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Abstract

Neural architecture search (NAS) has been successfully applied
to finding efficient, high-performance deep neural network ar-
chitectures in a task-adaptive manner without extensive human
intervention. This is achieved by choosing genetic, reinforce-
ment learning, or gradient -based algorithms as automative al-
ternatives of manual architecture design. However, a naive
application of existing NAS algorithms to different tasks may
result in architectures which perform sub-par to those manu-
ally designed. In this work, we show that NAS can provide
efficient architectures that outperform maually designed atten-
tion -based arhitectures on speech recognition tasks, after which
we named Evolved Speech-Transformer (EST). With a combi-
nation of carefully designed search space and Progressive dy-
namic hurdles, a genetic algorithm based, our algorithm finds a
memory-efficient architecture which outperforms vanilla Trans-
former with reduced training time.
Index Terms: neural architecture search, end-to-end speech
recognition, transformer, deep learning

1. Introduction
Neural architecture search (NAS) [1] aims at automatically find-
ing neural network (NN) architectures which had been designed
manually. Typical approaches formulate the task as an opti-
mization problem and solve the complicated problem using ge-
netic or reinforcement learning algorithms. Alternatively, dif-
ferentiable approaches relax the search space into differentiable
candidates, admitting gradient-based algorithms in solving the
task. A remarkable property of NAS is its transferability across
datasets; an architecture found by NAS on some dataset often
performs well when evaluated on different dataset with same
task.

While most successful NAS techniques have been at-
tributed to finding architectures fit for computer vision tasks,
recent interest in applying NAS to sequence-to-sequence
(seq2seq) models has emerged. Such applications include find-
ing optimal seq2seq architectures for neural machine transla-
tion, speech synthesis, and speech recognition. However, ar-
chitectures found for automatic speech recognition (ASR) tasks
require additional accoustic knowledge including phone sets
and dictionaries. On the other hand, end-to-end ASR aims at
processing and translating acoustic signals into written text us-
ing only paired acoustics, and do not require additional domain
knowledge.

Successful NN-based solutions are typically based on
encoder-decoder networks, with three types of manually de-
signed deep neural networks (DNNs) mainly dominating the
field: Connection temporal classification (CTC) [2, 3, 4, 5],
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Recurrent neural network transducer (RNN-T) [6, 7], and Lis-
ten, attend, and spell (LAS) [8] models. However, recurrent
networks require excessive training time and memory, calling
for alternative solutions to end-to-end ASR. With the advent
of Transformer [9], architectures with multi-head feed-forward
full attention and parallel-in-time computation established its
grounds due to its outstanding performance while exhibiting de-
sirable properties such as an intuitive architecture and reduced
training time. On a standard ASR dataset such as Wall Street
Journal (WSJ) or Librispeech [10], the Speech-Transformer
[11] reached an adequate performance in only a fraction of pre-
viously required training time outperformed recurrent models.

Inspired by the Transformer blocks, Evolved Transformer
(ET) [12] demonstrated substantial performance improvements
to the manually designed transformer-based modules. With the
support of Progressive dynamic hurdles (PDH), an evolutionary
algorithm based on survival of the fittest, and a search space de-
signed to reflect recent advances in feed-forward seq2seq mod-
els, it was able to find the model suitable for neural machine
translation, which is a task that requires extensive computations.

In this work, we designed a search space apt for speech
recognition and applied PDH to find a memory-efficient ar-
chitecture which performs well across standard benchmark
datasets with reduced training time. The model found in our
experiments outperformed the original Transformer on standard
ASR benchmarks: WSJ and Zeroth. Our final model achieved
0.6% performance improvement compared to Transformer with
26.1% less parameters on average. An architecture attained
with the WSJ dataset using our algorithm was also found to per-
form well on the Zeroth dataset, confirming the superior trans-
ferability of NAS even on end-to-end ASR tasks.

2. Method
2.1. Transformer

The Transformer is based on the encoder-decoder architecture:
the encoder transforms a feature sequence x = (x1, ..., xT ) to
a hidden representation h = (h1, ..., hL). Given h, the de-
coder then generates an output sequence y = (y1, ..., yS) one
character at a time. At each step, the decoder consumes the
previously emitted characters as additional inputs when emit-
ting the next character. However, as a no-recurrence seq2seq
model, the Transformer differs from recurrent seq2seq mod-
els mainly on two aspects: Firstly, both the encoder and de-
coder are composed of multi-head attention and position-wise
1D-convolutional networks rather than RNNs. Secondly, the
encoder outputs h are attended by each decoder block respec-
tively, as shown in Figure 1, replacing the one-step intermediary
attention of recurrent seq2seq models.

