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Abstract 
With the rise of voice-activated applications, the need for 
speaker recognition is rapidly increasing. The x-vector, an 
embedding approach based on a deep neural network (DNN), is 
considered the state-of-the-art when proper end-to-end training 
is not feasible. However, the accuracy significantly decreases 
when recording conditions (noise, sample rate, etc.) are 
mismatched, either between the x-vector training data and the 
target data or between enrollment and test data. We introduce 
the Siamese x-vector Reconstruction (SVR) for domain 
adaptation. We reconstruct the embedding of a higher quality 
signal from a lower quality counterpart using a lean auxiliary 
Siamese DNN. We evaluate our method on several mismatch 
scenarios and demonstrate significant improvement over the 
baseline. 
Index Terms: Speaker recognition, speaker verification, 
Siamese neural network, mismatch conditions, domain 
adaptation. 

1. Introduction 
Speaker recognition is a popular task, useful for processing 
various forms of communication, including telephone, 
broadcast, multimedia, and meeting data, as well as user 
authentication on mobile devices, smart home devices, and AI 
assistants. 

The x-vector [1], an embedding approach for speaker 
verification based on a deep neural network (DNN), is 
considered the state-of-the-art embedding method for speaker 
verification. In addition, x-vector-based systems outperform 
other systems in a wide range of setups [2]. However, when 
given a sample from a different domain that was used to train 
the x-vector extractor, its accuracy significantly decreases. The 
different domain can be characterized by a different recording 
means, for example telephone versus studio, disturbances such 
as noise and additional mismatched conditions. In this paper, 
we explore the x-vector performance under such mismatched 
conditions. We explore three such mismatches: “noise”, where 
random noise is added to the enrollment and/or test data; 
“sample rate”, where data is sampled at either 16 KHz or 8 
KHz; and “telephone”, where we used a telephone simulator to 
simulate telephone speech. We chose these scenarios as we 
consider them most valuable to speaker recognition 
applications. For each scenario, we refer to the modified data as 
the lower quality data and to the original data as the higher 
quality data. We analyze the three mismatch scenarios to test 
speaker recognition performance where the enrollment data 
matches the x-vector high-quality training data, but the test data 
is of low quality. We also analyzed the “noise” and “telephone” 
scenarios to test a mismatch between high-quality x-vector 

 
 1 Models can be found in http://kaldi-asr.org/models.html 

training and low-quality target data (both enrollment and test 
data). 

Our empirical study shows that the x-vector framework is 
very sensitive to the mismatches explored. To increase the x-
vector robustness to lower quality data, we present the Siamese 
x-vector reconstruction (SVR) method in which we use an 
efficient Siamese DNN [3] trained to reconstruct the higher 
quality x-vectors on external data. The SVR method is novel in 
the context of embedding reconstruction and speaker 
recognition and has three main contributions. First, it 
dramatically improves the performance on low quality data 
without having to retrain the x-vector extractor on that data; this 
is a long and expensive process that requires the availability of 
the training data. Second, it allows overcoming quality 
differences between the enrollment and test data. Third, when 
using pre-trained x-vector models available in the KALDI [4] 
framework, two versions are available: an 8 KHz telephone 
version and a 16 KHz version, with the latter being more 
accurate and constantly improving. Our method allows using 
the more accurate 16 KHz x-vector model on 8 KHz and 
telephone data. 

The rest of the paper is organized as follows: Section 2 
includes a survey of related papers and compares methods; 
Section 3 describes the SVR method; Section 4 presents the 
performance for the three scenarios discussed; and Section 5 
concludes and proposes future work. 

2. Related Work 
In this paper, we follow the guidelines of the embedding 
framework for speaker recognition, in which speaker 
recognition is carried out by first embedding the speech 
utterance into a fixed-dimensional vector, and then scoring the 
similarity between the enrollment and test embeddings. 
Currently, the most popular speaker embedding methods are i-
vectors [5] and x-vectors [1]. To determine whether two given 
embeddings originate from the same speaker, a probabilistic 
linear discriminant analysis (PLDA) model [6] is usually used. 

