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Abstract
Neural models have yielded state-of-the-art results in decipher-
ing spoken language understanding (SLU) problems; however,
these models require a significant amount of domain-specific
labeled examples for training, which is prohibitively expensive.
While pre-trained language models like BERT have been shown
to capture a massive amount of knowledge by learning from un-
labeled corpora and solve SLU using fewer labeled examples
for adaption, the encoding of knowledge is implicit and agnos-
tic to downstream tasks. Such encoding results in model ineffi-
ciencies in parameter usage: an entirely new model is required
for every domain. To address these challenges, we introduce
a novel SLU framework, comprising a conversational language
modeling (CLM) pre-training task and a light encoder architec-
ture. The CLM pre-training enables networks to capture the rep-
resentation of the language in conversation style with the pres-
ence of ASR errors. The light encoder architecture separates
the shared pre-trained networks from the mappings of generally
encoded knowledge to specific domains of SLU, allowing for
the domain adaptation to be performed solely at the light en-
coder and thus increasing efficiency. With the framework, we
match the performance of state-of-the-art SLU results on Alexa
internal datasets and on two public ones (ATIS, SNIPS), adding
only 4.4% parameters per task.
Index Terms: spoken language understanding (SLU), intent
classification, slot labeling, transfer learning

1. Introduction and related works
Spoken language understanding (SLU), traditionally consisting
of intent classification (IC) and slot labeling (SL) tasks, has
drawn the attention of researchers as a core component of the
goal-oriented dialogue system [1–3]. IC is the task of clas-
sifying the utterance of a user into an intent label, such as
GetWeather or PlayMusic, while SL is a domain-dependent se-
quential labeling task. SL aims to label the span of tokens in
the utterance for each slot type associated with the intent in the
domain ontology. Studies in SLU have led to many successful
industrial applications, including Alexa, Google Assistant, Siri,
and Cortana [4].

As of late, most state-of-the-art SLU systems are based
on deep learning models [5–7]. These neural models provide
substantial performance gains, but usually require a large num-
ber of labeled utterances for training. The requirement hinders
the application of neural SLU systems to different domains,
as collecting in-domain data is expensive and time-consuming.
Recent advancements in language model pre-training, such as
BERT, GPT2, and T5 [8–12], can address the challenges of
models being data-hungry. These pre-trained language mod-
els learn from massive text corpora in general domains without
labeling and store a substantial amount of learned knowledge
within parameters. Fine-tuning is then adopted to adapt en-

coded general knowledge to specific downstream tasks while
using significantly fewer labeled examples. This pre-training-
fine-tuning technique has yielded significant improvements in
resolving SLU and many other natural language understanding
problems, such as translation and question-and-answer tasks.

Although these pre-trained models are powerful, they re-
quire large amounts of parameters and space to store the knowl-
edge, since semantic and syntactic information is implicitly
learned from the co-occurrence of words in utterances and seg-
ments [13]. To improve performance in completing downstream
tasks, one has to train ever-larger models with additional data, in
hopes of capturing more knowledge that overlaps with desired
tasks. The resulting process is prohibitively expensive and slow
for the research and deployment of SLU systems at both the
training and inference stages. Furthermore, the application of
SLU generally consists of many downstream tasks, where each
task solves for IC and SL within a given domain. Fine-tuning
is parameter-inefficient in such applications, as the entire model
has to be updated for each task.

To model knowledge more efficiently, we propose a novel
network framework that achieves better performance than ex-
isting frameworks on SLU downstream tasks and can be ex-
tended to solve for new domains in a parameter-efficient man-
ner. This framework consists of a conversational language mod-
eling (CLM) pre-training task and a light encoder architecture.
CLM allows the model to be pre-trained using tasks with styles
attuned to downstream tasks; the light encoder that aggregates
and encodes knowledge represented within the pre-trained lan-
guage model (in this paper, a CLM style BERT) at various levels
of granularity.

