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Abstract
Deep scattering spectrum consists of a cascade of wavelet trans-
forms and modulus non-linearity. It generates features of differ-
ent orders, with the first order coefficients approximately equal
to the Mel-frequency cepstrum, and higher order coefficients
recovering information lost at lower levels. We investigate the
effect of including the information recovered by higher order
coefficients on the robustness of speech recognition. To that
end, we also propose a modification to the original scattering
transform tailored for noisy speech. In particular, instead of the
modulus non-linearity we opt to work with power coefficients
and, therefore, use the squared modulus non-linearity. We quan-
tify the robustness of scattering features using the word error
rates of acoustic models trained on clean speech and evaluated
using sets of utterances corrupted with different noise types. Our
empirical results show that the second order scattering power
spectrum coefficients capture invariants relevant for noise robust-
ness and that this additional information improves generalization
to unseen noise conditions (almost 20% relative error reduction
on AURORA4). This finding can have important consequences on
speech recognition systems that typically discard the second or-
der information and keep only the first order features (known for
emulating MFCC and FBANK values) when representing speech.
Index Terms: scattering coefficients, wavelet transform, robust-
ness, deep scattering spectrum, power spectrum

1. Introduction
Speech recognition systems typically operate in feature spaces
designed to implement invariances inherent to speech production
and human speech recognition [1, 2, 3]. Log Mel-filter bank
values (FBANK) and Mel-frequency cepstral coefficients (MFCC)
are two feature extraction techniques known for effectively mod-
eling local invariances at short time scales of 25 ms [1, 4, 5]. As
established in [6], fundamental for the effectiveness of these two
techniques is the approximate Lipschitz continuity of the feature
extraction operator [7]. FBANK and MFCC features achieve this
by performing weighted power spectra averaging. Whilst power
spectra averaging is important for the approximate Lipschitz con-
tinuity, the operator at the same time performs compression that
can result in information loss [8, 9]. To mitigate that, Mallat [6]
has introduced the scattering operator that computes coefficients
using a cascade of wavelet transforms and modulus non-linearity.
The first order scattering coefficients are designed to emulate
FBANK features and the higher order ones to recover the infor-
mation lost due to the waveform compression in coefficients of
lower orders. In [6] it has been hypothesized that higher order
coefficients capture invariants relevant to amplitude modulations
lost in the first order scatter, as well as frequency transpositions
required for speaker-independent classification of phonetic units.

Whilst it is true that higher order coefficients can recover
information lost due to compression in lower levels of cascade,

there has not been a comprehensive empirical evidence for the
relevance of recovered information to robustness of speech recog-
nition systems. In particular, Sainath et al. [10] have investigated
the relevance of second order information on news recordings
that can have various competing acoustic sources but are not
considered to be particularly noisy. In that study, it has been
established that second order information amounts to 4-7% rela-
tive improvement across different settings (multi-resolution time
and frequency scatter, data adaptation, and sequence training).
Moreover, it was empirically demonstrated that on that particular
dataset the same improvement can be obtained by employing
multi-resolution FBANK and MFCC features. Similarly, Fousek
et al. [11] have investigated the relevance of second order infor-
mation on IBM voice search data using multi-layer perceptrons.
The main finding was that second order information contributes
to 2-4% of relative improvement in accuracy, depending on the
employed normalization scheme. We extend these two stud-
ies and investigate the merits of second order information in
the context of noisy speech. Our focus is on the setting with a
significant mismatch between training and test sets which can
provide a good estimate of generalization abilities to unseen
noise environments. In particular, we train our acoustic models
in clean conditions and evaluate them using sets of utterances
corrupted with different noise types. This is different from a
typical regime for learning robust acoustic models known as
multi-condition training in which the clean set of training record-
ings is augmented with noise corrupted utterances. The latter
introduces confounding effects into the training process and the
test error of such models might not be a good estimate for the
ability of higher order scattering coefficients to capture noise
robust invariants and generalize to unseen noise types.