The current state-of-the-art embedding for speaker 
recognition is the x-vector, which was introduced by Snyder et 
al. [1]. They used the intermediate activation layer of a DNN 
trained for speaker classification on a large amount of data, 
naming the embedding “x-vector”. The x-vector currently has 
two open-sourced1 versions that differ from one another based 
on the training data used. The 8 KHz telephone version was 
trained on more than 4K speakers [7] and the 16 KHz version 
was trained on more than 7K speakers from VexCeleb2 [8]. 
Since published, several improvements for the x-vector system 
have been suggested. Okabe et al. [9] replaced the average 
pooling done in the x-vector DNN with attention-based pooling 
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[10]. Their method was able to improve the vanilla  x-vector 
system, but was only tested for the 8 KHz system. Garcia et.al.  
[11] optimized the x-vector system by including an angular 
softmax [12] to score two vectors based on their cosine 
similarity. They demonstrated state-of-the-art results for a 16 
KHz evaluation of speakers in the wild (SITW) [13]. 

While the x-vector achieves state-of-the-art accuracy on 
datasets such as SITW, its accuracy degrades significantly in 
cases of mismatched conditions. The idea of embedding-level 
modification is tackled by Kheder et,al. [14]. They modified the 
i-vector embedding of a noisy utterance by estimating the clean 
i-vector from the noisy version, based on assumptions about the 
noise distribution. While this approach exhibits a significant 
improvement compared to the vanilla i-vector, this method is 
limited to noisy data. Other researchers attempted to recover a 
higher quality version of the audio, such as Plchot  et al. [15] 
who used a neural network to denoise the audio, and Kuleshov 
et al. [16] who used an encoder-decoder-based DNN to perform 
audio super resolution. 

In contrast to the methods reviewed thus far, other methods 
attempt to overcome domain mismatch given existing 
embeddings. Score Normalization (SN) takes a single trial 
(enrollment, test recordings, and corresponding matching 
score) and normalizes the score according to the score 
distributions of the enrollment/test recordings with respect to an 
imposter dataset [17]. PLDA Adaptation (PA) [18] uses an 
unlabeled adaptation dataset to modify the PLDA model used 
to score the samples. This method exhibits significant 
improvements when dealing with channel and language 
mismatches. The PA method uses both original and adapted 
PLDA models with a parameter α to weigh them. 

Our method can be used in conjunction with other methods. 
Specifically, we combine SN with our method for further 
improvement, as reported in Section 4. 

3. Siamese X-Vector Reconstruction 
Our goal is to reconstruct a higher quality x-vector from a low-
quality counterpart, without having to retrain the x-vector 
embedding network. Such retraining is not only an expensive 
procedure, but may also be infeasible due to lack of data or 
skills. Furthermore, we want to be able to score a high-quality 
enrollment utterance against a low-quality test utterance. 
Therefore, we propose modifying the x-vector directly, rather 
than the signal. To that end, we begin by creating a DNN that 
receives a low-quality x-vector and is trained to reconstruct the 
high-quality x-vector. Formally, let Fθ denote a neural network 
with parameters θ whose inputs and outputs have the same 
dimension as the x-vector embedding, x Rd, Fθ x Rd. 
Following that, we utilize the knowledge of the task at hand and 
aim to have x-vectors of the same speakers from two different 
utterances be more similar than those of two different speakers. 
Hence, we use the reconstruction DNN as the basis of a Siamese 
DNN [3]. To do that, we create two identical, weight-shared, 
instances of Fθ.  We then use the cosine similarity between the 
reconstructed x-vectors of two given inputs, setting the target 
value to 1 if the two input low-quality embeddings belong to 
the same speaker, and 0 otherwise. We call our method the 
Siamese X-Vector Reconstruction (SVR). 

Formally, let   denote two low-quality x-vectors from 
speakers c , c respectively and their high-quality 
counterparts. We train Fθ using a summation of the two 

reconstruction losses and the cosine similarity loss denoted by 
L: 

  (1) 

Where, 

 

Figure 1: SVR system Overview 

To reconstruct an x-vector during inference, one simply 
uses the output of Fθ without using the Siamese training scheme. 
The architecture we chose for Fθ is a simple three-layer, fully 
connected DNN. As a result, our method is highly efficient and 
can be utilized for several types of mismatch conditions and 
other forms of embedding (not limited to x-vectors). We trained 
our model on the test portion of VoxCeleb2 [8], which was not 
used during the training of the x-vector model. This form of 
training took just a few hours using a standard single GPU 
machine, as opposed to a few days that it takes to train the x-
vector model. Our method doesn’t require any additional data 
from the test or enrollment domain. However, as such data can 
be provided in several applications, we evaluated the possibility 
of combining our method with score normalization. 

