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Abstract 
Polyphone disambiguation serves as an essential part of Man-
darin text-to-speech (TTS) system. However, conventional sys-
tem modelling the entire Pinyin set causes the case that predic-
tion belongs to the unrelated polyphonic character instead of the 
current input one, which has negative impacts on TTS perfor-
mance. To address this issue, we introduce a mask-based model 
for polyphone disambiguation. The model takes a mask vector 
extracted from the context as an extra input. In our model, the 
mask vector not only acts as a weighting factor in Weighted-
softmax to prevent the case of mis-prediction but also elimi-
nates the contribution of non-candidate set to the overall loss. 
Moreover, to mitigate the uneven distribution of pronunciation, 
we introduce a new loss called Modified Focal Loss. The ex-
perimental result shows the effectiveness of the proposed mask-
based model. We also empirically studied the impact of 
Weighted-softmax and Modified Focal Loss. It was found that 
Weighted-softmax can effectively prevent the model from pre-
dicting outside the candidate set. Besides, Modified Focal Loss 
can reduce the adverse impacts of the uneven distribution of 
pronunciation. 
Index Terms: polyphone disambiguation, mask vector, 
Weighted-softmax, Modified Focal Loss 

1. Introduction 
Mandarin G2P (Grapheme-to-phoneme) module serves to pre-
dict corresponding Pinyin sequence for characters, which con-
sists of polyphone disambiguation, tonal modification and ret-
roflex suffixation [1], etc. Polyphone disambiguation, aiming to 
predict the correct pronunciation of the given polyphonic char-
acters, is an essential component of Mandarin G2P conversion 
system. According to the research [1, 2, 3, 4], the difficulty of 
Mandarin polyphone disambiguation mainly lies in heteronyms. 
Their pronunciations cannot be determined simply by the word 
itself but require more lexical information and contextual infor-
mation，such as Chinese word segmentation, POS (part of 
speech) tagging, syntactic parsing and semantics. 

The earliest approaches of polyphone disambiguation 
mainly relied on dictionary and rules. The pronunciations of 
polyphonic characters were decided by a well-designed diction-
ary and some rules crafted by linguistic experts [1, 2]. However, 
the rule-based method requires a massive investment of labor 
to build and maintain a robust dictionary. As the amount of data 
increased, statistical methods were later widely applied in pol-
yphone disambiguation. Experimental results have confirmed 
the competency of the statistical methods such as Decision trees 
(DT), Maximum Entropy (ME) to achieve reasonable perfor-
mance [3, 4]. However, statistical approaches also ask for con-
siderable effort for feature engineering. 

The Recent tremendous success of the neural network in 
various fields has driven polyphone disambiguation to turn to 

neural network-based models. [5] addressed the task as se-
quence labelling and adopted bidirectional long-short-term 
memory (BSLTM) architecture to predict the pronunciation of 
the input polyphonic characters, which proved that the BLSTM 
could benefit the task. [6] combined multi-granularity features 
as input and yielded improvement on the task. The recent emer-
gence of pre-trained model [7-11] made researchers set out to 
look at polyphone disambiguation based on these models. With 
the powerful semantic representation, the pre-trained model 
helps the system to achieve better performance. Bidirectional 
encoder representations from Transformer (BERT) was applied 
in front-end of Mandarin TTS system and showed that the pre-
trained model outperforms previous methods [12]. Transformer 
based neural machine translation (NMT) encoder also has a 
positive effect on the task [13]. However, to avoid the case of 
prediction belongs to the unrelated polyphonic character rather 
than the current input one, it is either to model each polyphonic 
character separately or to uniformly model the entire Pinyin set 
but adding limitation in the output layer. Yet, the drawback of 
the former is complex maintenance due to its large number of 
models, while the latter only limits the prediction output but ig-
nores the impact of the restriction on other modules in the train-
ing process. Besides, the unbalanced distribution among poly-
phones also harmful to the task. 