Style attuned pre-training consists of pre-training models
using focused data and tasks matched for a given set of down-
stream problems, resulting in models learning more relevant
knowledge for those downstream problems. Style attuned pre-
training has shown improved outcomes in solving many human
language technology problems. Retrieval-augmented language
models are directly optimized to retrieve and attend over docu-
ments during pre-training and, after fine-tuning, achieves better
performance on open-domain question-and-answer tasks [13].
Translation language modeling pre-trains networks with pairs
of parallel sentences in different languages to facilitate cross-
lingual alignment learning in models and thus outperforms prior
machine translation approaches [14]. Here, we propose using
CLM to pre-train models with pairs of user queries and system
responses, such that networks can encode the representation of
language in conversation styles. Furthermore, queries decoded
by automatic speech recognition (ASR) systems are used for
models to learn ASR error robust knowledge.

In addition to CLM pre-training, we utilize a light encoder
to transform generally encoded knowledge into domain- and
task-dependent knowledge in a more parameter efficient man-
ner. There are numerous research efforts on improving the ef-
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Figure 1: CLM style BERT pre-training

ficiency of the pre-trained models. TinyBERT [15] proposed
a knowledge distillation framework by training a smaller net-
work to match the output from different layers of a larger frozen
model and showed that more than 96% of the performance
of the larger model can be recovered by the distilled model.
ELMo [16] proposed to learn a linear weighted combination
of the layers that would be used as inputs to a task-specific
model. Adapter modules [17] also have been proposed for a
compact and extensible model, where each adapter consists of a
few trainable parameters added in every layer of the frozen pre-
trained BERT and is dedicated to one specific task. In this man-
ner, new tasks can be added to these models without interfering
with existing ones. Here, we propose a multi-stage style attuned
pre-training and parameter efficient fine-tuning setup for down-
stream tasks. We then conduct an exhaustive set of experiments
and demonstrate that the proposed framework outperforms pub-
lic available approaches, on IC and SL tasks across various do-
mains.

In summary, our primary contributions are three-fold:

• Propose a CLM style pre-training task tailored to SLU
problems. The task allows models to learn language
representation in conversation style with the presence of
ASR errors;

• Introduce a novel parameter efficient model architecture
comprised of a pre-trained model and a light encoder;

• Perform an empirical comparison among various pre-
training and network architectures on model accuracy
across IC and SL tasks. These experiments show that our
proposed parameter efficient architecture yields compa-
rable accuracy with the SOTA approach, which fine-
tunes an entire model per domain.

2. Approach
In this section, we describe the proposed network framework,
which consists of CLM pre-training and light-encoder fine-
tuning. Using the former, we aim to enhance SLU performance
via pre-training models with tasks more attuned to downstream
problems. The latter enables us to build domain-specific SLU
models more efficiently in terms of parameter usage.

2.1. CLM Pre-training

Language model pre-training allows a network to learn gen-
eral language information effectively without human-annotated
data. Pre-trained models can then solve for a set of downstream
tasks by adapting the models with only a small amount of an-
notated data. Transformer-based, deep-neural models such as
BERT or T5 are widely used to learn and store general lan-
guage information. In this paper, we choose BERT as the base
architecture model, due to a more balanced trade-off between
model size and performance as compared with the T5 model.
Conventionally, BERT is pre-trained with a masked language

model and next sentence prediction tasks using public data sets
including Wikipedia. However, networks can only learn gen-
eral, written-form language information in such pre-training.

In light of this limitation, here, we propose to use a conver-
sational language model, CLM, for networks to encode knowl-
edge attuned to SLU tasks, as shown in Figure 1. To build
CLM, we first collected a dataset consisting of conversations
between users and a goal-oriented dialog system. An exam-
ple of a conversation begins with a user query of ”play Shake
It Off”, followed by the system responding with”play Shake
It Off by Taylor Swift”. In addition to semantic and syntactic
information, this dataset provides knowledge about the conver-
sational context distilled from the dialog system components,
such as natural language generator (e.g., ”play song by artist”
is a response to the query ”play song”), entity resolution (e.g.,
”Shake It Off” is a song), and knowledge graph (e.g., ”Tay-
lor Swift” is the artist of ”Shake It Off”). We then concatenate
each query-response pair into one sequence and append type
embedding to each token embedding as showed Figure 1. Type
embedding is a binary value to distinguish the query from the
response. Lastly, we apply masking to entities in the respective
queries and responses. In the above example, ”Shake It Off” are
masked (partially) in both query and response. Entity masking
forces models to relate entities using conversational context dis-
tilled from system components. With such a setting, the models
accumulate knowledge in line with both the dialog system as
well as its SLU component. An additional benefit in using this
type of conversational dataset is that the user queries in these
datasets are decoded with an ASR system that could generate
recognition errors, while the system response is free of ASR
errors. The model can thus be systematically trained on ASR
errors and any learned knowledge is robust against errors.