An attention function maps a query and a set of key-value
pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the
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Figure 1: Architecture of Transformer

values, where the weight assigned to each value is computed
by a compatibility function of the query with the correspond-
ing key. Scaled dot-product attention is adopted as the basic
attention function in the Transformer which describes (1).

Attention(Q,K, V ) = softmax(
QKT

√
dk

) (1)

Where the dimension of queryQ and keyK are the same, which
are dk, and dimension of value V is dv .

Instead of performing a single attention function, the Trans-
former employs the multi-head attention (MHA) which projects
the queries, keys and values h times with different, learned lin-
ear projections to dk, dk and dv dimensions. On each of these
projected versions of queries, keys and values, the basic atten-
tion function is performed in parallel, yielding dv-dimensional
output values. These are concatenated and projected again, re-
sulting in the final values. The equations can be represented as
below.

headi = Attention(QWi
Q,KWi

K , V Wi
V ) (2)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (3)

Where the projections are parameter matrices Wi
Q ∈

Rdmodel×dk , Wi
K ∈ Rdmodel×dk , Wi

V ∈ Rdmodel×dv ,
Wi

O ∈ Rhdv×dmodel , where h is the number of heads, and
dmodel is the model dimension.

The architecture of the Transformer is shown in Figure 1,
which stacks MHA and 1D-convolution layers for both the en-
coder and decoder. The encoder is composed of a stack of N
identical layers. Each layer has two types of sub-layers. The
first is a MHA, and the second is 1D-convolution. Residual
connections are followed by end of typical sub-layers. The de-
coder is similar to the encoder except inserting a sub-layer to
perform a MHA over the output of the encoder stack. To pre-
vent leftward information flow and preserve the auto-regressive

Figure 2: Cell Search Space

property in the decoder, the self-attention sub-layers in the de-
coder mask out all values corresponding to illegal connections.
In addition, positional encodings [9] are added to the input at
the bottoms of these encoder and decoder stacks, which inject
some information about the relative or absolute position in the
sequence to make use of the order of the sequence.

In the Speech-Transformer, speech feature such as spectro-
gram or Mel-frequency cepstral coefficients (MFCC), is put as
an input value, and text as an output.

2.2. Search Space

Our search space design is mainly inspired by NASNet [13]
for its simplicity and efficiency. Every candidate architecture
is composed of an encoder and decoder cell, where each cell
comprises Ne and Nd blocks respectively as depicted in Fig-
ure 2. A single block contains two branches taking different
hidden states as respective inputs and adds the output of hidden
states.

Each branch is categorized into five major components: in-
put, normalization, layer, output dimension dff , and activa-
tion function. Dimension mismatch which may occur when
branch outputs have different relative output dimensions and is
accounted for by applying padding before adding. The Trans-
former can thus be found in principle, using a NAS algorithm,
as it is equivalent to a composition of encoder and decoder cells
with 14 stacked blocks each.

To reduce the search space which directly affects training
time, we imposed an additional constraint that candidate models
must have parameters amounting less than 3M, the number of
parameters in our baseline model.

2.3. Progressive dynamic hurdles

Progressive Dynamic Hurdles (PDH) is an instantiation of evo-
lutionary architecture search proposed in [14]. Initially, c
child models are trained for s0 iterations and are evaluated
on a validation set to obtain each model’s performances p0 =
(p0,1, . . . , p0,c). Models which achieve performance p0,i ≥ p̄0
are then grouped into a hurdle H0, where p̄0 = 1

c

∑c
i=1 p0,i

is the mean performance over the c models. This process is
then repeated, where at each step t ≥ 1, models in the pre-
vious hurdle Ht−1 are trained for st additional iterations and
c − |Ht−1| new models are trained for s0 iterations, assigning
models which outperform the mean performance p̄t a hurdle
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Ht and discarding those that performed poorly. PDH is termi-
nated after training T steps when the total number of iterations∑T

t=0 st hits a predefined maximum number of steps S, in other
words, PDH stops when

∑T
t=0 st ≥ S.

