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Abstract
The problem of system performance degradation in mismatched
acoustic conditions has been widely acknowledged in the com-
munity and is common for different fields. The present state-of-
the-art deep speaker embedding models are domain-sensitive.
The main idea of the current research is to develop a single
method for automatic signal quality estimation, which allows
to evaluate short-term signal characteristics.

This paper presents a neural network based approach for
blind speech signal quality estimation in terms of signal-to-
noise ratio (SNR) and reverberation time (RT60), which is able
to classify the type of underlying additive noise. Additionally,
current research revealed the need for an accurate voice activity
detector that performs well in both clean and noisy unseen envi-
ronments. Therefore a novel neural network VAD based on U-
net architecture is presented.The proposed algorithms allow to
perform the analysis of NIST, SITW, Voices datasets commonly
used for objective comparison of speaker verification systems
from the new point of view and consider effective calibration
steps to improve speaker recognition quality on them.
Index Terms: Blind speech quality estimation, SNR, RT60,
VAD, speaker recognition

1. Introduction
The quality of speaker recognition (SR) systems in real life
vary according to the acoustic conditions of the input signal.
This problem has been widely acknowledged in the commu-
nity and is common not only for speaker recognition but for
speech recognition, spoofing detection and other fields. The
present state-of-the-art deep speaker embedding models are do-
main sensitive: they perform well in acoustic conditions that
match that of the training data (in-domain), but degrade in mis-
matched acoustic conditions (out-of-domain). To deal with
this problem ones use training data augmentation to improve
the robustness of their systems in unknown domains. Oth-
ers use in-domain data for adapting speaker embeddings to the
specificdomain. These approaches include back-end adaptation
[1, 2, 3] or more recent methods with adversarial training to
learn condition-invariant deep embeddings [4, 5, 6, 7, 8].

This paper concentrates on the automatic tool for speech
signal quality estimation. In the beginning, it was mainly con-
sidered as a tool for exploring the areas of applicability of differ-
ent speaker verification methods and its adaptation techniques.
However, it is also useful for preparing appropriate training data
according to estimated acoustic parameters, for adaptation pur-
poses during training or calibration.

One of the basic metrics for quality estimation is mean
opinion score (MOS). It is widely used for service quality es-
timation in telecommunications and is a subjective quality eval-

uation measure, which means that it requires human assessors
and is time-consuming.

Alternative objective metrics are based on a comparison
of the original (reference) and encoded (distorted) signals, like
Perceptual Evaluation of Speech Quality (PESQ) [9] and its im-
proved version - Perceptual Objective Listening Quality Anal-
ysis (POLQA) [10]. Recent neural network approaches were
trained to predict these estimates automatically [11]. In most
applications the reference signal is unavailable and blind qual-
ity (without access to the reference or noise signal) estimation
methods are in demand.

Over the past years, several methods for signal quality es-
timation that do not use reference samples have been proposed.
These are neural network based approaches trained to predict
the MOS, PESQ and similar measures on some sets of training
data [12, 13]. Nevertheless, MOS, PESQ and POLQA measures
are difficult to interpret and do not characterize which signal pa-
rameters affect the final measurement value. In the signal pro-
cessing field, the quantitative characteristics of SNR and RT60
are commonly used to evaluate a particular distortion.

A comprehensive comparison of algorithms for blind RT60
and direct-to-reverberant energy ratio (DRR) estimation was
facilitated by the Acoustic Characterisation of Environments
(ACE) challenge [14]. The baseline algorithm and the best per-
formed algorithm from [15] use sub-band analysis and maxi-
mum likelihood estimation for RT60.

The main idea of the current research was to develop a
single method for automatic quality estimation, which allows
to evaluate short-time (2 sec of speech) characteristics such as
SNR and RT60. Section 3 presents a new neural network based
approach for blind speech signal quality estimation in terms of
SNR and RT60. Additionally, it is able to classify the type of
underlying additive noise.