Our empirical findings rely on a technical modification to
the original scattering operator. In particular, instead of the
modulus non-linearity proposed in [6] we opt to work with
power coefficients and, therefore, use the squared modulus non-
linearity. This choice was motivated by previous research show-
ing that it can result in removal of spurious noise components
from scattering features by means of utterance level normaliza-
tions [12, 13, 14]. To empirically establish the relevance of infor-
mation in higher order scattering coefficients on generalization
abilities of acoustic models, we perform a series of experiments
on AURORA4 [15], common and still challenging benchmark for
noise robust speech recognition. An advantage of this dataset is
that it is possible to evaluate merits of a feature representation
without confounding effects typically introduced by means of
data augmentation and multi-condition training. In particular, in
the first set of experiments we evaluate the merits of informa-
tion in the second order coefficients by training on clean speech
and evaluating on noisy utterances with a significant mismatch
between training and test conditions. In this setting, we show
that scattering power spectrum features provide a robust repre-
sentation of waveform frames and that second order information
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amounts to almost 20% relative improvement in the accuracy.
In the second experiment, we evaluate the approach using multi-
condition training where we establish that the performance gap is
reduced as a result of convolutional blocks being able to capture
relevant patterns from first-order coefficients. An open ques-
tion is whether such patterns would generalize to completely
novel noise environments and whether they account for spurious
correlations introduced by data augmentation characteristic to
multi-condition training. Despite the reduction in performance
gap, the information in second order coefficients still amounts
to 12% relative improvement in the accuracy. Moreover, in
this training regime we observe a relative improvement of 14%
compared to multi-resolution FBANK features which is contrary
to findings in [10] on news data. In our third experiment, we
evaluate the effectiveness of multi-resolution scattering cascades
and show that such networks perform on par with state-of-the-art
deep convolutional models with more complex architectures.

2. Deep Scattering Power Spectrum
Given a time-domain signal x (t), the first order scattering coef-
ficients are generated according to [6]

S1 (t, λ1) = |x ∗ ψλ1 | ∗ φ (t) , (1)

where ψλ1(t), λ1 ∈ Λ1, is a bank of band-pass filters obtained
from a mother wavelet ψ(t) via time scaling specified by factors
λ1, and φ(t) is a low-pass filter that performs local averaging.
The scaling parameters λ1 are distributed uniformly on the loga-
rithmic scale, and the number of filters per octave, Q1, sets the
frequency resolution of the transform. The first order scattering
coefficients approximate the Mel-frequency spectrum [5], and
if the octave resolution is set to Q1 = 8, then the wavelet filters
have the same frequency resolution as a Mel-filterbank (in total,
41 filters). The low-pass filter φ (t), which is a Hamming win-
dow with a time support of 25 ms, ensures that the scattering
representation is locally invariant to time shifts smaller than 25
ms. Just as in FBANK and MFCC features, for applications in
speech recognition the logarithm is applied to scattering coeffi-
cients to mimic psychoacoustic measurements and physiology
of human hearing [2, 3, 4, 5]. The resulting feature vector is
referred to as the first order time scatter (illustration in Figure 1).

While weighted averaging by φ (t) provides locally transla-
tion invariant and distortion stable features, it at the same time
results in loss of information regarding transient phenomena and
finer amplitude modulations in speech signals. The information
lost in S1(t, λ1) can be recovered by processing the sub-band
signals {|x ∗ ψλ1(t)|}λ1∈Λ1

using another constant Q wavelet
filter bank {ψλ2(t)}λ2∈Λ2

, as illustrated in Figure 1. Typically,
the resolution of Λ2 is set to Q2 = 1 in order to get a sparse rep-
resentation, concentrating signal information over as few wavelet
coefficients as possible. The wavelets in Λ2 have a narrow time
support and are better adapted to characterize transients and
attacks. The second order scattering operator is given by

S2 (t, λ1, λ2) = ||x ∗ ψλ1 | ∗ ψλ2 | ∗ φ (t) , (2)

with λ1 ∈ Λ1 and λ2 ∈ Λ2. The second order scattering coeffi-
cients are typically normalized by dividing by the correspond-
ing first order coefficient, i.e., S2 (t, λ1, λ2) /S1 (t, λ1) . Hence-
forth, the logarithm of the normalized second order coefficient
will be referred to as the second order time scatter. Although this
cascade of wavelet transforms can be further extended to higher
order coefficients, in [5] it has been demonstrated that for φ (t)
with support of 25 ms, almost 99.3% of signal energy can be

Figure 1: The figure illustrates a cascade of wavelet transforms
for extracting first and second order time-scattering coefficients.

recovered with S1 and S2 operators. Hence, in our experiments,
we have limited the scattering order to 2. Further invariances to
speaker-specific frequency transpositions can be achieved by ap-
plying the scattering operations to S1 (t, λ1) and S2 (t, λ1, λ2)
along their λ variables, which is referred to as frequency scat-
ter. Combining features obtained through the frequency scatter
operator with the first and second order time scatter has shown
to improve the performance on LVCSR tasks [10]. However,
results of our experiments focused on robustness of automatic
speech recognition were inconclusive with regard to merits of
the frequency scatter, and in fact the best results were obtained
with the first and second order time scatter only, so henceforth
the frequency scatter is not considered.