3. Experiments
3.1. Datasets

We evaluated the performance of the proposed algorithm
against a strong baseline on two ASR datasets: Wall Street
Journal (WSJ), which contains 80 hours of clean read English
speech and English scripts written using several non-linguistic
symbols, and Zeroth [15], an open source project for Korean
speech recognition which was developed by a Kaldi [16]-based
Korean ASR open source project called Zeroth project, con-
sisting of 95.7 hours of Korean speech data and Korean scripts
with no other non-linguistic symbols. All experiments are con-
ducted using 80-dimensional log-Mel filterbank features, com-
puted with a 25ms window and shifted every 10ms, and were
normalized using sample mean and standard deviations com-
puted on each training partition.

For the WSJ dataset, all models were trained on si-284,
validated on dev ’93, and tested on eval ’92. Tokens in the
WSJ dataset consist of 26 lowercase alphabets, apostrophe, pe-
riod/space, noise, and end-of-sequence characters totaling 31
classes.

The Zeroth dataset includes only a training and test set,
so models were validated using the test set. Zeroth contains
a morpheme-based segmenter called morfessor [17] as well as
transcribed audio datasets. We used the morphologically seg-
mented text by using given morfessor model. Text tokens in
the Zeroth data were extracted in unigram units through senten-
cepiece [18] totaling 6,000 tokens, as the letters of the Korean
languages are rarely split into sub-character level in ASR pre-
process.

3.2. Implementation

Our algorithm was evaluated against Speech-Transformer pro-
posed in [11] using the implementation provided by [19]. Be-
cause the branching structure within each block results in more
trainable parameters than the baseline Transformer, the number
of encoder and decoder blocks was set to half of that used for the
original Transformer. All models were trained using the Adam
optimizer [20] with hyperparameters β1 = 0.9, β2 = 0.98, ε =
10−9 and learning rate schedule kd−0.5

att min
(
n−0.5, nw−1.5

)
,

where n is the number of Adam steps taken, datt = 256
is the number of parameters in the model’s attention module,
w = 25, 000 is a warmup parameter, and k is a tunable param-
eter initially set to 10 later decayed to 1 when the validation
performance saturated. Predictions were decoded using beam
search with a beam size of 10 and length penalty α = 1.0. The
model which attained the best validation accuracy was then se-
lected for testing.

4. Results
4.1. Evolved Speech-Transformer

Among the 150 candidate models considered by our NAS algo-
rithm, the model which reached the highest validation accuracy
is hereon referred to as Evolved Speech-Transformer (EST).

The resulting encoder and decoder architectures attained with
WSJ are illustrated in Figures 3a and 3b, respectively.

(a) Encoder: Multi-head attention in Transformer is replaced by Gated lin-
ear unit, and the outermost convolutional layer with a wide depth-wise sep-
arable convolutional layer.

(b) Decoder: EST’s decoder is considerably different than Transformer’s. In
particular, the serial multi-head attention layer in Transformer is replaced
with a branch structure, and the convolutional layer is replaced with wide
depth-wise separable convolutions.

Figure 3: (left) Transformer and (right) Evolved Speech-
Transformer (EST) architectures attained with the WSJ dataset.

In the case of the original Speech-Transformer’s encoder,
six blocks consist of two structures on the left. However, for
EST, the first three blocks form the right architecture, and the
latter three form the left. As for the decoder, similarly, in the
original, eight blocks are composed of two structures on the
left, and in EST, the first four are formed on the right, and the
latter four are formed on the left.

In contrast to the Transformer’s encoder block, EST re-
places the first three blocks with the 1D-convolution layer with
a depthwise separable convolution layer with kernel size 9× 1,
and the MHA with a gated linear unit (GLU)[21]. The left and
right branches both use a convolutional layer followed by ReLU
activation, differing only in their kernel sizes 3 × 1 and 1 × 1
respectively, with the right branch having 4 times more filters
than the left branch.

In the case of the decoder, EST replaces the first four blocks
with branching structures. The first branch consists of two
MHAs, one with twice the number of heads of the original
Transformer decoder, the other receives the output of the en-
coder as a query and key, and the number of heads is the same
as the original. The second branch has two separable convolu-
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Table 1: Performances of Transformer and Evolved Speech-
Transformer (EST) on WSJ eval ’92.