To address these issues, we propose a mask-based architec-
ture for Mandarin polyphone disambiguation by employing a 
mask vector. In the proposed framework, features including 
mask vector are taken as input. Then, we apply an encoding 
layer composed of BLSTM and convolutional neural network 
(CNN) to obtain semantic features. The Weighted-softmax is 
latter used to pick up the pronunciation for the polysyllabic 
character. In the proposed model, the roles that mask vector 
plays can be concluded as follows 1) Mask vector enriches the 
input features. 2) Mask vector acts as a weighting factor in 
Weighted-softmax to prevent the model from mis-predicting 
the Pinyin of other polyphonic characters. 3) Constraints of can-
didates by mask vector will pass to the calculation of loss func-
tion then better guide the training process. In this way, the pro-
posed approach not only can model the entire polyphonic char-
acters set within one model but also eliminates the case of mis-
prediction without harming the training process. Specifically, to 
mitigate the uneven distribution of pronunciation among poly-
phonic characters, we introduce a new loss function called 
Modified Focal Loss. Our experiments demonstrate that the 
proposed approach can avoid predicting outside the candidate 
set and ease the imbalanced distribution without harming the 
performance. 

The organization of this paper is listed as follow. Section 1 
reviews the background of polyphone disambiguation. Section 
2 introduces various input features of our model. Section 3 
briefs on our model structure. Section 4 presents the experi-
mental details and results of this thesis. Section 5 gives the con-
clusions and looks to future research prospects.  
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2. Features 
According to research [1-4], features such as Chinese word seg-
mentation, POS tagging, and contextual information are essen-
tial to the task. Therefore, we apply the Chinese characters of 
the input sentence and the corresponding lexical information, 
such as Chinese word segmentation and POS tagging, as input 
features. As we assume only part of characters needs to be dis-
ambiguated in a sentence, we utilize a flag token to identify 
whether the current input character is disambiguation-needed or 
not. Meanwhile, the polysyllabic characters, apart from Chinese 
characters features, also have an extra feature to enhance the 
information provided. Additionally, we adopt a mask vector to 
restrict the relationship between polyphonic characters and their 
relevant Pinyin candidates set. The mask vector which consists 
of boolean value denotes the related Pinyin of the input poly-
phonic character. For instance, the polyphonic character “会” 
can be pronounced as “hui4” and “kuai4”, and the correspond-
ing pronunciations in mask vector would be assigned a value 1 
while the other pronunciations in mask vector would be as-
signed a value 0 respectively. We add two additional tokens in 
the mask vector to indicate the monophonic character and unla-
belled polyphonic characters. The mask vector here enriches the 
input features. Besides, it also acts as a weighting factor in 
Weighted-softmax, which will be described in Session 3.  

Finally, we convert the characters sequence to embedding 
as the model input, along with the auxiliary features mentioned 
above from the corresponding sentence.  

In summary, the proposed model uses a total of six features, 
including Chinese character, Chinese word segmentation, POS 
tagging, polyphones, flag token, and mask vector. Details of the 
various features are described below: 
• Chinese Character (CC): Character including mono-

phonic characters and polyphonic characters; 
• Chinese Word Segmentation (CWS): Word segmenta-

tion results at the character level, which are represented 
by {B, M, E, S} tags; 

• Part of Speech (POS): We perform POS tagging toward 
input sentence and assign the tag into character level; 

• Polyphones (PP): A collection of all polyphonic charac-
ters within the corpus along with a non-polyphone token; 

• Flag Token (Flag): The value range is {0, 1, 2}. Each 
respectively denotes current char that is disambiguation-
needed, disambiguation-needless, and monosyllable; 

• Mask Vector (Mask): The dimension of mask vector 
equals to the length of the Pinyin set plus with two special 
tokens “<UN_LABEL>” and “<NO_LABEL>”. The for-
mer token denotes monophonic characters while the latter 
one denotes the polyphonic characters that do not require 
disambiguation; 

In the example sentence “仅会在行业规范和会计制度方
面进行指导”(It will only provide guidance in occupational 
standards and accounting system. ), we assumed only a part of 
polyphonic characters in the sentence would be labelled: The 
first “会” (target candidate set is [hui4, kuai4], the correct pro-
nunciation is hui4), “行” (target candidate set is [hang2, xing2], 
the correct pronunciation is hang2) and “和” (target candidate 
set is [he2, he4, huo4, huo2, hu2], the correct pronunciation is 
he2); and other polyphonic characters such as the second “会” 
and the second “行” would not be labelled. Relevant input fea-
tures of the example sentence are shown in Figure 1. 

