathan, “Entity resolution for noisy asr transcripts,” in
Proc. EMNLP, 2019.

[17] M. Hulden, “Fast approximate string matching with finite au-
tomata,” in Sociedad Española para el Procesamiento del
Lenguaje Natural, 2009.

[18] Y. Bassil and M. Alwani, “Post-editing error correction algorithm
for speech recognition using bing spelling suggestion,” arXiv
preprint arXiv:1203.5255, 2012.

[19] S. Zhang, M. Lei, and Z. Yan, “Automatic spelling correction with
transformer for ctc-based end-to-end speech recognition,” arXiv
preprint arXiv:1904.10045, 2019.

[20] K. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro,
K. Nakajima, M. Riley, B. Roark, D. Rybach, and L. Zhang,
“Composition-based on-the-fly rescoring for salient n-gram bias-
ing,” 2015.

[21] K. Kim, K. Lee, D. Gowda, J. Park, S. Kim, S. Jin, Y. Y. Lee,
J. Yeo, D. Kim, S. Jung, J. Lee, M. Han, and C. Kim, “Attention
based on-device streaming speech recognition with large speech
corpus,” in Proc. ASRU, 2019.

[22] I. Williams, A. Kannan, P. S. Aleksic, D. Rybach, and T. N.
Sainath, “Contextual speech recognition in end-to-end neural net-
work systems using beam search.” in Interspeech, 2018.

[23] G. Pundak, T. N. Sainath, R. Prabhavalkar, A. Kannan, and
D. Zhao, “Deep context: end-to-end contextual speech recog-
nition,” in 2018 IEEE Spoken Language Technology Workshop
(SLT).

[24] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state trans-
ducers in speech recognition,” Computer Speech & Language,
vol. 16, no. 1.

[25] Ç. Gülçehre, O. Firat, K. Xu, K. Cho, L. Barrault, H. Lin,
F. Bougares, H. Schwenk, and Y. Bengio, “On using mono-
lingual corpora in neural machine translation,” CoRR, vol.
abs/1503.03535, 2015.

[26] S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, and
K. Livescu, “A comparison of techniques for language model in-
tegration in encoder-decoder speech recognition,” in 2018 IEEE
Spoken Language Technology Workshop (SLT). IEEE, 2018.

[27] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fusion:
Training seq2seq models together with language models,” arXiv
preprint arXiv:1708.06426, 2017.

[28] H. Pande, “Effective search space reduction for spell correction
using character neural embeddings,” in Proc. EACL, 2017.

[29] R. Grundkiewicz and M. Junczys-Dowmunt, “Minimally-
augmented grammatical error correction,” in Proceedings of the
5th Workshop on Noisy User-generated Text (W-NUT), 2019.

[30] A. Bruguier, R. Prabhavalkar, G. Pundak, and T. N. Sainath,
“Phoebe: Pronunciation-aware contextualization for end-to-end
speech recognition,” in Proc. ICASSP. IEEE, 2019.

[31] P. Norvig, “How to write a spelling corrector,” Online at:
http://norvig. com/spell-correct. html, 2007.

[32] J. Jun and L. Lei, “ASR post-processing correction based on NER
and pronunciation primitive,” in 2011 7th International Confer-
ence on Natural Language Processing and Knowledge Engineer-
ing. IEEE, 2011.

[33] J. Guo, T. N. Sainath, and R. J. Weiss, “A spelling correc-
tion model for end-to-end speech recognition,” in Proc. ICASSP.
IEEE, 2019, pp. 5651–5655.

[34] C. Kim, S. Kim, K. Kim, M. Kumar, J. Kim, K. Lee, C. Han,
A. Garg, E. Kim, M. Shin, S. Singh, L. Heck, and D. Gowda,
“End-to-end training of a large vocabulary end-to-end speech
recognition system,” in Proc. ASRU , 2019.

[35] Y.-B. Kim, D. Kim, A. Kumar, and R. Sarikaya, “Efficient large-
scale neural domain classification with personalized attention,” in
Proc. ACL (Volume 1: Long Papers), 2018, pp. 2214–2224.

[36] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer, “Neural architectures for named entity recognition,” in
Proc. NAACL HLT, 2016.

[37] L. Philips, “The double metaphone search algorithm,” C/C++
users journal, vol. 18, no. 6, pp. 38–43, 2000.

[38] R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” arXiv preprint
arXiv:1508.07909, 2015.

[39] D. Lee, P. Kapoor, and B. Kim, “Deeptwist: Learning model
compression via occasional weight distortion,” CoRR, vol.
abs/1810.12823, 2018.

[40] C.-C. Chiu and C. Raffel, “Monotonic chunkwise attention,”
arXiv preprint arXiv:1712.05382, 2017.

[41] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.

1797