The modulus non-linearity was selected by Mallat [6] to
suppress the effects of large scattering coefficients. However,
in noisy settings we would like to do the opposite and amplify
large wavelet coefficients, thereby suppressing spurious noise
components. Thus, to make the scattering transform more robust
to noise, we propose to replace the original non-linearity with
modulus squared. More formally, the first and second order
scattering transforms from Eq. (1) and (2) are now computed by

Ŝ1 (t, λ1) = |x ∗ ψλ1 |
2 ∗ φ (t) , (3)

Ŝ2 (t, λ1, λ2) =
∣∣|x ∗ ψλ1 |

2 ∗ ψλ2

∣∣2 ∗ φ (t) , (4)

with λ1 ∈ Λ1 and λ2 ∈ Λ2. This choice of non-linearity can
also be motivated by previous work in signal processing that aims
at removing spurious noise contributions by means of utterance
level normalizations [12, 13, 14], which we will also employ in
its simplest form in our experiments. We observed that another
benefit of the squared modulus non-linearity is in that it makes
the feature representation much sparser than conventional deep
scattering spectrum. Henceforth, we refer to the logarithm of first
order coefficients, computed according to Ŝ1 (t, λ1) with λ1 ∈
Λ1, as the first order scattering power spectrum coefficients. The
second order scattering power spectrum coefficients are obtained
by applying the logarithm operator to normalized coefficients,
Ŝ2(t,λ1,λ2)/Ŝ1(t,λ1) with λ1 ∈ Λ1 and λ2 ∈ Λ2.

In Figure 2, we illustrate the difference in capturing invari-
ants relevant for noise robustness between the two non-linearities.
In particular, we take a clean utterance from TIMIT [16] (she
had your dark suit in greasy wash water all year) and compute
scattering representations of waveform frames using both non-
linearities, modulus characteristic to DSS and squared modulus
proposed here. Following this, we corrupt the original utterance
using additive Gaussian noise with SNR varying from 0-20 dB.
The scattering representations with the two non-linearities are
then computed for the noise corrupted utterances. To visualize
the manifold where the data lies we use the t-SNE toolkit [17].
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(a) Deep scattering spectrum features for a clean utterance and its white noise added counterpart at various SNR levels.

(b) Deep scattering power spectrum features for a clean utterance and its white noise added counterpart at various SNR levels.

Figure 2: Deep scattering power spectrum vs standard DSS representation [6] of a clean utterance and its noise corrupted counterparts,
with SNR levels varying from 0-20 dB. The black points represent clean speech frames and the purple ones their noisy counterparts.

We can see from the figure that the DSS representation starts to de-
grade at about 5 dB, measured with the increased spread between
the positioning of clean and noisy frames. In contrast to this,
scattering power spectrum features that employ squared mod-
ulus non-linearity tend to keep clean and corresponding noisy
utterance within balls of small radius. As a result, it is likely
that labels assigned to such frames will be identical because the
learned hypothesis are typically smooth in small neighborhoods
around a particular training point in the instance space. It is
promising that the squared modulus non-linearity keeps clean
and noisy frames quite close to each other even at 0 dB SNR.

3. Experiments
We perform our experiments on AURORA4 [15] dataset, a stan-
dard benchmark for noisy speech. This is a medium vocabulary
task based on a clean speech training set from the Wall Street
Journal (WSJ0) corpus [18]. The clean speech was corrupted by
six different noise types (street traffic, train station, car, babble,
restaurant, airport) at 10-20 dB SNR. The dataset allows for
training using two different sets of observation: i) clean condi-
tion mode that accounts only for clean speech utterances, and
ii) multi-condition mode that contains a mix of clean and noise
corrupted utterances. The evaluation set is derived from WSJ0
5K-word closed-vocabulary test set, consisting of 330 utterances
from 8 speakers. These test utterances were recorded by a pri-
mary and a secondary microphone. Each of the two test sets are
then corrupted by the same noise types used in multi-condition
training set but this time at 5-15 dB SNR (in total 14 test sets).