 
Figure 1: Input features of the given sample sentence. 

3. Mask-based Mandarin Chinese poly-
phone disambiguation model   

Figure 2 depicts the proposed model’s architecture which is 
mainly composed of three parts as below: 

1. Character-level Feature Embedding Layer:  
This layer serves to integrate various input features 
accompanying the mask vector into a low-dimen-
sional and dense vector. First, multiple features are 
converted into a one-hot label respectively that will 
be later transformed into an embedding vector by 
FNN (Feedforward Neural Network). Then, different 
features’ embeddings are concatenated and trans-
formed into a fixed-length vector by MFNN (Multi-
layers Feedforward Neural Network). 

2. Context Features Encoding Layer: 
Accepting a sequence of vectors from the character-
level feature embedding layer, this module first ex-
tracts semantic information of sentence by both 
BLSTM and 1D-CNN. FNN layers then intergrade 
obtained context sequence into a dense vector to rep-
resent each word inside the sentence. The reason that 
motivates us to utilize both BLSTM and 1D-CNN to 
jointly encode contextual information is mainly based 
on the following considerations: 1) The BLSTM has 
an elegant way of encoding sentence-level infor-
mation. This is extremely helpful when it comes to 
tasks that need long-range context. 2) 1D-CNN is ef-
fective in extracting n-grams level contextual features 
that are critical for the task of polyphone disambigu-
ation [14, 15].  

3. Restricted Output Layer:  
To restrict the target candidate set of the current input 
polyphonic character, the restricted output layer ap-
plies the Weighted-softmax by combining the mask 
vector with softmax to pick up the highest probability 
within the candidate set. In addition, the proposed 
model adopts Modified Focal Loss rather than cross-
entropy as loss function. 

   In this work, we explore the Weighted-softmax and Modi-
fied Focal Loss modules in terms of improving the performance 
of polyphone disambiguation. 
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Figure 2: Network architecture of the proposed model. 

3.1. Weighted-softmax  
For each polyphonic character, its candidate range of pronunci-
ation is very limited, which only occupies a small part of the 
entire Pinyin set. According to softmax, each Pinyin would as-
sign a non-zero probability, leading to the sum of the probabil-
ities obtained in the candidate set is less than 1. It would arouse 
additional errors, thus making the overall loss larger, which 
would in turn produce a negative influence on the training pro-
cess. To address this issue, we constructed the Weighted-soft-
max by regarding the mask vector as the weighting factor in 
softmax. 

Supposed the input vector of softmax is 𝑉	 = 	 {𝑣&, 𝑣(,
. . . , 𝑣*} and 𝑣,  represent the 𝑖./  element of vector 𝑉 . For 
Weighted-softmax, the probability of each element is imple-
mented as follows: 

𝑝, =
𝑚, 	∗ 	𝑒45

∑ 𝑚7 ∗ 𝑒48*
7	9	&

:1< 

where mask vector is denoted as 𝑀	 =	 {𝑚&,𝑚(, . . . , 𝑚*} and 
𝑚, is a Boolean value to denote whether to mask element 𝑣,. 
By Weighted-softmax, we can assure that the probability of 
non-candidate pronunciation will not be allocated, and the sum 
of the probability assigned by the candidate pronunciation set is 
equal to 1. In this way, we can effectively prevent the model 
from predicting Pinyin outside the candidate set. Moreover, 
when calculating loss, Weighted-softmax eliminates the influ-
ence of the non-candidate Pinyin set brought to models, thus 
focusing on the candidate Pinyin set. 
3.2. Modified Focal Loss 
Due to the uneven distribution of Pinyin, attaching excessive 
attention to massive and easily classified examples makes the 
model less precise in terms of rare and hard classified examples, 
thereby degrading the performance of the system. Concerning 
uneven distribution in pronunciation among polyphones, in-
spired by [16], we introduce a novel loss named Modified Focal 
Loss (MFL) by adding a tunable confidence parameter 𝛼 to 
Focal Loss. In Modified Focal Loss, 𝛼 serves as a threshold to 
distinguish between massive/easy examples and rare/hard ex-
amples, thereby down-weighting the contribution of the former 
one and up-weighting that of the latter. In this way, Modified 
Focal Loss enables the model to better classify rare and hard 
examples. 