4. Experiments 
For the evaluation, we consider two forms of mismatch. The 
first is where the enrollment data mismatches the test data, with 
the enrollment data being of higher quality. For instance, the 
enrollment data is sampled at 16 KHz, while the test is sampled 
at 8 KHz. That’s a feasible scenario, as the enrollment data is 
collected once and as such can be obtained rigorously. We refer 
to this form of mismatch as “Original Enrollment”, because 
only the test data is of reduced quality. The second form is 
where the enrollment and test data share the same level of 
quality, which is different from that used for training the x-
vector network. For instance, both enrollment and test data are 
sampled at 8 KHz, but we wish to use the more accurate, 16 
KHz x-vector model, which was trained on more speakers and 
is constantly evolving. We evaluated both forms under three 
mismatch scenarios: noise, sampling rate, and telephone 
simulation. For each scenario, we trained an SVR model to 
overcome the mismatch. We evaluated our performance on the 
common benchmark SITW [13], a 16 KHz dataset consisting of 
several utterances per speaker with a few hundred speakers, 
using the core-core partition for evaluation. In addition to 
comparing SVR to the vanilla x-vector, using the development 
set, we compare SVR to the score normalization (SN) and the 
PLDA adaptation (PA) methods and to a combination of the 
SVR and the SN methods.  

We follow the guidelines defined by the NIST 2019 
Speaker Recognition Evaluation: CTS Challenge and report our 
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results as the equal error rate (EER) and minimum of the 
normalized detection cost function (minDCF):  

, where  and are the false 
negative and false positive ratios per threshold , respectively, 
and  is a hyper-parameter. The DCF is averaged over two 
values of : 99 and 199.  

4.1. Baselines 

We began by evaluating the performance of the baseline open-
sourced models on the original 16 KHz SITW and a down-
sampled 8 KHz version. Table 1 shows the EER and minDCF 
using the two x-vector extractors. The first row corresponds to 
the 16 KHz x-vector extractor used on the SITW dataset and the 
second row to the 8 KHz extractor used on a down-sampled 8 
KHz version of SITW. The 16 KHz model significantly 
outperforms the 8 KHz model. We therefore consider the 3.5% 
EER and 0.38 minDCF as lower bounds for the remaining 
experiments. 

Table 1: Baseline results, using the 8 KHz and 16 KHz 
x-vector models on the SITW dataset 

Enroll Sample 
Rate 

Test Sample 
Rate 

EER 
(in %) 

minDCF 

16 KHz 16 KHz 3.5 0.38 
8 KHz 8 KHz 7 0.59 

4.2. Noise Mismatch 

The first scenario we examined is the noise mismatch. In this 
scenario, we created a noisy version of the SITW 16 KHz 
dataset. We added a random combination of white, pink, and 
brown noise resulting in a dataset with an estimated signal-to-
noise ratio (SNR) of between 8 and 20 dB. An SVR model was 
trained on a noisy version of the VoxCeleb2 test set. The results 
for this experiment are presented in Table 2. 

Table 2: Noise mismatch results on the SITW dataset. 

 Original 
Enrollment 

Noisy  
Enrollment 

 EER 
(in %) 

minDCF EER 
(in %) 

minDCF 

Baseline 5.4 0.52 7.3 0.82 
SN 5.3 0.49 7.6 0.58 
PA 5.7 0.53 7.5 0.64 

SVR 3.9 0.42 4.1 0.45 
SVR+SN 3.6 0.4 3.9 0.45 
 
We first note from the baseline row that the added noise had 

a profound impact on the performance. Using a simple, defined 
noise structure, it increased the EER by 55% and 108% for the 
two scenarios, respectively. Second, we observe that our 
method, SVR, significantly outperforms the other methods. The 
best results were achieved by combining SVR with score 
normalization, which obtained EERs of 3.6 and 3.9, close to the 
lower bound of 3.5 achieved on the clean version of the data.  