Model Ne Nd dff # Params WER (%)

Base Model 3 1 1024 8.8M 15.8
EST 3 1 1024 7.9M 14.9
Base Model 4 2 1024 12.5M 14.7
EST 4 2 1024 10.9M 14.2
Base Model 6 3 1024 17.7M 14.0
EST 6 3 1024 15.4M 13.4
Base Model 6 3 2048 27.2M 13.5
EST 6 3 2048 20.1M 12.9

Table 2: Performances of Transformer and Evolved Speech-
Transformer (EST) on the Zeroth test set. EST (WSJ) indicates
the model attained with the WSJ dataset and retrained on Ze-
roth.

Model Ne Nd dff # Params WER (%)

Base Model 3 1 1024 8.8M 5.4
EST 3 1 1024 7.6M 4.9
EST (WSJ) 3 1 1024 7.9M 4.8
Base Model 4 2 1024 12.5M 4.8
EST 4 2 1024 10.4M 4.4
EST (WSJ) 4 2 1024 10.9M 4.4
Base Model 6 3 1024 17.7M 4.3
EST 6 3 1024 14.6M 3.9
EST (WSJ) 6 3 1024 15.4M 4.1
Base Model 6 3 2048 27.2M 3.9
EST 6 3 2048 19.1M 3.7
EST (WSJ) 6 3 2048 20.1M 3.8

tion layers, and each kernel size is 11×1 and 7×1, with output
dimension is double and half the input dimension respectively.
These processed states are finally passed through a 7× 1 sepa-
rable convolution layer with number of filters equal to the input
dimension.

4.2. Performance

For a fair comparison between the baseline and EST, we report
their word error rates (WERs) with the number of encoder and
decoder blocks Ne and Nd as variables, using identical output
dimensions dff ∈ {1024, 2048}. As shown in Tables 1, EST
consistently outperforms the base model by an absolute margin
of 0.6% on average while maintaining fewer parameters. In
terms of memory occupation, EST has∼ 13% fewer parameters
than Transformer when the output dimension is set to 1024, and
∼ 26% fewer parameters when dff = 2048. This observation
demonstrates how EST is particularly efficient when the feature
dimension is large.

In the case of the EST found by the Zeroth dataset, the pa-
rameters were slightly different from those of the WSJ. The out-
put size of the left convolution layer of the encoder was half of
that of WSJ, and the number of MHA heads of the decoder was
designed with half of the WSJ.

As shown in Tables 2, EST consistently outperforms the
baseline by an absolute margin of 0.4% on average while main-
taining fewer parameters. In terms of memory, or number of pa-
rameters, EST has ∼ 18% fewer parameters than Transformer
when the output dimension is set to 1024, and ∼ 30% fewer

Figure 4: Training time comparisons for Transformer and EST.

parameters when dff = 2048.
We trained a model on Zeroth with the architecture attained

via WSJ, and validated its higher performance compared to the
baseline. This implies that an EST architecture earned from a
specific speech corpus has potential of transferability to another
dataset, in this case even with the different language.

Another benefit of EST over Transformer is its significantly
reduced training time; Figure 4 shows Transformer’s and EST’s
training loss and validation accuracies for first 100 epochs. In
particular, training EST took 49K seconds on the Zeroth dataset
in comparison to Transformer which took 51K seconds, saving
about 4% of training time. For WSJ, Transformer stopped im-
proving after 134K seconds whereas EST reached convergence
in 132K seconds.

5. Conclusion
In this work, we constructed a new architecture of Speech-
Transformer named Evolved Speech-Transformer by adapting
search space and progressive dynamic hurdles, which work well
for neural architecture search in automatically finding deep neu-
ral networks suitable for automatic speech recognition. The
model we found outperforms Speech-Transformer across two
datasets and various hyperparameters while maintaining fewer
parameters. On WSJ and Zeroth dataset, our architecture con-
verged with smaller training costs than the original model and
achieved lower WER, which shows the efficiency and effective-
ness of the neural architecture search. In addition, the poten-
tial of cross-dataset and multilingual transferability was veri-
fied by the result that the architecture extracted from a specific
dataset shows high performance even when retrained to another
dataset. We noticed how the EST optimized for speech recogni-
tion exhibited architectural similarities to the ET attained with
language tasks. In fact, the EST’s architecture was similar to
the ET found in [12] which also has wide depth-wise separable
convolutions and GLU. The only major architectural difference
between EST and ET is that EST does not use a Swish activation
function. We need to investigate further whether this result is
due to the commonality such as sequential between the dataset
used for NMT and for ASR. For future work, we will try to fig-
ure out whether this architecture comes out similarly for various
seq2seq learning tasks such as speech synthesis [22].
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