The equation of Focal Loss is as follows: 
𝐹𝐿(𝑝.) = −(1 − 𝑝.)D log(𝑝.) :2<  

where 𝑝.  denotes the model’s predicted probability for the 
true label and value range is [0, 1]. We propose to add the 
confidence parameter to Focal Loss and the proposed Modified 
Focal loss is defined as follows: 

𝑀𝐹𝐿(𝑝.) = −(1 + 𝛼 − 𝑝.)D log(𝑝.) :3< 
both 𝛼 and 𝛾 are hyper-parameters, 𝛼 denotes the tunable 
confidence parameter and value range is (0.0, 1.0) ; 𝛾 
denotes the tunable focusing parameter and value range is 
(0, +∞	). When the system’s estimated probability for the true 
pronunciation is greater than 𝛼, the current input polyphonic 
character is considered to be easy to classify, and the loss of the 
corresponding sample will be down-weighted to the overall loss. 
On the contrary, the input polyphonic character is considered to 
be difficult to classify, and its loss to the overall loss will be 
enhanced. 

4. Experiment 

4.1. Dataset  

To verify the proposed method, the experiments were con-
ducted on the dataset from DataBaker1. In the corpus, there are 
692,357 sentences, and each one at least contains one poly-
phonic character. We split the dataset into a training set with 
623,320 sentences and a test set with 69,037 sentences. Table 1 
illustrates the statistical information of corpus. 

Table 1: Statistical information of corpus.  

Character Polyphone Training set Test set 

量 
liang4 5,402 571 
liang2 156 20 

当 
dang1 9,070 1,060 
dang4 720 80 

相 
xiang1 6,003 659 
xiang4 785 74 

…… 
Overall - 623,320 69,037 

 
As in table 1, the frequency of different pronunciations in-

side a polyphonic character varies greatly both in the training 
set and test set. The polyphonic characters “量” can be pro-
nounced as “liang4” and “liang2”. However, Pinyin ‘liang4’ ap-
pears 5,402 times in the training set and 571 times in test set 
which are much larger than that of ‘liang2’. The same situation 
occurs when it comes to polyphonic characters “当” and “相”. 
This reveals the uneven distribution in polyphones within da-
taset. 

4.2. Experimental Setting  

We implemented the following five systems and used accuracy 
rate as evaluation criteria for comparing: 

1. BLSTM: Strictly following the description in [5], we 
implemented BLSTM model for the task as baseline. 
NLPIR is adopted for Chinese word segmentation and 
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POS tagging on the input sentence. We set the layers 
of BLSTM to 2 and the hidden size to 512. The con-
textual size of polyphonic characters is set to 1 to con-
struct the POS sequence according to [5].  

2. B-CNN: The input sequence included Chinese charac-
ter, Chinese word segment, POS tagging, polyphones 
token and flag token. Context features encoding layer 
that consists of BLSTM and CNN was to capture the 
long-range context features. The number of layers in 
BLSTM and CNN were both set to 2. The hidden size 
of BLSTM was set to 512. The setting of strides of 
CNN were 2,3,4, and the kernel num was 64. Rather 
than modelling the context word, we treated the input 
sentence as an instance to model. In the training pro-
cess, we adopted the Adam as optimizer and set the 
learning rate to 5.0e-4. We split the corpus into mini 
batch with the batch size of 128. 

3. BC-W: Same as system 2 but applied Weighted-soft-
max in the model additionally. 

4. BC-F: Same as system 3 but applied Focal Loss in the 
model. The parameter 𝛾 was set to 0.7. 

5. BC-WM: Same as system 3 but applied Modified Fo-
cal Loss in the model additionally. The parameter 𝛼 
was set to 0.5, and the parameter 𝛾 was set to 0.7. 