Pre-training with conversational data also improves the
ability of a model to use generalized language information in
solving downstream SLU tasks, especially for domains with
limited amounts of labeled data. It is well-established that
unsupervised pre-training allows models to encode general in-
formation, while supervised fine-tuning helps models to learn
domain-specific information for downstream tasks. However, a
realistic SLU system comprises many domains and, inevitably,
some domains have fewer annotated labels than others. Imbal-
anced supervised signals result in biased performance across the
domains. By pre-training with conversations between users and
dialog system, models can learn language information shared
amongst domains within a given system. Domains with lim-
ited annotation can leverage information from similar domains
within the SLU/dialog realm, improving the generalizability of
networks.

2.2. Light Encoder Fine-tuning

A popular approach to adapt a pre-trained model to down-
stream tasks is fine-tuning with domain-specific data. However,
building models for each domain is prohibitively expensive, es-
pecially for models leveraging large networks such as BERT.
Thus, to build parameter-efficient models we further propose
an architecture consists of a sharable, pre-trained network and a
light, task-dependent encoder. As an SLU system grows, the re-
sulting models are scalable to the increasing number of domains
and maintain stable performance throughout the expansion.

The architecture of the proposed light encoder and its appli-
cation to the pre-trained network is presented in Figure 2. The
blue blocks on the left stand for the frozen transformer layers
that are pooled together and shared across domains. The green
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Figure 2: Overview of proposed light encoder architecture

blocks on the right illustrate the light encoder, which includes
the layers tuned for downstream tasks (i.e., for each SLU model
in one domain). As shown in the figure, we first transform utter-
ances into contextual token-level vectors with BERT and then
concatenate vectors from each of the BERT internal layers to
obtain the token-level, domain-agnostic representation. Since
parameters are frozen in this stage, we can share the pooled
representations with different downstream tasks. The repre-
sentation is subsequently transformed with a dense layer and
a BiLSTM block. We further feed the utterance representation
to the output layers, consisting of a softmax layer for IC and
a Conditional Random Fields (CRF) layer for SL, for predic-
tion. When fine-tuning for downstream tasks, only the parame-
ters in the light encoder (i.e., the green cells) are trained. Thus,
for each domain, we only need to maintain parameters for the
light encoder. The parameters for BERT are stored once and
shared across all domains. We refer to this architecture as Con-
cat+LSTM in this paper. We propose to concatenate vectors
from each of the BERT layers as prior studies, ELMo [16] and
BERT adaptor [17], have shown that utilizing vectors from dif-
ferent encoder layers results in improved model performance,
as different layers may capture a variety of linguistic informa-
tion. Lower layers are likely to capture syntactic clues, while
higher layers encompass semantic information.

To understand the performance impact of each compo-
nent in the proposed model, we investigated three additional
architectures: Linear+LSTM, LastLayer+LSTM, and Concat.
The Linear+LSTM approach uses a learned linear weight vec-
tor to combine representation in each internal layer of BERT
before the dense projection layer and BiLSTM block. The
LastLayer+LSTM architecture utilizes the representation from
the last layer of BERT directly. As for the Concat architec-
ture, we remove the BiLSTM block from our proposed Con-
cat+BiLSTM architecture. All parameters in the light encoder,
except the ones in the output layers, are initialized by training
the encoder with the frozen BERT using the masked language
model task.

Table 1: Fine-tuning Dataset

Dataset #train-size #test-size #intents #slots

ATIS 4.1k 0.8k 16 65
SNIPS 11.8k 0.6k 7 47
Music 100k 72k 22 79
Shopping 100k 72k 16 27
Localsearch 100k 12k 22 47

3. Experiments
3.1. Dataset

We evaluated the performance of proposed approaches with IC
and SL tasks using two public datasets (SNIPS [18] and the Air-
line Travel Information System corpus (ATIS) [19]) and three
Alexa internal datasets (Local-Search, Music, and Shopping).
SNIPS consists of utterances with seven intents across multiple
domains, including music, media, and weather, and was used
to evaluate the accuracy of NLU services. ATIS contains tran-
scribed audio recordings of individuals making flight reserva-
tions and spans across seventeen intent categories, such as flight
booking or aircraft capacity inquiries. For internal datasets,
we sampled Alexa daily traffic from music, shopping, and lo-
cal search domains. Utterances in these Alexa internal datasets
consist of various entities, such as artists, albums, cities, loca-
tions, business types, and product attributes. We list detailed
statistics (e.g., number of utterances in training and test sets and
number of intents and slots) for the five datasets in Table 1.