Scattering features for both considered non-linearities (mod-
ulus and squared modulus) were extracted using the SCATNET 1

toolkit. If not specified otherwise, we are generating first order
coefficients using Gabor filters with resolution Q1 = 8, which
gives in total 41 features. The second order coefficients are gen-
erated using Morlet wavelets with resolution Q2 = 1, which for
Q1 = 8 gives in total 127 features (coefficients with small val-
ues are truncated). The frame context is always set to 5 so that in
total 11 successive frames are stacked and passed to the network
as input. We have investigated the effects of mean normalization
on both speaker and utterance levels for these coefficients and
established that the latter is more effective in noisy settings. For

1https://www.di.ens.fr/data/software/scatnet

experiments with FBANK features, we first apply pre-emphasis
and then split the signal into 25 ms long frames (with 10 ms
shifts) using the Hamming window. If not specified otherwise,
we use 40 FBANK features which are normalized at the utterance
level by subtracting the corresponding mean.

3.1. Network Architecture

The main challenge in incorporating second order information
into speech recognition systems is in that first order coefficients
typically require some further band-pass filtering to capture local
invariants in such spectro-temporal decompositions of speech
waveforms. Empirically, the most effective neural architecture
for hybrid acoustic models with scattering features has been
proposed in [19]. The architecture is a junction network that
takes as input first and second order scattering coefficients via
separate pipelines which are then merged into a multi-layer
perceptron with several hidden layers. While the first pipeline
is a convolutional network that takes first order coefficients as
inputs, the second one is a multi-layer perceptron with a single
hidden layer that extracts features from second order coefficients.

The convolutional pipeline is comprised of 3 layers, each
consisting of the following blocks: i) one dimensional convo-
lution, ii) max-pooling, iii) layer normalization [20], and iv)
RELU nonlinearity followed by dropout [21]. In the first layer,
we use convolutions with 80 channels and filter size 10 sam-
ples. The second and third layer, on the other hand, use 60
channels and filter size 3 samples. The pooling is applied with
compression rates 3, 2 and 1, respectively. We note here that our
configuration of channels and filter sizes is different from prior
work [10, 19]. The pipeline for second order coefficients is a
multi-layer perceptron (MLP) with 512 activation units, followed
by batch normalization [22], RELU non-linearity, and a dropout
block. The outputs of the two pipelines are merged into a vector
and then passed to MLP with 6 hidden layers, each having 1024
activation units. We use batch normalization after each dense
layer in MLP, followed by RELU non-linearity and a dropout
block. The dropout rate across the network is set to 0.15.

3.2. Clean Condition Training

In the first experiment, the goal is to establish that second or-
der scattering coefficients contain invariants relevant for robust-
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FEATURES A1 B2−7 C8 D9−14 AVG1−14

DSPS1 2.76 13.83 7.74 17.90 14.35
DSPS1 + DSPS2 2.58 11.14 6.89 14.33 11.59
DSS1 [5] 2.62 14.72 7.89 19.07 15.23
DSS1 + DSS2 [5] 2.61 11.95 7.33 15.33 12.40

FBANK40 [4] 2.65 13.75 7.96 16.89 13.89
FBANK60 [4] 2.54 13.06 8.33 17.08 13.69
FBANK80 [4] 2.69 12.04 8.03 16.19 12.86
FBANK100 [4] 2.52 12.60 7.60 16.52 13.20

Table 1: The table reports word error rates obtained on test sets
(14 in total) of AURORA4 by clean condition training. First or-
der features (including FBANKs) are processed using a convolu-
tional neural network, while the combination of first and second
order features employs the junction architecture from [19].

ness and that they generalize to unseen noise environments. To
demonstrate this, we train using clean speech and evaluate our
model on the noise corrupted test sets with a significant mismatch
between training and test conditions. To quantify the improve-
ment that comes as a result of including the information from
second order coefficients, we train first with the convolutional
pipeline for processing the first order coefficients (with second
order pipeline switched off). We refer to this model as DSPS1