The PLDA adaptation technique used throughout the 
experiments is dependent on the choice of the weighting 
parameter. The EER and corresponding minDCF presented 
were the lowest achieved with various values tried, as 
illustrated in Figure 2. Even with this “cheating” experiment, 

the PLDA adaptation did not improve the results. It also did not 
improve results for the other scenarios.  

Figure 2: PLDA adaptation for various values of α 

4.3. Sample Rate Mismatch 

For the second scenario, we examine data obtained in a low 
sample rate. We down-sampled the SITW dataset and created a 
low-quality, 8 KHz version. As the 16 KHz x-vector extractor 
is more accurate, as evident from Table 1, we attempt to utilize 
it with our data by upsampling back to 16 KHz. For SVR, we 
train a DNN to reconstruct a 16 KHz x-vector from its 8 KHz 
counterpart. We evaluate the speaker verification performance 
given that the enrollment is of a higher quality (16 KHz) and 
given both the enrollment and test data were upsampled from 8 
KHz. 

From the results in Table 3 and Table 1, we note that, 
surprisingly, even when the enrollment data is given in higher 
quality than the test data (see Table 3, first two columns), it 
would be better to down-sample it to 8 KHz as the EER 
improves from 7.6 to 7 and the minDCF from 0.75 to 0.59 
(Table 1 second row). Moreover, even though the 16 KHz x-
vector model is considered superior, upsampling the data and 
using it yields much worse results (see Table 3,  columns 3 and 
4). In contrast, the SVR method shows improvement compared 
to the 8 KHz baseline, reducing the EER by 33%.  

Table 3: Sample rate mismatch results on the SITW 
dataset. 

 

These results imply that when using SVR, one may use the 
higher quality x-vector model, which is more accurate and 
constantly improving, on lower quality data. This is preferable 
to matching the quality of the data between the enrollment and 
test to that of the lower quality, the second best option, which 
performs significantly poorer. 

 Original 
Enrollment 

Upsampled 
Enrollment 

 EER 
 (in %) 

minDCF EER 
(in %) 

minDCF 

Baseline 7.6 0.75 8.8 0.75 
SN 5.9 0.57 6.6 0.59 
PA 6.3 0.72 8.1 0.6 

SVR 5.3 0.57 6 0.6 
SVR+SN 4.7 0.55 5.7 0.58 
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4.4. Phone Simulator 

The third scenario we considered is one where the test and/or 
enrollment data are taken from a telephone channel. To create 
pairs of telephone and ”clean“ instances, we used a telephone 
simulator [19] and created a 8 KHz telephone version of 
VoxCeleb2 for the training of SVR and SITW for evaluation. 
We note that the telephone simulation mostly had a similar 
effect on the recognition performance as in the previous 
scenarios. 

Table 4: Telephone simulation results on the SITW dataset. 

 Original 
Enrollment 

Telephone 
Simulated 

Enrollment 
 EER 

(in %) 
minDCF EER 

(in %) 
minDCF 

Baseline 8  0.78 7.3 0.61 
SVR 5.6 0.61 6.3 0.63 

SVR+SN 5.2 0.57 6.1 0.6 
 

Table 4 indicates that the SVR method significantly 
outperform the baselines, reducing the EER by 35% when using 
the original enrollment data and 16% when the enrollment is 
also acquired via a telephone channel. 

5. Conclusions and Future Work 
In this paper, we presented the Siamese x-vector reconstruction 
(SVR) method for improving speaker recognition under 
mismatch conditions. Our contribution is three-fold. We first 
significantly improve the performance on low-quality data 
compared to the vanilla x-vector model. Second, when dealing 
with quality differences between the enrollment and test data, 
our method exhibits better performance than downgrading the 
higher quality data. Third, and perhaps most important, our 
method enables using the higher quality 16 KHz x-vector model 
on 8 KHz data.  

The three scenarios we presented (noise mismatch, sample-
rate mismatch, and telephone simulation) had a significant 
impact on the performance of the vanilla x-vector extractor, 
revealing a serious shortcoming of this extractor in the case of 
domain mismatch. 

The SVR can be generalized to any given embedding and 
cope with additional scenarios. As such, we intend to explore 
the use of SVR on such scenarios and embeddings, potentially 
extending it beyond the scope of the speaker recognition task, 
as the SVR addresses issues that are prominent in many 
research fields.  
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