Since the described approach is performed for speech sig-
nal quality estimations, it uses only segments selected by voice
activity detector (VAD) at the preliminary step. This research
reveals the need for an accurate VAD that performs well in both
clean and noisy environments and is able to generalize under
unseen environments. Thus a novel neural network based VAD
(Section 2) was invented for these purposes.

The proposed algorithms allow to perform the analysis of
commonly used datasets like NIST, SITW, VOiCES, etc. from
the new point of view and consider some calibration steps to
improve speaker verification quality on them (Section 4).

2. Voice Activity Detection
Voice activity detection is one of the building blocks of speech
processing systems. It selects features corresponding to speech
segments before passing them to speaker verification, speech
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recognition or other methods. In this investigation the role of
an accurate VAD procedure was reconsidered. Speech activ-
ity detection in case of varying acoustic conditions is a chal-
lenging task for classical energy-based VAD, especially in the
presence of specific noises and distortions [16]. Therefore this
paper presents the neural network based VAD trained to per-
form reliable results in case of noise and reverberation. Deep
learning approaches have better modeling capabilities than tra-
ditional methods and have already achieved superior results in
the VAD task [17, 18, 19, 20, 21, 22, 23].

2.1. System description

This work adapts the U-net [24] architecture to the speech activ-
ity detection task. Such architecture was originally introduced
in biomedical imaging for semantic segmentation in order to
improve precision and localization of microscopic images. U-
net is a convolutional network [25] based on the deconvolu-
tional idea [26]. In a deconvolutional network, a stack of con-
volutional layers, where each layer halves the size of the image
but doubles the number of channels, encodes the image into a
small and deep representation. That encoding is then decoded
to the original size of the image by a stack of upsampling layers.

The proposed U-net based VAD uses a reduced version of
the original architecture. It was firstly presented in the context
of speaker verification task of the VOiCES Challenge [27]. In-
put features are 8kHz 23-dimensional Mel Frequency Cepstral
Coefficients (MFCC) extracted for 25ms frame every 20ms.
Half overlapping 2.56sec sliding window and 1.28sec overlap
are used.This results in 128×23 input features size for the neu-
ral network. The aim of the neural network is to predict the 128
dimensional speech activity mask for every 2.56sec segment.
Thus the resolution of the proposed speech detector is equal to
20ms. The final decoder layer is a global average pooling layer
with sigmoid activation. Its output is used as the speech activity
mask.

To train the network, a combination of binary cross-entropy
loss function and dice loss [28] is used. The latter aims to maxi-
mize the dice coefficient between predicted binary segmentation
set and ground truth binary labels.

2.2. Experiments

The U-net model was trained on NIST2008 and Russian speech
subcorpus RusTelecom [29]. Augmentation process included
reverberation and additional noise of different types. It was per-
formed in the similar manner to augmentation for quality es-
timation described further in section 3.2. Speech labels were
obtained from the oracle manual segmentation or Automatic
Speech Recognition (ASR) [30] based VAD processed for clean
version of the data.

To evaluate the performance of the proposed method we
used NIST metrics FA, Emiss, Precision and Recall as
implemented in pyannote.metrics [31]. Evaluation was
done for hard conditions presented in the evaluation subset [32]
from the DIHARD Diarization Challenge, since it represents the
real life scenarios and has oracle VAD segmentation. Results
from Table 1 confirm the improvement in terms of all used met-
rics. Furthermore, the improvement obtained by speaker verifi-
cation system based on this VAD model confirms its robustness
in challenging conditions presented in the VOiCES dataset [27].

Table 1: Evaluation on DIHARD eval dataset.

VAD FA Emiss Precision Recall
Energy based 4.59 41.61 95.12 58.39
U-net 4.19 23.85 98.14 76.15

3. Automatic Quality Estimation
Aimed to develop single system for multiple quality parame-
ters estimation, we focused on the perspective deep learning
approach, where data preparation plays a crucial role. Many
papers underline the scarcity of data available for training deep
models. Therefore, in this work the great attention was paid to
the rigorous data augmentation procedure.