Utterances in Alexa internal datasets are user queries tran-
scribed by Alexa ASR system and the IC and SL labels were
annotated to the transcribed dialog on hypotheses. In contrast,
both public datasets only provide IC and SL labels using hu-
man transcription, and SNIPS only offers user queries in text.
To evaluate our network architecture on SLU performance, we
prepare our own ASR hypotheses as well as IC and SL labels
on the underlying data for the two public datasets following a
popular data simulation [20]. We first synthesized audio for text
queries in SNIPS with a commercial TTS service1. We then de-
coded audio with a commercial ASR system2 to obtain ASR hy-
potheses of user queries for both SNIPS and ATIS. The word er-
ror rate (WER) of decoded audio for ATIS and SNIPS is 18.4%
and 16.2%respectively. We used IC annotation on transcription
directly, as the annotation on hypotheses and SL annotation on
transcription was projected with Levenshtein alignment for la-
bels on hypotheses.

3.2. Experiment setup

We benchmarked our model performances on the above datasets
with a public, well-trained BERT model from Google3 as the
baseline (denoted as BERT-Google). This model adopts the
standard BERT architecture, with 12 transformer layers, 768
hidden units, and 12 attention heads, and was trained on pub-
lic data, including Wikipedia, Bookcorpus, and OpenwebText
without casing. We also pre-trained BERT with the same model
architecture, using a mixture of public corpora and conver-
sational data, on the proposed CLM task (denoted as BERT-
CLM). The conversational data was collected from Alexa live
traffic covering all the domains and is comprised of 50 million
query-response pairs. The user requests within the conversa-
tional data were recognized by the Alexa ASR system and to-
kenized into a spoken format, with no human annotation is re-
quired. For an ablation study, a BERT using the same architec-
ture but trained with only the public dataset and user queries
in the conversational data was also built (denoted as BERT-
Query).

We adopt a 2-layer BiLSTM with 256 hidden units in our
light encoder architectures. We use a dense layer of the same
hidden size, projecting the output from the pooling layer to

1Amazon Polly, https://aws.amazon.com/polly/
2Amazon Transcribe, https://aws.amazon.com/transcribe/
3Google BERT, https://github.com/google-research/bert
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Table 2: Results of applying various pre-trained models on internal and public IC and SL benchmark datasets. Baseline numbers
are fine-tuned on BERT-google. Numbers for the internal dataset are relative F1 score differences in percentage as compared to the
baseline, and a positive number indicates improvements from baseline. The numbers in ATIS and SNIPS are f1 scores.

Model LocalSearch
rel IC/SL

Music
rel IC/SL

Shopping
rel IC/SL

ATIS
IC/SL

SNIPS
IC/SL

Avg rel
IC/SL

BERT-Google - - - 96.79 / 93.25 98.45 / 88.66
BERT-Query -0.50 / 4.10 0.50 / 2.40 0.80 / 1.90 97.02 / 93.43 98.61 / 88.86 0.2 / 1.8
BERT-CLM 0.10 / 5.30 0.80 / 2.50 1.30 / 3.50 97.14 / 93.84 98.60 / 89.34 0.6 / 2.5

Table 3: Results of applying proposed light encoder architecture on internal and public IC and SL benchmark datasets. Baseline
numbers are the fine-tuning on BERT-CLM, which is pre-trained with query and response pair. Numbers for the internal dataset are
relative F1 score differences in percentage as compared to baseline, while the numbers for ATIS and SNIPS are f1 score.