to express the fact that its inputs are first order deep scattering
power spectrum (DSPS) coefficients. Following this, we train the
junction network jointly, thereby accounting for both first and
second order scattering coefficients. This model is referred to as
DSPS1 + DSPS2 to account for the fact that the architecture takes
both first and second order coefficients as inputs. We use the
relative improvement in the accuracy between these two models
to quantify the relevance of the information from second order
coefficients for noise robustness. Table 1 provides a summary of
our experiments in clean conditions. The empirical evidence in-
dicates a relative improvement of almost 20% with the addition
of second order information, compared to convolutional network
with first order features (DSPS1 vs DSPS1 + DSPS2, utterance
normalization). In the same setting, we also compare to deep
scattering spectrum that employs modulus non-linearity when
generating features. The experiments, along with the illustration
in Figure 2, demonstrate that square modulus non-linearity and
power spectrum scattering provide a more robust representation
than conventional DSS, achieving over 6% relative improvement.
In addition to all of this, we run an experiment with FBANK
features aimed at showing that invariants recovered by second
order coefficients cannot be obtained by increasing the granu-
larity of first order features. For that, we train the convolutional
pipeline/network with different number of FBANK features and
show that the junction network combining first and second order
information outperforms all such models, including 16.5% rela-
tive improvement over FBANK features with the same resolution.

3.3. Multi-Condition Training

In the second experiment, we first train the same set of models
as in clean condition training. Table 2 provides a summary of
our empirical results in this setting. The results indicate that
again learning with scattering power spectrum features is more
effective than with conventional DSS, achieving similar rela-
tive improvement of over 6%. Moreover, the experiments with
FBANK features also indicate that one cannot recover invariants
from second order coefficients by just increasing the number of
filters in the first order coefficients. An interesting observation
is that the gap between first order pipeline and the junction net-
work is decreased compared to clean condition training. Still,
the information in second order coefficients amounts to 12%
relative improvement in the accuracy. Our hypothesis is that

FEATURES A1 B2−7 C8 D9−14 AVG1−14

DSPS1 2.97 5.88 6.71 15.96 10.05
DSPS1 + DSPS2 2.73 5.20 4.73 14.15 8.83
DSS1 [5] 2.99 5.69 6.56 15.95 9.96
DSS1 + DSS2 [5] 2.86 5.45 6.11 15.08 9.44

FBANK40 [4] 3.06 6.08 7.10 16.09 10.23
FBANK60 [4] 2.90 5.72 6.46 15.65 9.83
FBANK80 [4] 2.88 5.58 5.92 15.22 9.55
FBANK100 [4] 2.69 5.33 5.74 15.26 9.43

Table 2: The table reports word error rates obtained on test sets
(14 in total) of AURORA4 by multi-condition training. First or-
der features (including FBANKs) are processed using a convolu-
tional neural network, while the combination of first and second
order features employs the junction architecture from [19].

the convolutional blocks are in this setting capable of capturing
patterns from the first order coefficients that are relevant for
robustness. However, it is unclear whether the captured patterns
account for spurious correlations introduced by data augmenta-
tion characteristic to multi-condition training nor whether they
would generalize to unseen noise environments.

In our final experiment, we investigate the effectiveness
of models that combine features with multiple resolutions and
use multi-condition training. Table 3 provides a summary of
our results in this setting. We can observe that combination
of resolutions Q = {4, 13} provides the lowest error rate over
test samples. Moreover, that model outperforms state-of-the-art
deep convolutional networks with 6 and 10 such layers that take
FBANK features as inputs [23]. Interestingly, the relatively small
junction network consisting of only three convolutional layers,
supplemented with information from second order coefficients,
is competitive with a recently proposed architecture with 15
layers of much more expressive multi-octave convolutions [24].

ARCHITECTURE CNN DEPTH AVG1−14

DSPS1 + DSPS2 (MULTI-RESOLUTION SCATTERING)
Q = {8} 3 8.83
Q = {1, 4, 13} 3 8.76
Q = {1, 4, 8, 13} 3 8.94
Q = {4, 13} 3 8.64
FBANK BASELINES

FMLLR + MLP - 10.21
VD6CNN [23] 6 10.34
VD10CNN [23] 10 8.81
M-OCT CNN [24] 15 8.31

Table 3: A summary of results obtained on AURORA4 by combi-
nation of multi-resolution scatters and multi-condition training.

4. Conclusion
We have proposed a modification to the scattering transform that
is capable of recovering information lost due to compression
by first order features such as FBANK and MFCC coefficients.
In our empirical analysis, we have demonstrated that: i) the
first order features discard information relevant for noise robust
speech recognition, and ii) the second order deep scattering
power spectrum coefficients capture invariants relevant for noise
robust speech recognition and that these invariants can generalize
to noise types not contained in the training set. Moreover, our
empirical results suggest that second order coefficients can lead
to gross simplification of neural architectures and, thus, reduce
training time and the amount of required computing resources.
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