3.1. System description

The proposed models are trained in a multitask mode: one neu-
ral network is simultaneously trained to predict SNR, RT60
and background noise class. This is achieved through the use
of three heads in the architecture of the neural network and
three cost functions.To automatically evaluate SNR and RT60,
the model is trained as a regressor and the mean squared er-
ror (MSE) loss is used. Automatic estimation of noise class is
based on the use of a classifier and is trained using binary cross-
entropy (BCE). During the training, a combined weighted loss
function L, with weights used for scaling, is used:

L = 0.001MSERT60 +MSESNR + 10BCEnoise (1)

Three different architectures were compared in terms of esti-
mation quality, speed and number of parameters:

• U-net - similar to the VAD architecture described above;

• FatCNN - convolutional neural network containing 5
convolutional layers. In the first layer 128 filters was
used, followed by 2 × 2 max pooling and batch normal-
ization layer. Other layers have, respectively, 256, 128,
128 and 512 filters, followed by 2 × 2 max pooling. We
used ReLU as an activation function within the hidden
units. Six fully-connected layers are then used prior to
the output unit;

• ResNet18 - modification of well-known residual neural
network with 8 ResNet blocks [33].

All architectures have the same high-level structure: deep
quality embeddings of size 512 obtained after the global aver-
age pooing layer are used as an input to three linear layers - one
per each head. For the “noise” head additional two-layer clas-
sification with softmax activation for 79 classes is used. Deep
quality embeddings are further called q-vector (quality vector)
as a sign of respect to deep speaker representation analogues.

We also investigated the influence of feature type and its
resolution analysing 23 dimensional MFCC and 64 dimensional
log mel filter bank (Fbank) features. All features are used with-
out feature normalization.

3.2. Data preparation

Training of the quality estimator needs an dataset balanced ac-
cording to the values of SNR, RT60 and types of noise. A spe-
cial toolkit that allows to augment signal with specific acous-
tic parameters was developed for this purpose. Different bases
in telephone and microphone channels, including NIST2002,
NIST2008 and private STC databases, were taken as the sources
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of “clean” speech signals. Stationary noises of 79 different
types (factory, rain, babble, keyboard etc.) from Freesound
[34], MUSAN [35] and manually collected from the Internet
resources were used for noise augmentation. To obtain correct
SNR value, in contrast to Kaldi implementation, power of signal
was calculated only on speech segments after applying VAD,
described in section 2. Reverberation effect was produced us-
ing the room impulse response (RIR) generator based on [36].
Four different RIRs were generated for each of 40,000 rooms
with varying positions of speech and noise sources. It should
be noted that, in contrast to the standard augmentation scenar-
ios (Kaldi), both speech and noise signals were reverberated.
In this case different RIRs generated for one room were used
for speech and noise signals respectively. Thus more realistic
data augmentation was obtained. We have already used this ap-
proach in our previous studies [37, 27].

In order to achieve a variety of acoustic conditions, we di-
vided each sample into 1-minute segments and augmented each
of them individually using randomly selected room and noise.

As a result of augmentation, the SNR range [-20; 30] dB
and RT60 range [0.0045; 1.87] sec were evenly covered, which
is critically important for the training process.

During the set of experiments the key factor in the success
of effective SNR estimation training was revealed: it is highly
important to use short-term SNR value for each 2-sec segment,
but not the long-term value for the whole signal. Human speech
and noises in real life are non-stationary signals. That is the
reason why the global SNR value used for augmentation can
not be interpreted as training label and needs to be re-estimated
for each segment independently. To estimate local short-term
SNR values for each training sample we found coefficients that
are used in a linear combination of noise and source signal after
reverberation, that for discrete signal can be expressed as

Xaug(i) = αXrev
src (i) + βXrev

noise(i) for i ∈ {1, . . . , n}

This can be done by solving the system of non-linear equa-
tions. After, the local SNR can be found by the following
formula using these coefficients, and signal and noise energies
Erev

src , E
rev
noise:

SNRlocal = 10 log

(
α2Erev

signal

β2Erev
noise

)

3.3. Experimental results

For evaluation of the proposed methods we used the validation
set contained the augmented version of the NIST2008 dataset
(1000 files with 59-sec mean duration) that was not used during
training and single-channel Eval part of the ACE dataset from
[38] (4500 files with 19.4-sec mean duration).