Model Total num
params

Trained
params
per task

LocalSearch
rel IC/SL

Music
rel IC/SL

Shopping
rel IC/SL

ATIS
IC/SL

SNIPS
IC/SL

Avg rel
IC/SL

BERT-CLM 5.0x 100.0% - - - 97.14 / 93.84 98.60 / 89.34 -
Concat+LSTM 1.22x 4.4% 2.1 / -1.1 0.0 / 1.6 -0.8 / -0.8 97.02 / 93.82 98.76 / 89.26 0.3 / -0.1
Linear+LSTM 1.13x 2.5% 2.2 / -1.2 0.0 / 0.8 -0.8 / -1.1 97.12 / 93.29 98.76 / 88.69 0.3 / -0.6
LastLayer+LSTM 1.13x 2.5% -0.2 / -0.9 -0.3 / 1.4 -0.6 / -1.6 96.31 / 93 99.07 / 86.69 -0.3 / -1.0
Concat 1.10x 2.0% 1.2 / -3.6 0.2 / 0.6 -0.5 / -2.1 95.83 / 90.15 98.76 / 86.35 -0.1 / -2.5

match the input of BiLSTM. In the Concat+LSTM architec-
ture, we concatenate the 12 transformer layers output, while, in
the Linear+LSTM architecture, we use a linear vector to com-
bine the 12 transformer layers from BERT. We jointly train the
downstream IC and SL tasks, using a softmax layer as the IC
output layer, and a CRF layer for SL output.

3.3. Results and discussion

In this section, we present and analyze the experiment results on
both the public (ATIS and SNIPS) and internal (Local-Search,
Music, and Shopping) datasets. We report F1 scores for each of
the datasets on IC and SL tasks separately, to evaluate the bene-
fit of style attuned pre-training and light encoder architectures.
We also examine the contributions to the accuracy performance
of the different components in the proposed architecture.

Table 2 shows IC/SL performance for BERT models pre-
trained with various techniques and fine-tuned to different do-
mains. We observe improved performance in both IC and SL
tasks across all domains on fine-tuned BERT-CLM, as com-
pared to the baseline model BERT-Google. The BERT-Query
model also outperforms the baseline, although it yields lower F1
scores than the BERT-CLM model. Although our pre-training
corpus did not contain utterances from ATIS or SNIPS data, we
see improvements for the two domains. We believe our CLM
setup facilitates the model to learn the relationship between the
entities in query and response, thus allowing the model to learn
a representation better fits SLU tasks.

Next, we investigate various light encoder architectures on
top of the best-performing pre-trained model (BERT-CLM). As
reported in Table 3, our Concat+LSTM architecture achieved
comparable performance with fine-tuning the whole BERT-
CLM model (an average of 0.3% relative improvement on IC,
0.1% relative degradation on SL) by only using 4.4% of incre-
mental parameters per domain. As for the Linear+LSTM ar-
chitecture, we observe a slight degradation in results (average
of 0.3% relative improvement on IC, 0.6% relative degradation
on SL) compared with the baseline, BERT-CLM. We believe
the concatenation approach allows the model to retain both the

syntactic information from lower layers and the semantic in-
formation from higher layers, whilst the linear weight combi-
nation approach loses partial information and results in a slight
degradation in performance. However, the Linear+LSTM archi-
tecture only utilized 2.5% of extra parameters per domain. We
also remove the concatenation pooling layer and directly use the
final output layer from BERT with LSTM (LastLayer+LSTM),
we note a performance degradation on both tasks (average of
0.3% relative degradation on IC, 1.0% relative degradation on
SL). We presume that lower layers of BERT capture syntac-
tic information of the utterance, which is especially helpful for
SL tasks. Lastly, we remove the BiLSTM encoder (Concat),
and we again observe the performance on SL tasks degrades by
2.5%, indicating that the addition of the BiLSTM block allows
the model to better utilize the signals captured by the shared
BERT encoder and thus benefits the downstream SL tasks.

4. Conclusions
With the rising popularity of transfer learning in SLU, the chal-
lenge of how to adapt pre-trained models to SLU tasks effec-
tively and efficiently is increasingly relevant. To address the
challenge, we propose a novel framework comprised of a style
attuned pre-training and light encoder fine-tuning architecture.
The style attuned pre-training facilitates model learning of re-
lated knowledge for downstream tasks, while the light encoder
architecture enables parameter sharing and efficient fine-tuning
for the tasks. We demonstrate that BERT pre-trained with
conversational style corpora outperforms the publicly available
BERT in SLU tasks after fine-tuning the entire networks. The
light encoder architecture achieves comparable performance to
our best fully fine-tuned model while utilizing less than 5% of
incremental parameters per domain. This framework enables
domain expansion for SLU at a much lower cost.
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