4.3. Results and analysis 

4.3.1. Evaluation of different systems 

Table 2 reveals the accuracy of polyphone disambiguation in 
different systems. It can be seen that B-CNN outperformed 
BLSTM baseline model. Besides, BC-W gained a better result 
than B-CNN, verifying the feasibility of the mask vector to 
strengthen the input features and allow the model to focus on 
the candidate polyphone. BC-F got similar performance as BC-
W. Particularly, BC-WM method achieved the best perfor-
mance, showing that the Modified Focal Loss can alleviate the 
imbalance of polyphone distribution. 

Table 2: The accuracy for different system.  

System BLSTM B-CNN BC-W BC-F BC-WM 
Acc 95.55 97.44 97.85 97.82 97.92 

 

4.3.2. Impact of Weighted-softmax  

To illustrate the impact of Weighted-softmax, in the case of “他
提醒大家明天依旧要注意防晒防中暑” (He reminds every-
one to protect from the sun and avoid heatstroke tomorrow), we 
draw the estimated probability distribution of the polyphonic 
character “中” on the part of polyphones in Figure 3. As shown, 
the darker of the location, the greater probability of correspond-
ing pronunciation. Figure 3(a) displays the probability distribu-
tion of the prediction towards “中” from the system B-CNN, 
while Figure 3(b) represents the probability distribution from 
the system BC-W. In this sentence, the true pronunciation of the 
polyphonic character “中” is “zhong4 ”. As shown in Figure 
3(a), the B-CNN system predicts the pronunciation to “huan2” 
which is not reasonable. Moreover, the probability was allo-
cated to the entire Pinyin set rather than the candidate Pinyin 
set. As for system BC-WM, only the probability of “zhong1” 
and “zhong4” are not equal to zero. Both of them are the candi-
dates of “中”. Figure 3(b) represents the probability distribution  

 
(a) 

 
(b) 

Figure 3: Probability distribution of  “中”. 

of prediction from system BC-WM, and the system correctly 
predicted pronunciation as “zhong4”. 

4.3.3. Impact of Modified Focal Loss 

To illustrate the role of Modified Focal Loss, we collected the 
accuracy of several polyphones suffered from imbalanced dis-
tribution mentioned in chapter 4.1. The accuracy rate from the 
system BC-W, BC-F and BC-WM are listed as table3. 

Table 3: The accuracy of polyphonic characters. 

Character Polyphone BC-W BC-F BC-WM 

量 liang4 98.60 99.82 99.65 
liang2 70.00 55.00 70.00 

当 dang1 98.49 98.77 99.39 
dang4 80.00 77.50 87.50 

相 xiang1 99.24 98.94 99.39 
xiang4 94.59 94.59 95.95 

 
The experimental results revealed that Modified Focal Loss 

is highly conductive to minimize the adverse influence of im-
balanced distribution within Pinyin set. The accuracy of “dang4” 
in BC-WM is 7.5% higher than that of BC-W and 10% higher 
than that of BC-F. As the case of ‘xiang4’, BC-WM is 1.36 % 
higher than that of system BC-W and BC-F. Besides, system 
BC-WM got a slightly improvement compared to the other sys-
tems on massive examples such as “dang1” and “xiang1”. It in-
dicates that the Modified Focal Loss can improve competency 
of the model in classifying rare and hard examples without 
harming that of the massive examples.  

5. Conclusions 
In this paper, we proposed a mask-based architecture for Chi-
nese Mandarin polyphone disambiguation, where mask vector 
is not only a part of input features but also a weighting factor in 
Weighted-softmax. Besides, we optimized the loss function 
from cross-entropy to Modified Focal Loss. The proposed ar-
chitecture can achieve an accuracy rate at 97.92%, a 2.37% im-
provement compared with that of the baseline model. The ex-
perimental results demonstrate that the mask vector can effec-
tively prevent model from predicting outside the candidate set. 
In addition, Modified Focal Loss can ease the distribution im-
balance of Pinyin set. 

In the future, we will make the proposed Weighted-softmax 
and Modified Focal Loss collaborate with pre-trained models 
such as Elmo and Bert to fulfill the task of polyphone disam-
biguation. 
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