Table 2 presents the comparison of all the proposed models
with different features in terms of model sizes, speed for CPU
(Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz) and quality
on validation and test datasets. Predictably, the model quality
increases with the number of parameters it uses, thus the bet-
ter results were obtained for ResNet18 models, which are the
heaviest among the proposed models and the worst results were
obtained for the lightest models U-net. Notably, according to
the minimum loss values on the validation set, systems based
on Fbank features outperformed MFCC-based ones. However,
results obtained for the ACE dataset can not confirm this state-
ment: the best quality in terms of absolute errors of SNR pre-
dictions was achieved for the ResNet MFCC system, but Fbank
based system with the same architecture showed the minimum

(a) (b)

Figure 1: Representation of the estimations for all proposed
models

absolute errors of RT60 predictions. The accuracy of noise
type recognition on the validation dataset for our best model
reached only 26.26%. This can be explained by the large num-
ber of classes that are not discriminative enough: and overlap of
properties between some classes can appear (for example, white
Gaussian noise and rain sounds).

The representations of the models errors can be seen in box-
plots in Figure 1. It displays the median and dispersion of the
SNR and RT60 estimations errors for the ACE Eval dataset.

The best ResNet18 Fbank system was also evaluated in
terms of ACE Challenge metrics: mean squared error (MSE),
bias, and Pearson correlation coefficient of estimator implemen-
tations compared to the ACE corpus labels. The proposed sys-
tem demonstrated 0.034 MSE, -0.118 Bias and 0.913 correla-
tion coefficient, which is comparable to the published results of
the ACE winner [15], Microsoft system [39] and CNN solution
from [40].

We analyzed acoustic conditions of commonly used
datasets in speaker verification and speech recognition tasks
in different channels from the well-known challenges of the
last years. In the microphone case we used SITW (develop-
ment and evaluation parts), VOiCES (development and evalu-
ation parts), JANUS Multimedia Dataset from NIST2019 and
CHiME 5 datasets, and in the telephone case – NIST2019 de-
velopment and evaluation parts. The distributions of SNR and
RT60 values for our best ResNet18 Fbanks system (according
to the loss value) are presented in Figure 2 for these datasets.
Obtained results meet the subjective expectations and dataset
descriptions. It is interesting to note that quality parameters dis-
tributions are almost the same for both development and evalua-
tion sets of the NIST SRE 2019 and SITW benchmark but differ
for the VOiCES challenge data parts. This accords with the pre-
vious studies that show SR system performance degradation for
the VOiCES eval protocol compared to results obtained for the
development protocol [27].

4. QE application for speaker recognition
task

The major adverse conditions causing speaker recognition sys-
tems degradation are different channel and noise environments.
The mismatches can exist in all combinations between train-
ing, testing and enrollment conditions. These mismatches lead
to scores distributions scaling and shifting for different condi-
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Table 2: Comparison of the proposed systems in terms of quality estimates for ACE eval dataset, size of the model and speed on CPU

Model Features Parameters Size(Mb) Speed
(sec/sample)

Min loss on
validation Accnoise, [%]

Part of ACE eval [%]
with ‖ErrorSNR‖<

Part of ACE eval [%]
with ‖ErrorRT60‖<

3db 5db 10db 100ms 200ms 300ms

U-net MFCC 1,398,724 5.34 0.0063 144.35 14 32 46 70 36 55 87
Fbank 1,530,180 5.84 0.0083 98.69 21 26 46 63 32 54 82

FatCNN MFCC 3,516,168 13.41 0.0122 117.75 18 43 63 90 27 59 75
Fbank 0.0222 83.71 25 46 67 92 44 68 82

ResNet18 MFCC 10,090,467 38.49 0.0593 99.00 21 48 79 95 42 69 81
Fbank 0.1294 68.55 26 41 65 93 51 78 87

Figure 2: Distributions of SNR (upper) and RT60 (lower) values
obtained by ResNet18 Fbank for public datasets

tions. Such scores instability impairs SR systems in real ap-
plications. In order to deal with this problem different calibra-
tion strategies [41, 42] and compensation techniques are imple-
mented [43, 44].

Quality Measure Functions (QMF) [43, 45] are often used
for score stabilization and calibration according to various en-
rollment and test duration conditions. Following [45], we
used a similar approach to various speech quality conditions.
For this purpose we applied our best blind speech quality es-
timation model (Resnet18 on Fbank features) for automatic
SNR and RT60 assessment of enrollment (snre, rt60e) and
test (snrt, rt60t) speech segments. We proposed to use sim-
ple model to compensate speech condition scores shifting:

Snew(e, t) = Sraw(e, t)− δqmf (qe, qt)

δqmf (qe, qt) = Ctµtar(qe, qt) + Ciµimp(qe, qt)
(2)

where Sraw(e, t) and Snew(e, t) are raw and new shift com-
pensated verification scores, respectively, µtar(qe, qt) and
µimp(qe, qt) are functions of the means of target and impostors
scores distributions, respectively, which depends on enrollment
speech segment quality (qe: snre or rt60e) and test speech seg-
ment quality (qt: snrt or rt60t) estimations, Ct andCi are tun-
able coefficients. To train the proposed quality shift compensa-
tion model we generated development protocols to estimate the
means of target and impostors scores for particular qe and qt
condition regions. The development protocols for different qe
and qt regions were generated using the CHiME-5 dataset.

In our experiments we fitted second order polynomial mod-
els on the development estimations of µtar and µimp to obtain

µtar(qe, qt) and µimp(qe, qt) functions approximations. Fi-
nally, the parameters Ct and Ci were tuned on pulled condi-
tion CHiME-5 verification protocol according to the best SR
system performance. For our SR experiments we used the
Resnet34-based extractor (ResNet34-MFB80-AM-TrainData-
II) described in detail in [27].

Table 3 shows the experimental results of applying QMF-
based shift compensation to SITW and VOiCES speaker verifi-
cation evaluation protocols both for development and evaluation
datasets. It can be seen from these results that simple QMF shift
compensation allows to improve the SR system performance for
all protocols. It should be noted that the most fruitful improve-
ment was achieved for the challenging VOiCES eval protocol
(see Figure 2).

Table 3: Speaker recognition evaluation results on SITW and
VOiCES protocols in terms of EER[%]/minDCF(Ptar = 0.01)

QMF type VOiCES SITW
dev eval dev eval

Raw scores 1.24/0.197 6.02/0.430 2.00/0.193 2.17/0.216
SNR 1.20/0.190 5.44/0.415 1.86/0.183 2.07/0.210
RT60 1.25/0.197 5.54/0.401 2.01/0.193 2.16/0.216
SNR&RT60 1.20/0.189 5.19/0.398 1.86/0.182 2.07/0.214

5. Conclusion
We proposed new deep convolutional neural network based sys-
tems and their training schemes to build accurate voice ac-
tivity detection model and blind short-term speech segments
quality estimators. These models perform well in both clean
and noisy unseen environments. The results obtained on the
ACE challenge dataset show that multitask mode can be effec-
tive in training the predictor for both SNR and RT60 values
using single deep CNN-based model. Additionally, we ana-
lyzed different commonly used speaker recognition benchmark
datasets in terms of SNR and RT60 quality estimations. We
managed to show that applying the QMF model with blind SNR
and RT60 quality estimations of test and enrollment speech
segments helps to improve speaker recognition system perfor-
mance by using simple verification scores shift compensations.
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